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Fig. la. Diagram of gravitational instability in the ‘big-bang” model. The region of instability is
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the graph demonstrate the temporal evolution of density perturbations of matter: growth until the
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correspond to different phases.
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Al o Generates isotropy and spatial flatness.
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Matrix Theory attains a scale-invariant spectrum.

EET‘“S“’”S o Ekpyrotic constraction achieved from a scalar field
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@ Such potentials are ubiquituos in string theory.
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V(p) = —Voexp(—v/2/pp/Mmp) p <1

DFT / Vo
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et Look curvature fluctuations?
String Gas o Can we obtain a spectrum of gravitational waves
Cosmol 0

S relevant to current observations?
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cosmological observables.
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Mathematical Aside

Qo

o

Consider the equation

X' (1) + [kz + mé(r — 78)] Xi(1) = 0.

Solutions: plane waves for 7 < g and for 7 > 7.

o Positive frequency solutions fx and negative frequency

ones f;.
Bogoliubov mode mixing across the transition
surface.

Pure positive frequency before 75 can be written for
T > 7B aS

Xk = akly + Brly

where ay and gy are the Bogoliubov mode matching

coefficients.
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This is the factor which transforms a vacuum spectrum into
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76/136



Gravitational Waves Passing Through the
S-Brane

String
Cosmology

R. Branden-
berger

Data

= @ Spectrum before passage through the S-Brane is a
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Sting Gas @ — Spectrum after passage through the S-brane is
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Matrix Theory
SeEEE o Power spectrum of gravitational waves;

DFT

Cosmology

1 5
Pa(k) = 5 5r2myP(kre)*? .
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Solution for ¢ on super-Hubble scales in the contracting

Data phase:
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'H<4uw ?{

" & (k,7) = A (k)= + B_(k),

First Look a

S Solution for ® on super-Hubble scales in the expanding
osmology

Matrix Theory phase

Conclusions H

Cosmoloa & (k,7) = A+(k)? + By(k).
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Matching conditions for a zero shear S-brane (R. Durrer and

F. Vernizzi, Phys. Rev. D 66, 083503 (2002)):

Data
TCC

Swampland

First Look

String Gas 5

Cosmology H_ aB

Matrix T.heory A+ = %_+A— + H_+(B_ — B+)

Ec;:c\uswns 5 B H+ (Hf//Hf . Hf) _ H+/ + H+2 H_ p

Cosmology + _ ( 27_[+2 — ’]-[+/ )?B _
H_Hy —H?

(1 )B-

oH. 2 — 1,
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Using vacuum initial conditions to determine A_(k):

First Look

String Gas A_(k) = zur(/l)m‘;/1 k_3/2(k7—3)_q7
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Matrix Theory

Conclusions

- Power Spectrum of Cosmological Perturbations:

Cosmology
.1
22

Hy 21 2
—2°MT ()= .
a%mpl) (1)

K) ~

(kTB)_zq(

Scale-invariant spectrum with a slight red tilt.
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String Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

Cosmology

R. Branden- o winding modes prevent expansion

eroer © momentum modes prevent contraction
Dala 0 — Ver(R) has a minimum at a finite value of
- R, — Rmin

Swampland

@ in heterotic string theory there are enhanced symmetry
g s states containing both momentum and winding which
Cosmology are massless at Rmin

A T_heory 0 — Verr(Rmin) =0

S o — size moduli stabilized in Einstein gravity background

First Look

DFT

Gosmology Shape Moduli [E. Cheung, S. Watson and R.B., 2005]
@ enhanced symmetry states

@ — harmonic oscillator potential for 8

@ — shape moduli stabilized
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o The only remaining modulus is the dilaton.
o Make use of gaugino condensation to give the dilaton a
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= potential with a unique minimum.

e o — diltaton is stabilized.

Sring Gas. o Dilaton stabilization is consistent with size stabilization
et Theony [R. Danos, A. Frey and R.B., 2008].

Conclusions @ Gaugino condensation induces (high scale)

DFT supersymmetry breaking [S. Mishra, W. Xue, R.B. and
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U. Yajnik, 2012].
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Starting point: BFSS matrix model at high temperatures.

@ BFSS model is a quantum mechanical model of 10
N x N Hermitean matrices.
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String Gas o Note: no singularities!
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Matrix Theory o Note: BFSS matrix model is a proposed
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o Numerical studies: 1 (TrAZ) ~ kN
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Spontaneous Symmetry Breaking in Matrix

Theory

Sl o Eigenvalues of Ay become emergent time, continuous
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Spontaneous Symmetry Breaking in Matrix

Theory

J. Nishimura, PoS CORFU 2019, 178 (2020) [arXiv:2006.00768 [hep-lat]].

Sl o Eigenvalues of Ay become emergent time, continuous

Cosmology

R Branden- in N — oo limit.
berger o Work in the basis in which Ag is diagonal.
Data o Work in the basis in which Aj is diagonal: A; matrices
TCC become block diagonal.
o Extent of space in direction i
First Look
0(t? = (FTANDR)
Matrix Theory
coneisons @ In a thermal state there is spontaneous symmetry
ggmomgy breaking: SO(9) — SO(6) x SO(3): three dimensions

of space become larger, the others are confined.

