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Black hole thermodynamics

§ [Bekenstein 72; Bardeen, Carter, Hawking 73; Hawking 74]
3_ ’ Black holes in their stationary phase behaves as
S Mn 7 .

¢ X thermodynamical systems:
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Oth law: the surface gravity x is constant on the

horizon.
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Istlaw: OM = —2 54+ &, 60 +Q,, 6.J

collapsing matter \ 87 G

| 2nd law: 0A > 0

3rd law: the surface gravity value x = 0 (extremal
BH) cannot be reached by any physical process.

A
S , 1T+ hakg But, in classical GR: T =0
8rGha
hKkg
* Hawking radiation: Thermal emission of particles fromaBHat 1 = ok
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The entropy puzzle
Statistical physics: entropy of any system is given by S=1n N

N = number of states of the system for the given macroscopic parameters
N =¢e° ~ 1()1077 for a solar mass black hole

Where do all these DOF live? Natural guess: On the horizon

I. Classically forbidden: no-hair th. (the horizon cannot hold any information in its vicinity)

Unique geometry of the horizon = S=In1=0

II. Classically over-enhanced: plenty of soft hair = residual diffeos at boundary
(gauge vs physical symmetry)

Infinite-dim symmetry algebra = S= 00



= Call for a quantum treatment of the gravitational DOF

Weak holographic principle:

The entropy in the 1st law is the log of the number of states of the black hole
that can affect the exterior [Bekenstein: Jacobson; Perez; Rovelli; Sorkin; Smolin]

. . . . . . . /A///ﬂ//":»‘mik
= The horizon carries some kind of information with a density /172 &0
approximately 1 bit per unit area

/k “Tt from Bits” )

What these bits of information represent depends on the
deep structure of space-time

< The finiteness of the BH entropy hints at discreteness of space-time at the Planck scale



Black hole singularity

[Schwarzschild 1916] first black hole solution:
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ds® = — (1 — 2Gm) dt’ + (1 — 2Gm) dr? + r?dQ?
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— A mathematical artifact due to the spherical symmetry —

[Penrose PRL 1965] singularity theorem:

Some sort of geodesic incompleteness occurs inside any black hole
whenever matter satisfies reasonable energy conditions ( R,,, K"k > 0 ).

Deviations from spherical symmetry are not able to prevent the formation of singularities.

— Singularities are generic predictions of general relativity! —




Part |

BH entropy
e Covariant phase space
e Canonical GR: metric variables & connections variables
e Isolated horizons: classical
* Quantum geometry: Discrete area spectrum
e Isolated horizons: quantum

* Entropy counting
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Covariant phase space

d, q:;'t,. ..

o, ,. ..
P o - _ - -
N O, D,...  Field space ] T8] = Span{sd]) Ta.rget spacet1me.— Lorentzian manifold M
with set of coordinates {x" }

Tangent space T'p M with coordinate basis {0, }

Cotangent space 15 M with natural basis {dz"}

1. Inner product

Field fibration

| T t: TpM — Linear functions on 175 M:;
E e 1 TpM — R:w— tgw = HO, W]

Spacetime M —— T;M = Span{dx"}

Le : QF (M) — QF (M)

2. Exterior derivative d = dz"d,

i Horizontal derivative = exterior derivative d
Jet bundle = {(x", (D(P‘))} Vertical derivative = variational operator &
P d: QF(M) — QL (M)

Figure credit: [Compere, Fiorucci hep-th/1801.07064]
Lie derivative: Lg¢ = dige + ted



o', Dy, ...

Field fibration

o, D, ...

o, D, ...

Jet bundle = {(x*, sz )}

Covariant phase space

Field space] —

Spacetime M —

Collection of fields & = (@3)2-6 I

T§] = Span{o®}} Field space (or jet space) = set {®*, <I>L, CIDZV, .

N/

symmetrized derivatives of fields

Cotangent space = {0®",6®?,, 69!, ...}

1. Variational operator

5:5@ii+5@ii+5@i 0

T AR T T

T;M = Span{dx"}

§ = exterior derivative on the field space (§° = 0)

0", 09,,0®,,,... 1-formsin field space
Horizontal derivative = exterior derivative d
Vertical derivative = variational operator & 2. Inner product

I¢ := I, field space contraction on field space forms

Figure credit: [Compere, Fiorucci hep-th/1801.07064]

Vector field on field space X¢ := / A%z L' () 55

0 [:69" (1) = 6:P"(x) = X169 () = LD ()

Field space Lie derivative: 0¢ = 01¢ + I¢0



Covariant phase space

>, D, ...
Q...
T D, Dy,...  Field space] —— T5] = Span{6®}}
Jet bundle = manifold with local coordinates (x", cI)% M))
Fields = All fibers above the target manifold
: Section of the fiber = {®(z"), 8, @' (z"), 8,8, ' (z"), ... }
g .
§ Map ¢: UM - U7, ah — O\ (zH)
Spacetime M —— T;M = Span{dx#} Bi-graded Cartan calculus:

d,d] =0, [L§7 IX] =0

Variational bicomplex:

; Horizontal derivative = exterior derivative d
t bundle = {(x*, ®’ — ) . L. . o
Jet bundle = {(x*, @)} Vertical derivative = variational operator &

Bigraded space of forms on field-space

Figure credit: [Compere, Fiorucci hep-th/1801.07064] 929761(‘]\47 J) — Set of (p’ q)_forms,

with p = number of d, ¢ = number of



equations of motion symplectic potential
e Lagrangian top-form L & Qd’O( M, J) ymp P

Er € Q¥ (M, ), 0r, € QL1 (M, )
Qd’O(M J) N Qd’l(M J) D Qd_l’l(M J) N Unique 0 = HL st.: 0L=d0 — F (*)
L — (Ep,0r) Anderson homotopy operator [Lee, Wald 1990];

[Anderson 1992] [Freidel, Geiller, DP 2020]

[ OL oL : oL
i ians: E=0P"(——0 : 0 := 0P’ :
For first order Lagrangians: (({9(1)" m (5’,}13'& )) ? (80,}1”) ;u
Volume form €p = Lo, ¢

e Symplectic form {1 := / 06 where Y = codimension-1 hypersurface with boundary S := 0%
>

S ‘g Si
1] symplectic current conserved on-shell
(x) = dw=0FE = 5 5
symplectic current independent of 3] : t
L'y
g S0

On-shell
Oy =0F¢ <+ —Qo=0r, where Fe = / Lel symplectic flux associated with § = Oy
S

|0



Noether theorems

1.For each gauge symmetry there exists a constraint which vanishes on-shell: I E = dC¢ with Ce¢ = &"'G. €,
2.Noether current conserved on-shell:  J¢ := 159 — el = Cg + dgg

w>  Noether charges for local gauge symmetries = corner charges on-shell
Qg = / g, dq€ 3[&9 — LEL
S

Uniquely determined for a given Lagrangian and a choice of field coordinates

e Fundamental canonical relation: —1¢{2 =190 ( / Cg) +0Q¢ — F¢
)
w  When JF¢ =0 the Noether charge is the Hamiltonian charge
()¢ = Canonical generator of symmetry: 9(55, 5X) =L [eQ1=0¢Qy = {an Qx} — _Q[f,x]

e Canonical boundary condition BY: 6 L0 Fe=0, VE|IT



Changing the Noetherian split

Letusconsider . and L'=L+d¢ — ¢ —0=460—dv o Q':Q—/(W
N—— S

Boundary EOM [Freidel, Geiller, DP 2020]

¢ = Boundary Lagrangian v = Corner symplectic potential
e Shifted charge and flux: ng — Q¢ = /(Lgf — I:v), ]:é — Fe = / (01el — 6¢¥)
S S

Choice of Lagrangian related to different representations of the corner symmetry algebra

Local codim-2 formon I'

v

In general, for a given L, stationarity of the action requires the boundary condition: 6 = dC' — 6/
[Iyer, Wald 1994]; [Harlow, Wu 2019]

w A general boundary condition is canonical when C =¢ — BL' . ¢ Lo v

Choice of Lagrangian related to a choice of canonical boundary conditions

[Freidel, Oliveri, DP, Speziale 2021]
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Canonical GR
Metric variables

1 ~ ~ ~ ~
GR Lagrangian: Larl|g,n] = EG(R — (K2 — K/“’KW)) K = 167G
! i g
Ricci scalar of ~ extrinsic curvature of X €= ‘g | d*z

Upon foliation of spacetime M in terms of
space-like three dimensional surfaces 2., the
phase space of GR is parametrized by the

canonical coordinates Nnt i
Ocr = [ &R~ K)55
K 37\ —~ J/ il Zt
= puv
Spatial diffeomorphism constraint = Conservationeq.: V,P"" =0

e Hamiltonian charges: Diffeomorphisms within £ and tangent to the boundary sphere S
—IeQar = dHarl[E], Har[€] = Hor €] + Her[E],

/H?}R[f ] = § uvuP =0 smeared vector constraint of canonical gravity

HéR[ﬁ] = /S \/agﬂgyﬁl“/ Brown-York charge
|3



©cRr = “Fundamental” potential capturing the bulk canonical DOF which are common to any formulation of GR:

Any other formulation I can be understood as @F = @GR + ®F/ GR — 6( ) )

— P

0Ly /gr +dOp/cr =0r —0cr, OF/gr = fS Or /GRr

O _ , . Different set of corner charges and non-trivial
F/GR = corner symplectic potential —— . .
representation for different components of 9.5

Ocr — géR = dlff( S ) Corner algebra non-trivially represented in all formulations of gravity



Canonical GR

Connection variables

e Einstein—Cartan-Holst Lagrangian: Lgcrule,w| = ;E; sle] A F1 W]
1
FI = du! 4wl e A wEY Erjle] = (x+ ;)(61 Nej)

: I _ 4
Lorentz connection w!? — —/! Tetrad coframe field e = R™-valued 1-forms

v = Immirzi parameter
I =0,7 and = 1,2,3 internal Lorentz indices

duality operation: (xM);; = %GIJKLMKL

e Time gauge: e =n Triad €’,i = su(2) indices

. e~ i
set of three 1-forms defining a frame at each pointin X: g, = €,€}04;

densitized triad FE° := € ;.€’ A e” Ashtekar-Barbero connection A* :=T" + yK*
; 0i . i 1 ik : : :
where K := Y =extrinsic curvatureof X, and 1" = —56 Wk = spin connection: dre’ =0

solution of Cartan’s structure equations



1 | | .
< Oncn = / B, A oA - (E%(x), Al(y)} = 5y88010(z, y)

Hamiltonian

. . . . System of 7 first class constraints
H = N, V(Ej, A;) + NS(E}, A}) + N'Gi(Ef, A7)

for the 18 phase space variables

G(a) = a;doE" = 0, internal rotations with parameter «; € su(2) &= 2 physical DOF

V(&) = (te F'(A)) A E; = 0 spatial diffeomorphisms generated by ¢ € T'(X)

GR = background independent SU(2) gauge theory (partly analogous to SU(2) Yang-Mills theory)