[J. Nishimura and G. Vernizzi, JHEP 0004, 015 (2000);
1S.-W. Kim, J. Nishimura and A. Tsuchiya, Phys. Rev.
Lett. 109, 011601 (2012)]
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Emergent Metric from Matrix Theory

Sl o Eigenvalues of Ay become emergent time, continuous

Cosmology

—— in N — oo limit.
berger o Work in the basis in which Ay is diagonal: pick n
Data (comoving spatial coordinate) and consider the block
Tco matrix A;(t).
o Physical distance between n; = 0 and n; (emergent
First Look space):
Cosmaosy o
Matrix Theory /Shys,i(nvi t) = <Tr(Ai)(t)) > )
S © lpnys,i(ni) ~ ni (for nj < nc)
S o Emergent infinite and continuous space in N — oo limit.

o Emergent metric (S. Brahma, R.B. and S. Laliberte,
arXiv:2206.12468).
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No Flatness Problem in Matrix Theory
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e Emergent metric:
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d
Dat gi(m)"/? = d_mlphyS,i(”i)

TCC Result:

Swampland

First Look gii(ni7 t) = A(t)(su = 1)273
String Gas
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Matrix Theory SO(3) symmetry —

Conclusions

DFT

Cosmology gij(n7 t) = _A(t)é,/ = 1,2,3

— spatially flat.

Note: Local Lorentz invariance emerges in N — oo limit.
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o transition in the IKKT model (S. Brahma, RB and S.
e Laliberte, arXiv:2209.01255).
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Matrix Theory Cosmology

S. Brahma, R.B. and S. Laliberte, arXiv:2108.1152

String
Cosmology

R. Branden- We assume that the spontaneous symmetry breaking
eroer SO(9) — SO(3) x SO(6) observed in the IKKT model
Data also holds in the BFSS model.

o0 o Using the Gaussian approximation method we have
shown the existence of a symmetry breaking phase

o transition in the IKKT model (S. Brahma, RB and S.
e Laliberte, arXiv:2209.01255).

et Theory o Thermal correlation functions in the three large
Soneises spatial dimensions calculated in the high temperature
Cosmology state of the BFSS model (following the formalism

developed in String Gas Cosmology).
o — curvature fluctuations and gravitational waves.
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TCC phase.
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Matrix Theory Cosmology: Thermal
Fluctuations

S. Brahma, R.B. and S. Laliberte, arXiv:2108.1152

o Start with the BFSS partition function .

o Note: + correction terms in the BFSS action are crucial!

o Calculate matter correlation functions in the emergent
phase.

o For fixed k, convert the matter fluctuations to metric
fluctuations at Hubble radius crossing t = f;(k).

o Evolve the metric fluctuations for t > t;(k) using the
usual theory of cosmological perturbations.

Note: the matter correlation functions are given by partial
derivatives of the finite temperature partition function
with respect to T (density fluctuations) or R (pressure
perturbations).
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- g Ansatz for the metric including cosmological perturbations
. Branden- . .
berger and gravitational waves:

Data

- ds? = &(n)((1 +20)dn? — [(1 — 20)d; + hjldx’dx) .

Swampland

e Inserting into the perturbed Einstein equations yields

String Gas
Cosmology

Matrix Theory <|<D(k)\2> — 167T2G2k_4<5T00(k)5T00(k)>7

Conclusions

DFT
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Note: We assume the validity of the semi-classical Einstein
equations in the far IR.
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TCC o Insert Matsubara expansion of the matrices: leading

term in the BFSS action in the high T limit is the IKKT
st ook action.
Cosmolody o Express expectation values in terms of IKKT
Matrix Theory expectation values
;CF):C‘“S“’”S To next to leading orderin 1/T:
Cosmology
e = §N2X2T— 2N4ax1 T-1/2

X1 =< R? >pgrss T /2
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@ Scale-invariant spectrum of curvature fluctuations

e o With a Poisson contribution for UV scales.

= @ Scale-invariant spectrum of gravitational waves.

R. Branden-
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Matrix Theory Cosmology: Results
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Cosmology

Thermal fluctuations in the emergent phase —
@ Scale-invariant spectrum of curvature fluctuations

e o With a Poisson contribution for UV scales.