1 .
HJ@ECH :/Eq;/\észL—/ 67;/\561
DY 0

4 ' N
Bulk symplectic structure Corner symplectic structure
' ; i j R7Y cij
{E!(2), K} (y)} = £656]6°(x, 1) {ea (@), ey (v)} = 50 €and” (2, )
Palatini variable: Imply the Poisson Important implications for
brackets of the ADM phase space entropy DOF interpretation



1
Using PI = —eIJKLnLK‘]/\eK — E[/\(SKIZP[/\5GI—§5(€I/\P])

1 1
Lgcu = Ler +dLlecu/Gr,  Lech/Gr = - ( « (e ANe)ry Adyn'n’ + ;61 A dwel)

1 - . 1 ;
@ECH — @GR + G)ECH/GR — =0 (/ EK) ’ @GR = / Pz A (5GZ 3 @ECH/GR = — / €; N de
K )y > RY Js

e Spatial diffeo charges: —I¢Qpcn = dHecu|{] , Heculé] = Haonlé] + Hoon €]
i A S 1 i 2 i Wlth
Hicnlé] = &drP' =0,  Hpeulél = 5 / tewr B / & P+ — / & de & = Lees
EW_/ ”)/ S ( 1
=V (¢)
e Internal SU(2) charges: —1.QrcH = 0Hecu|], Heculo] = Hionla] + Hocnlal
_ with
Hionlol = = [ @'duB;20,  Hienlol = [ @B 5 = (B, a)
¥ S~ S
= G(a)

Orcg — QECH — diff(S) B Su(Q)S

|7



Quasi local definition of BH

Isolated Horizons

1) Null hypersurface A of (M, gy, V) with topology A = S% x R

IH boundary conditions

2) Einstein’s equations and the stronger dominant energy condition hold at A

3) A is equipped with an equivalence class [£] of null normals (related by a positive

constant rescaling) such that the expansion of any ¢ € [/] has to vanish within A

=g

4) Intrinsic connection is conserved along A : (Lo, DyJv” =0, V ok € T(A)

¢ = normal future pointing null vector field [. 2-sphere cross-section As is constant in time

3) —
duv = degenerate intrinsic metric of A L Leq'“ v =0
D,, = unique intrinsic connection compatible with §» Surface gravity k¢ constant along A for each ¢ € [/] :
K(e) = w, ", where D" = w, " v V' =cl — Ky = CRp), ¢>0
Oth law of BH mechanics
IHb.c. 'w» Certain geometric structures intrinsic to A are time independent: (quv> D) := Horizon geometry

|18



Introducing the null-tetrad (l,n,m,m): n-£=—-1, m-m=1, area2-form on A 2e:=imAm

Static (non-rotating) IH: Im(Psy) =0, WUy= Cpeal®mPmsn?

2

Ay

T

_ A2 , . . . .
- FZ’(A):_W<1 "5 % and L KINKEE SR o 6P 20, VE e T(H)

Ap

e [H phase space:

p=(c"A) el', 6= (6¢",64") € T;(T)

for the pull back of fields on the horizon 6 = linear combinations a: A= su(2), £:A — T(H)

of SU(2) gauge transformations and diffeos preserving the 5S¢l = e, &]i LAl = dal
horizon geometry (g, D)

5§ei = £5ei = Lgdei -+ dbgei :

The symplectic structure: kQgr = / §F; NSK" 5§Ai = LgAi = LgFi -+ dAbfAi
5
1 .1 :
:—/($E17;/\5141—|-—/56@/\(56Z
T s YV JH
(%) 1 Ap

:—/5E7;A5Ai— 5 /(51475/\(514@-
Y Jx 7W(1—’Y) H

Corner term given by an SU(2) Chern-Simons symplectic structure



e 1st law of BH mechanics for spherical IH:

Require the time evolution along vector fields t" which are time translations at infinity and

proportional to the null generators ¢ at the horizon to correspond to a Hamiltonian time evolution

ﬁ.t

—kI;Qcr(0,0) =0H,, Vo €T, (I') w H, =FE'  —E' suchthat §E! =254,
K

t .
where K; can only depend on the horizon area

The transformation 0; on I defined by the spacetime evolution field ¢ is Hamiltonian
if and only if the first law holds:

Infinite family of first laws, one associated with each permissible ¢*

‘Canonical’ choice : t" agrees with the static Killing field on the horizon which is unit at infinity

Rg analog of the ADM mass
- gho— _— 5 glto_ )\ OM, = —26A &
" 2Ry " " " ko in the rest frame at infinity

e Symmetry group for spherical IH: Gz = Diff(H) x SU(2)"

Trivially represented in the GR (Palatini) formulation, but not in the ECH formulation

20



The Dirac program
The non perturbative quantization of GR

The phase space of gravity in the bulk can be parametrized by connection-flux variables:

{ES(x), Ay(y)} = k765656 (x, )

(i) Find a representation of the phase space variables of the theory as operators in an auxiliary or
kinematical Hilbert space Hy;, satisfying the standard commutation relations, i.e., {, } = —i/A[, ].

(ii) Promote the constraints to (self-adjoint) operators in Hy;,. In the case of gravity we must quantize the
seven constraints G,(A, E), V,(A, E), and S(A, E).

(iii) Characterize the space of solutions of the constraints and define the corresponding inner product
that defines a notion of physical probability. This defines the so-called physical Hilbert space H,,,.

(iv) Find a (complete) set of gauge invariant observables, i.e., operators commuting with the constraints.
They represent the questions that can be addressed in the generally covariant quantum theory.

21



e Kinematical structure (connection polarization) :

The kinematical Hilbert space consists of a suitable set of functionals of the connection which are square
integrable with respect to a suitable (gauge invariant and diffeomorphism invariant) measure

Holonomy along a path y:  h.[A] = Pexp — / A — Generalized connection
-

Algebra of kinematical observables = Algebra of Cylindrical functionals of of generalized connections Cyl = urCyly

union of Cyl;. for all graphs in &
/e SU(2)NF — C, \Ijr,f[A] — f(h’h [A]a---ah’}’Nr [A])

Measure in the space of generalized connections in order to give a definition of the kinematical inner product:

Positive normalized state on Cyl parn(Yr f) / H dhi f(hy,, - VNF)

SU(2) Haar measure: / dh =1, dh=d(ah)=dha)=dh™', VaeSU?2) —  parL(l) =1 and positive
SU(2)

Inner product on Cyl

- (Up, 6, Ur, p) = pan(Ur, f U, ) = / [T dni f(hy,- - oy Da(hey, - ey L)

NI

22



Peter-Weyl th. : given f € L*[SU(2)], f(g) = Z frnH%ln (9)

J

I (9) = Su(®) unitary irreducible representation matrices of spin 7, —J <m,n < j

orthogonality relation for unitary representations of SU(2) :

5jj’ 5mm’ 5nn’

| , 1
dg Il (OIL . (9) = 57—
/SU(Z) 2j+1

Given an arbitrary cylindrical function Yr, 7|A] € Cyl :

vr rlA] = f(hy, [A]hy [A])
= 3 Fpeg TN L (e [AD) T e (B [A])

JiJ 5T

The product of components of irreducible representations of SU(2) associated with the edges

-
of a graph, for all values of j, m and for any graph is a complete orthonormal basis of Hy;,

23



e Under finite gauge transformations: hiy [A] = g(x(0)h[Alg  (2(1)) —  UglgIL h,] =11, [gshvgt_l]

Implementing gauge invariance: Pglr = /D[Q]MQ 9]V r = H PgVr
nCI’

Intertwiners = Orthogonal set of invariant vectors

’ (product of Clebsch—Gordan coefficients)
PV, T [Vl Pr= St @
(8%

‘Fa J v Ln>
- ffin of spin network states = Products of SU(2) representation matrices contracted with intertwiners

They form a complete basis of the Hilbert space of solutions of the quantum Gauss law

e Under the action of diffeomorphisms ¢ € Diff () : h, p*A] = hcb—l(v) 4] — Up [qb]\IjF,f[A] — \Ijqb—l(F),f[A]

Implementing diffeo invariance: No self-adjoint infinitesimal generator, instead Up|¢p]¥ =¥ for W ¢ Cyl*

(Wrsl= D (Ursltolol= > (Yol = (o [T gDair = (Pr ]| Trg) = (Ur, 7] U 6] T o)

peDiff (X) peDiff (%) .. : : : .
Finite diffeo invariant action

- /] ﬁn of abstract spin network states = equivalence classes of spin networks under smooth deformations

They represent a quantum state of the geometry of space in a fully combinatorial manner

24



e Fluxes: The densitized triad naturally induces a 2-form with values in the Lie algebra of SU(2).

In the quantum theory, E{ becomes an operator valued distribution.

Integrals of the triad field on 2D surfaces with suitable test functions become well
defined self adjoint operators in Hyy:

E[S, Oz] = /;a Eanadaldag = —Zhli’y[ (87 —nadO'ldO'g where Ng = —— —€gbe

using: 3] = 5 (Pexp [ dsis >Ad7k)= [ 559 (@(s) = )by, [Alriho, A

w  F[S, alhy[A] = —ihkyalhy, [A]Tihe, [A]

SU(2) algebra generators
N\

The operators E[S, ] for all surfaces S and all smearing functions o contain

all the information of the quantum Riemannian geometry of X

25



In terms of the operators E[S,a] we can construct any geometric operator

* Area operator: Ag = / Vhdoydoy = / \/EfE§5ijnanb dovdoy, hay = qap — N ngny
S S

As=lim AY, AY= 3 VEGIES) . B(S)E () [A]) = (7620)2( + DIE, (b [4)

. o

2-cells decomposition of S

The spectrum depends on the value of the Immirzi parameter

o Al gy =87y > hp(dp + DT, dp)
pel'nS

Spin network states are the eigenstates
of the quantum area operator description of quantized geometries

Spectral analysis of geometrical operators = Planck scale discreteness

“Atoms” of quantum space = Polymer-like excitations of the gravitational field

26



Quantum isolated horizon

e Bulk theory: LQG Hilbert space associated to a fixed graph I' C M with end points p’s on H

Ay g mpys) = 8792 S0 ipp + Dl mp} i )

/ "~

spin network states (.7 ) m)

A ~ >
Boundary — 7 > eangb = 167wGry Z o(z,zp)J* (p)
condition: m(1—~7) pE~MH /

Densitized triad quantum operator

e Boundary theory: SU(2) Chern-Simons with punctures

Poisson brackets:

2m

k 2
Scg + Sipt = — ATr [AAdA+ §A/\AAA (Al (2), A (y)) :5ij€ab?52(5€_y)7 a,b=1,2; 2° =y

+ > Ap/ Tr [r3(A, 'dA, + AT AN,)] {85 A =—7'A, {5,987} = i€}, 8"

p= 1 Cp

27 :
ab L 7
A e SU(2) particle d.o.f. e Fap(A(x)) = T E Sp5(33, Tp)
EOM: D

S* € su(2) momentum conjugate to A

SpeSp=A2=0 = A, =/sp(s, + 1)