= @ Scale-invariant spectrum of gravitational waves.

R. Branden-
berger

First Look
Bl — BFSS matrix model yields emergent infinite space,
0SmMOoIo . . . . . .
- emergent infinite time, emergent spatially flat metric and an

Matrix Theory . . .
emergent early universe phase with thermal fluctuations

Conclusions

- leading to scale-invariant curvature fluctuations and
Cosmology gravitational waves.

Note: Horizon problem automatically solved.
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- Include the effects of the fermionic sector.

o o Understand phase transition to the expanding phase
of Big Bang Cosmology.

Understand the emergence of GR in the IR.
String Gas

First Look Q

Cosmology o Spectral indices?
°
°

Matrix Theory What about Dark Enel’gy?

o Emergent low energy effective field theory for localized
Cosmology excitations.

Conclusions
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Conclusions

String o Several early universe scenarios exist which are

Cosmology

2, et consistent with current observations.

S o A consistent analysis of early universe cosmology
Data requires going beyond effective field theory.

c o Superstring theory is a promising approach to study the

u very early universe - unified theory at the quantum

FistbooK level.
e o Non-perturbative formulation of superstring theory is
Matrix Theory missing.
Conclusions o Several approaches to superstring theory exist, each
ol picks particular aspects of string theory which

Cosmology

distinguish string theory from point particle theories.
o String Gas Cosmology: emergent universe scenario
based on the study of new degrees of freedom and new

symmetries of string theory.
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" borger definition of superstring theory. Consider a high
temperature state of the BFSS model.

Data

G o — emergent time, space and metric. Emergent space
is spatially flat and infinite.
First Lok o Thermal fluctuations of the BFSS model —
e scale-invariant spectra of cosmological perturbations
Matrix Theory and gravitational waves.
Conclusions o Horizon problem, flathess problem and formation of
orl structure problem of Standard Big Bang Cosmology

Cosmology

resolved without requiring inflation.

o Transition from an emergent phase to the radiation
phase of expansion. No cosmological constant.
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Relationship between IKKT Model and Type 11B

String Theory

String

St Consider action of the Type 1IB string theory in Schild gauge
R. Branden-
berger

Data SSChild _ /dzO'Oé [\/a(%{xu,xl’} — éd—}rp‘{xﬂvw})_‘_ﬁ@] :

TCC

Swampland

First Look

ong B em o . =8
Sy o Partition function : Z = / D+\/gDXDye™=schid |
Cosmology

Matrix Theory

Conclusions

Correspondence : {,} — —i[,]

/ Poy§ — T

DFT
Cosmology

Obtain grand canonical partition function of IKKT model.
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2(9) = [ DADX;e™

Data

TCC Internal energy

'tmum“\ c1

First Look

E=—-—InZ

String Gas d/B (/8)

Cosmology

Matrix Theory

Conclusions E = — Z )\_ / dtTI'[X X; ]2

DFT
Cosmology Matsubara expansion:

X = Z Xngi2mn A)t
n
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Some Details

Matsubara expansion of the action:

Sgrss = So + Skin + Sint

At high temperature: Si;, and Sj; suppressed compared to
So.

To next to leading order:

=N\ =

where y1 ~ R2A\¥/3T-1/2,
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R. Branden- o Derivative w.r.t. T — density fluctuations: both terms
o contribute.

e o Derivative w.r.t. R — pressure fluctuations: only second

i term contributes.

e Power spectrum P(k) of density fluctuations: (k = R~1)
String Gas o First term dominates in the UV: Poisson spectrum.

Cosmology
Matrix Theory o Second term dominated in the IR: Scale-invariant
Conclusions SpeCtI’um.

DFT
Cosmology

P(k) = 1672G2XY2N2O(1) ~ (Ismpi)~

using the scaling G2ZN2X*/3 ~ (Ismp)~4.
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Geodesic Completeness

String
Cosmology

S Recall: For each dimension of the underlying topological
° space there are two position operators [R.B. and C. Vafa]:

e o x: dual to the momentum modes
TCC
@ X: dual to the winding modes
First Look We measure physical length in terms of the light degrees
String Gas of freedom.
Cosmology
Matrix Theory
Conclusions
e I(R) = R for R>1,
Cosmology 1
IRy = = for R 1.

R
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Doubled Space Approach

String
Cosmology

R. Branden-
berger

dS? = di* — &(t)sdx'dx — a~2(t)5;dx d%!
Data

TCC
Point particle geodesic:

First Look
String Gas .
Cosmology ad dX/
Matrix Theory d_vS ( ds a2) =0
Conclusions ~
d dx’
DFT — (_ a—2) - 0
Cosmology asS ' dSs

Initial conditions: related by duality.
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Proper Time along Geodesic

String
Cosmology

Assume a(t) as in Standard Big Bang Cosmology.