27



Quantum IH DOF described by a Chern-Simons theory on a punctured 2-sphere H

ATlZy(1—~%)

: S'=T" = Hy=@H e HR ()

{7tn

X Area constraint: Ag — § < 8wyl2 Z ViilGi +1) < Ag +6
i=1

Combinatorial quantization: an ordering of the distinguishable punctures needs to be introduced.
A subset of diffeomorphism charges at the horizon needs to be activated in the quantum theory

* Global constraint (due to b.c.): HES (1 Jn) Clnv(j1 ® - - ® Jn)
e Weak holographic principle: S=~Tr(pyInpy) = In(Nu)

with  Ng = Dim of the IH corner Hilbert space

Due to area constraint: dim[HfIS (J1- Jn)] = dim[Inv(j; ® - - - ® jn)]

W We can model the IH by a single SU(2) intertwiner

28



For Ay xk—o00: S =In E dlm[Hgs(]l...]n)]:@__ing_Q
' ' P

n;J1s-+50n

- Advanced combinatorial methods; [Agullo, Barbero, Borja, Diaz-Polo, Villasenor 2009]

- CFT and quantum group representation th. methods; [Engle, Noui, Perez, DP 2010]

W  Bekenstein-Hawking formula for 7 =70, with 7o = 0.274067 ...

BH entropy DOF = Polymer-like excitations of the gravitational field

¢ Entropy DOF and Immirzi parameter:

Gy = Diff(H) x SU(2)"

» GR (Palatini) formulation:

All TH corner charges vanish classically, only at the quantum level a finite set of these local charges are activated

. All the DOF accounting for the BH entropy have a purely quantum origin

(counterintuitive from statistical mechanics of ordinary systems)

29



» ECH formulation: 9
Non-vanishing SU(2) and translational charges: Hiloyla] = / eijkoziej A ek, HEonl€] = ; / &;de’
H H

Local holography program:

- Decompose the bulk of spacetime into a collection of subregions and attach a symmetry algebra to the
corner of each subregion;

- The corner Hilbert space forms an irreducible representation of the local corner symmetry algebra, and
choices of states in this corner Hilbert space then encode quantum geometries;

Corner symmetry charges = Coarse-grained information of geometrical DOF inside each region it encloses

Bulk constraints = Conservation laws for the local corner charges

Fock space representation of the corner algebra: Area discreteness from the continuum and semi-classical theory

N
Discrete measure density on S ()Y = /q(z)Y, pp(x) = Z b (@ — ), i =023\ 5:0 — 1), ji €N
=1

\
8
S|

® String vibration modes of the punctures generating a U(1 )3 Kac-Moody algebra.
New observables:

‘Freidel, Livine, DP, 2019]  ® INew momentum observable defining the boundary charge induced by the bulk
invariance under 3D diffeomorphism.

30



In summary

e The thermodynamical BH entropy can be accounted for by considering the quantum microstates of
the horizon which are distinguishable from the exterior of the hole.

e The entropy counting yields the Bekenstein-Hawking area law at leading order. Extensions in the
literature: Inclusion of distortion for static IH, progress towards the inclusion of rotation,
generalization to higher dimensional horizons and supersymmetry, addition of gauge fields,
extension to different topologies.

In the end, the correctedness of the value of the Immirzi parameter predicted by the standard LQG BH
entropy calculation can be addressed in a conclusive manner only through observational tests sensitive
to the area gap (promising steps in this direction within a cosmological setting [Ashtekar, Gupt 2017]).

Alternatively, one can hope to have at least another independent theoretical model descending as close
as possible from the full LQG framework, where the same numerical value is predicted by demanding
a given outcome or value for an observable of physical relevance.
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One of the main open issues

> Continuum/ classical limit: The LQG Hilbert space is of a new (background-independent)
kind, operators are regulated in a non-standard (background-independent) way. Does the
theory that has been constructed so far indeed have General Relativity as its classical limit?

If space-time is fundamentally discrete, how does the continuum space-time we
experience at low energies and macroscopic scales emerge from its fundamentally
discrete building blocks, and end up being described by general relativity?

Coherent states constructed out of Quantum Reduced Loop Gravity spin network states, which
allow to implement symmetry reduction within the full theory: Expectation value of
&~  geometrical operators easier to compute, while retaining the information on the full graph
structure. They allow to extract an effective dynamics that reproduce GR plus quantum

corrections. [see second half of the course]

New perspective based on the hypothesis that space—time is a sort of condensate of microscopic
building blocks. Space, time and geometry would be emergent concepts, valid at macroscopic
scales, whose emergence is the result of a collective dynamical process (a phase transition) of
the fundamental DOF: Construction of quantum gravity condensates using the Group Field
Theory formalism (second quantization of LQG) whose wave function is peaked on a few

global observables. [see Oriti course]
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Part |

BH singularity
* Quantum Reduced Loop Gravity program
e Semiclassical coherent states: spherical symmetry
o Effective Hamiltonian
e BH interior effective dynamics

e BH cosmology?

Emanuele Alesci, Sina Bahrami and DP, Quantum evolution of black hole initial data sets: Foundations,
Phys. Rev. D98 (2018) 4, 046014, [gr-qc/1807.07602];

Emanuele Alesci, Sina Bahrami and DP, Quantum gravity predictions for black hole interior geometry, Phys.
Lett. B797 (2019) 134828, [gr-qc/1904.12412];

Emanuele Alesci, Sina Bahrami and DP, Asymptotically de Sitter universe inside a Schwarzschild black hole,
Phys. Rev. D102 (2020) 6, 066010, [gr-qc/2007.06664];
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The information paradox

Hawking radiation: QFT on a curved (BH) background = BH radiate as thermal bodies

i.e. the spectrum does not depend on the structure of the body that collapsed to form the BH

The emitted quanta are in a mixed (thermal) state with
excitations which stay inside the hole:
Correlations between d.o.f. accessible outside the horizon and

d.o.f. unaccessible behind the horizon

5 But what happens when the hole evaporates completely??
There is nothing left to be entangled with anymore!

= An initial pure state has evolved into a mixed state

Contradiction: GR + QM lead to a non-unitary evolution of a BH!!

lﬁ 50 years old paradox! N
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Despite their robustness, singularity theorems are reliable
only in the regime where spacetime geometry is classical:

Quantum gravitational effects are expected to smooth out
spacetime singularities

Conservative solutions to restore unitary evolution rely on

elimination of singularities [Hossenfelder, Smolin, PRD 2010]

I+
NG
(3]
\
0
21
-

(4

The global space-time causal structure according fo the [Ashtekar, Bojowald, CQG 2006] paradigm. The black

hole evaporation takes place according to semiclassical expectations until the horizon approaches Planck’s

area. The classical would-be-singularity is represented by the shaded region where quantum geomeftry

fluctuations are large and no space-time picture is available. The space-time becomes classical to the

future of this region: it emerges into a classical (essentially) flat background as required by energy-

momentum conservation. Observers at the instant 2, are in causal contact with the would-be-singularity

which (in classical terms) appears to them as a naked singularity.



Closed de Sitter Universe inside Black hole / White hole bounce

[Frolov, Markov, Mukhanov, PLB 1988]; [Hajicek, Kiefer, IJMPD 2001];
[Barcelo, Carballo-Rubio Garay, IJMPD 2014];
[Haggard, Rovelli, PRD 2015];

Examples of a wider category: “regular black holes”
[Ansoldi, 2008]; [Carballo-Rubio, Di Filippo, Liberati, Visser, PRD 2020]

Problems related to the presence of an inner horizon
[Poisson, Israel, PRL 1989]; [Brown, Mann, Modesto, PRD 2011]; [Carballo-Rubio, Di Filippo, Liberati, Pacilio, Visser, JHEP 2018]
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At the end of the day, only a full quantum gravity calculation can
discriminate between different scenarios.

Loop Quantum Gravity (LQG) provides a non-perturbative framework
to investigate BH singularity resolution.

However, the issue of symmetry presents itself again (in reverse):

What replaces the singularity can depend on an important choice:
Reduction or Quantization first?

The two in general do NOT commute!
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Mini-superspace

Aq(t), B} (1)

General Relativity in
Ashtekar variables

AL (t,7), EX(t,7)

[Ashtekar, Ben Achour, Boehmer, Bojowald, Brahma, Campiglia,
Corichi, Gambini, Kastrup, Modesto, Olmedo, Pullin, Singh,
Swiderski, Vandersloot, Wilson-Ewing, ...]

Polymer BH

——

Use of point holonomies:
Some graph DOF lost
& Hamiltonian postulated

[Alesci, Bahrami, DP] ;t

Quantum Reduced
Loop Gravity BH

————

All holonomies treated equally:
Graph DOF preserved
& Hamiltonian derived

See also the GFT condensates
approach [Oriti et al.]
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Quantum Reduced Loop Gravity program

e Symmetry reduced models have “smart” frames: systems of coordinates adapted to the symmetries

e In these coordinate systems the imposition of the symmetries allows to further simplify the form
of the metric and Einstein Equations

Symmetry reduction in two steps:

1) Partial Gauge fixing of the metric (without symmetry reduction)
Study the second class constraint system: Reduced Phase Space

A. Solve the second class constraints

B. Dirac Brackets
C. Gauge Unfixing [Mitra, Rajaraman, Anishetty, Vytheeswaran]:

e Ordinary Poisson Brackets for the non gauge fixed variables
e Modified Constraints to preserve the gauge fixing during the evolution

2) Implement the symmetry reduction in the reduced phase space
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Quantization

—

A. Quantize the classically Reduced Phase Space (with or without symmetry)
B. Quantize Dirac Brackets

C. QRLG: 4 steps

1. Impose the second class constraints weakly in the Full Hilbert Space:
Selects the reduced states i.e. the quantum reduced phase space

2. Project the constraints defined in the full theory to represent the classical gauge
unfixed constraints (preserving the gauge fixing)

3. Impose the symmetry reduction on the reduced states using coherent states
4. Define the effective constraints by taking the expectation value of the quantum reduced

constraints on the symmetry reduced states

Find quantum symmetry reduction compatible with given metrics

o e Black Holes: Orthogonal gauge fixing
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Quantum Reduced Loop Gravity: Black holes

The intrinsic metric on the spacelike hypersurfaces is:
do? = N2dr* + RQ(d92 +sin® 6 dgp2)

A(t,7),R(t,”) ADM phase space configuration variables

E =E"(t,r)sin0130, + |E'(t,r)11 + E*(t,7)72|sin00p + | E' (t,r)19 — E*(t,7)71] 0, ,
A=A (t,r)m3dr + [Ay(t,r)T1 + As(t, 7)1 ]dO +sin 0 [A1(t, )10 — Ao (t, 7)1 ]| dp + cos O13dp

-y

with Poisson brackets

{Ar(t, r), E"(t, r’)} = 2G~S(r -7,
{Ai(t,r), E (t,7")} = Gyo(r—1"),
{Aa(t,r), E*(t, ")} = Gy o(r—1")