R. Branden-
berger

Data Proper distance into the future from some time t, to some
TCC time &b > fy:
—_ t :
AS = a(t)yy(t) 'dt+ Tz,
String Gas t
Cosmology 0

RIS Proper distance into the past from some time £, to some

Conclusions tlme t1 < tO:

DFT

Cosmology fo

AS = [ at) '3 '(t)dt+ Ty,
]
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Interpretation

o Expansion of the scale factor in the dual spatial
directions as time decreases = expansion in the
regular directions as time increases.

o Dynamics of the dual spatial dimensions as ¢

decreases is measured as expansion when the dual

time ty = 1 decreases.
Proposal:

b(t) = for t>1,

() =

t
1
7 for t<k1.

Conclusion: Point particle geodesics can be extended in

both time directions to infinite proper time.
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Nonsingular String Cosmology

String
Cosmology

Consider Dilaton gravity

R. Branden-
berger

= (¢ - dH)2 _dH? = &%
S H—H <¢ — dH) = %e¢p
ifﬁyy 2 (¢'; . dH) . (gb . dH)2 —dH? = 0

Conclusions

coupled to string gas matter.

w(a) = % arctan </31n (a%)) ,

DFT
Cosmology
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Limiting Solutions

String Large radius limit:

Cosmology

R. Branden-
berger p(alarge) — po (a/ao)_(d+1),
Data Small radius limit:
p(asmall) = po (a/ay)
First Look
Ansatz:
String Gas
Cosmology
Matrix Theory t
Conclusions a( t) ~ (g)a
DFT 7
Cosmology ¢( t) ~ ﬁ In ( t/ tO) )
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R. Branden-
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Data Small radius limit:
TCC

p(asmall) — po(a/ao)
First Look
Ansatz:

)

)—(d+1)

—d+1

String Gas
Cosmology

Matrix Theory

Conclusions a( t) ~ (g)a

Cosmology &( t) ~ ﬁ In ( t/ tO) )

t

DFT

Where

(73 = ¢ —din(a) 130/136



Limiting Solutions

String Hagedorn phase, w = 0:

Cosmology

R. Branden-

berger (a”@) = (0,2) o

DA Note: Static in string frame.
TCC

Swampland

Large a phase, w = 1/d:

First Look

String Gas

Cosmology (a,B) = ( (D— 1)) .

o~

9

ol

Matrix Theory

Conclusions Note: constant dilaton.

DFT
Cosmology

Small a phase, w = —1/d:

(D-1)).

ol

(Oé, B) = (_%’
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o o Contracting cosmology for t — 0 in the Einstein frame.
TCC o As t — 0 the energy of the string gas drifts to winding
modes.
FISEEa0K o Physical space is measured in terms of winding modes.
S o In terms of winding modes the contraction as t — 0
Matrix Theory corresponds to expansion.
;FT‘ 0t—=0 = ty— o0
Cosmology o In terms of physical variables: bouncing cosmology.

@ Conclusion: nonsingular cosmology.
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Next Step: Double Field Theory as a

Background for String Gas Cosmology

Idea Describe the low-energy degrees of freedom with an
action in doubled space in which the T-duality symmetry is
manifest.

Candidate for dynamics in the Hagedorn phase: Double
Field Theory [W. Siegel, 1993, C. Hull and B. Zwiebach,
2009, L. Freidel et al., 2017]

S - / dxdke29R,

1 1
R = gHMNaMHKLaNHKL—E/HMN(?M’HKL(?K’HNL

AHMN g Ond — OpdNHYN — aMN o), dond
1
48M’HMN6Nd -+ §77MN77KL8M5A KaNEB LHaB -

+ +
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Cosmology of DFT

Add matter action Sy, to the background action of SGC:

S = / dxde2R + S,
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Cosmology of DFT

e Add matter action Sy, to the background action of SGC:

R. Branden-
berger

Data S = /dXd;(e_ZdR+Sm

TCC

Swampland

First Lok Consider generalized Friedmann metric:
String Gas
Cosmology

Matrix Theory d32 = dt2 + d?z - a(t)de2 - X2

az—(t)dx

Conclusions

DFT
Cosmology Physical time constraint:

1

o=
g
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Equations of Motion

String
Cosmology

R. Branden- ZQ_SI/ = ((E/)z = (D — 1)/:[2 4 2§5_

berger

(6 - (D-DHE =
—(D-1)H2+¢ =

Data

- (D—-1)H? -4
First Look I:I‘ — F/ggl + H — H(Z_S =
String Gas
Cosmology

where

Matrix Theory

Conclusions

DFT gz_ﬁ = ¢—(D—1)na

Cosmology

I:
Il
RIS AR
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