E

=0, I=1,2,
Orthogonal partial gauge fixing conditions: 0
3 =Y

A=0,¢
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Gauss constraint: kGslas] = / A’z a3"G3 = / d*z as [&EZ; + €37 JAIBEﬂ
by >

Radial diffeomorphism constraint:  <H,[N"] = / d*z N" ("H, + °H,)
>

—ky>Hy[N] = 2 ("Hy + "H)

\/det E)
—ky2H, [N] = (1+v2)/ d3z N+v/det(E) "R

Ricci scalar: R = —ejjuRiyeiel, Ray = 20Ty + €9ml Iy

Hamiltonian constraint:

expression in terms of the fluxes and their derivatives only

Symmeftric subspace of the reduced phase space:

2

V] = d3 N(az) sin 6

HE
V((E)? + (E?)?)E"

sph

2E" A, (E'A1 + E*Ay) + 2E"(E' A, — E*A))

+ ((E1)2 + (E2)2) ((A% A2 - 1)
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Step I PH,; =H" HE = @FHf " = cubulation

(r+e€,0+en,p+ey)

(T70+€9790) (7070"'697904_630)

"Dl o (96) = (Mg, x| D7 (g0) s, s )
yD#iyﬁy (95) = (M, Uy | D7 (g4 )|y, Uy)

D%Zﬁz (gr) = (mZajZ|Djz (gr)|jza ﬁZ> )

Assign to each link in a given tangent where

direction the following basis elements m,n=+j

|ﬁ1, ﬂ]) = SU(2) coherent state having maximum or minimum magnetic number along Uy

2 orthogonal unit vectors in the arbitrary internal directions I € {z,y}

S% = Orthogonal faces of the cube dual to a 6-valent node of the reduced graph (regularization of the reduced fluxes)

(Er(ST))y=0, I=1,2,
(E3(S))=0, A=0,¢

On H' the gauge fixing conditions are weakly satisfied:
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Basis elements: ‘DY _ (g) = DX (ur) DI (g)DlE (ug)

group element that rotates the 3-axis into Uy

® Reduced 3-valent vertex state: (jl __ projection on the highesf\
4{ ~ or lowest magnetic number
. JI
D%n(ﬂj) — ’U,I
G- [ 0
US ,] = dOé Dj (g) =
O mn
\ J
& In the kernel of 7G5 &,
RE%(ST):PZEZ(ST)PZ7 PZ: _Z. |jz»mz)<m27.72|7
® Reduced flux operators: RE;(S%) = PPE;(S%) P, where . e S
) - . PY = ) g, mr){img, |
f Z(SSO) =PyEZ(SSO)Py mr=+j1

+ This procedure allows one to work with the complete structure of the full theory,
consisting of quantum states of polymeric nature labelled by graphs and SU(2) representations

+ At the same time, the reduced flux operators are diagonal on the reduced quantum states!

] [V8)

Reduced volume operator: RV(U)|U§(])> = (K7) Jadydzlvs (5))
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® Step 2: Extended Hamiltonian constraint (preserving the gauge fixing)

~ N
. . S Kk 2H Nl =2 d3$ R [T _|_RH;:ct
Let us focus on the reduced Euclidean Hamiltonian: v Hg[N] . —det(E) ("Hp )

Using Thiemanns

techniques 9
N ’Lk N A — A — A
- RHéE [N] = _H:T’)/N(U)E Tt [(Rgom'j - Rgoz}j) RgS;[Rgsk’]]

N\

i?j? k= 2y Xy Y Sk — €Z7€£C7€y o g@ o fj o E,L_l o 6;1 Or‘fhogonal now!

loop in the plane (ij)

O'r ------- O-"I
L4 N " .
L’ R By means of the ““reduced" recoupling rule:
24 Sz ¥4 1
Y | A il il
1 1 1: I >_1{ |_1
1 1

s gy its action can be computed in

1 a straightforward way
_l mi ’ﬁlli g
- ~ |m1+m2| |’FL1 +77L2| 3 B
- m1+m2}—| >—|n1+n2
J2 2
—| mo n2|_
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A, NIl = ~sm [ TN () > s [iedG- + 1)

/ / / /
,Uda/i;na/i;"all»;na,ug,,ug” ,/1,2’ ,,LLZL ,/,LZ :j:]_/2

In ®H:'[N] ®HE[N] only the reduced fluxes and their derivatives appear:

0" Ei(S°(v)) = "Ei(S°(v + €4)) — "E;(S°(v))

O2RE, (S8 (v)) = FE; (S (v + 2¢4)) — 22 B3 (S (v + €4)) + RE3 (S (v))
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v (ge)

® Step 3: Coherent semiclassical states
[Hall, Thiemann, Winkler, Sahlmann, Bahr]

A = positive real number controlling the fluctuations of the state

A - .
_ i, + 1 e~ 2de(de+1) Q '
JZE( J ) e (gé ) Xj, = SU(2) character in the irreducible representation J¢
G = gexp (iiEi(Se)Ti)
K
/ ! \ SL(2,C) group element encoding the classical
Codes the extrinsic Codes the geometry around which we want to peak
curvature intrinsic geometry
2\ - . \ Z(S E" sin 6 3 , 3 _
eg.  ¥olgr) Z > (2] +1)em2=U=HUAT Dy (e 4™) Dy 5 (9:1)
J==0 m,

for ju,Jy,J>. > 1 the coherent states become Gaussian weights for the fluxes peaked around
the semiclassical values j¢ = 0777 with

o SinfAR sinf

Jo = = (Fhcosa+ Fysina)
& a 02 =€ €
AR 1 oo
jy=—=—(Ficosa+ Eysina) , 52 = ¢ €,
KY — KY g
. sin@R>  sinfE" 0; = €0€y
T T ey
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If we open up the character, we can write the quantum reduced coherent states in the compact notation:

)= S (e D), DE ()

Je=0 My, ng==%7y /’

*Gaussian’ wave-function

By contracting with reduced intertwiners and introducing proper normalizations, we
obtain the normalized quantum reduced coherent state
> 1%

O P (e A (e Y

~ *
(]27‘47“) j;

492 = H Z > Z Z TV @B,

7yz.7£7,7g7]g O’ﬁlg,ﬁgZ:I:jgm n _:l:.jg ” '=ij2'
i @
¥ Jx
20
&I
L/\ Ijg;}\/‘i i
~ *
(]ya go)
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~2hy 2 (YA THE + THE 4+ P A =

® Step 4:

PR—————

Valid for any foliation!

Semiclassical limit: €r 160,60

i A2(r) + A2 T A2(r+e)+ AZ(r+ e
4V ET ee(cos[\/ 1(T)2+ 2(r) sin Oe, sin[\/ (e )2+ 2 (r+e )SiH0€¢:|

(sin — A”(T)J“;”(Her) er]Al (r +€,.) + cos — Ar(r)h;l’”(r%’”) er]Ag(r + er))
\/A%(r +6.)+ A3(r+e€)

A2 A2 A2 r) + A2 r
—sin[\/ 1(r)2+ (1) Sin9690:|COS|:\/ irre )2+ 2(rte )sin96<p]

(sin [ A=2=2eD ¢ ] 4, () 4 cos [ A=A ] 4y (1)
VAL (r) + A5(r)
A2 A? A2 )+ A2 T
+€yp sin@(cos[\/ 1(r) + 2(7“)69] Sin[\/ 1(rren) v Ay(r e )69]

X

2 2
(sin [A’”(T)“LJ;XT’(HGT) GT]A1 (r + €.) + cos [AT(T)J”;L"(HE’") GT]AZ(T + E’r))
\/A%(r +€.)+ A3(r+e€)
I orziiol W s i

X

2 2
(sin [ A=(rte) 20D ] 4 (1) + cos [ Axlrzea) ) ] 4, (1))
VAR(r) + A5(r) )]
El

msin [\/Af(r) + A%(r)eg] sin[

_2 2 67’6()0 El (T)

€9 /E"(r)

2) €9€yp sin 6

X

VAL(r) + A3(r)
2

+2¢€,

(sinf +sin (0 + ¢y)) e¢:|

(sin (0 + 2€9) —2sin (0 + €g) + sin b))

x[El(r)( (B"(r+ ) = B (1) + 4" (r) (E" (r +2¢,) = 2" (r + ;) + E" (1)) )

AE(r) (BT (r + &) - E"(r) (B (r + ) —E1<r>)]

lim S (3] (“HEN] + “He ! [N] + “HEIN] ) [92) ~ Hop[N] + of€)
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In summary

e Applying the QRLG framework, we implemented a quantization program that is aimed at identifying
a symmetric sector at the quantum level, thus reverting the process of symmetry reduction and
quantization that is frequently adopted in other existing treatments of quantum black holes.

e The main result of this paper is the construction of an effective Hamiltonian that can now be used
to evolve black hole initial data sets while incorporating quantum corrections. The classical data
entering the coherent states—that, if sharply peaked, are the best candidates to describe classical
geometries—can now be seen as the initial data set to be evolved with the effective Hamiltonian.

e The importance of this construction lies in the fact that it is not tied to a particular choice of
foliation, allowing one to treat on equal footing various sets of coordinate systems such as horizon
penetrating coordinates or coordinates restricted to the interior or exterior of the event horizon
of a black hole.
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Interior effective dynamics

We are inferested in the effective description for the interior geometry of a spherically symmetric black
hole, namely we restrict our search for quantum geometries to metrics in the minisuperspace of the form

ds? = —N(T)2d7'2 + A(T)de2 + R(T)2d92 Homogeneous Cauchy slices with topology R x S?
R2
NC = —m , -0 < TK< O

x € [0,Lo] infrared cut-off
< > 7=0— BH horizon

Q Q T = —oo — classical singularity

e ADM phase space:

E*=R?, E'=RA,

~  {R,Pp)={A Py} =1/Lg

classical trajectories:

Re(7) = 2Gm /2™ A (1) = Ve 7/2Gm _ 1
51




Hog = — Lo leR sin (VG% Pkt — PyA ) {2 sin (WG};PA) + 7wHy (VGGPA) }

W Effective Ay2Gey € R? R
Hamiltonian: . (€2 . vGeP GeP
+ €, A{8v*cos (¢) sm(—) +7 sin (7 A) Hy (’y A)
2 R R

o GAP? GPrPy, A
Classical limit: h—0, €€, =0, Heg— H.= Lg ( SRr T R a0

$ Struve function of order O: main departure from the minisuperspace quantization models: encodes the

oo (- 1)k: 2\ 2k+1 DOF associated with the 2-sphere graph structure which are frozen in all
Z (5) the treatments relying on the use of point holonomies.

o (0 [k+3])°

> No inner horizon in the effective interior geometry

¢ Quantum parameters: €)= €, 1= € = %, €, 1= ﬁ—[o, N, N, > 1

A(R) = 47 R? ~ 4dn~yl2 5, N>

V(2) = 87 LoR2A ~ 4(8wy2)%/2 51/ juNuN?

: a:=27r\/”E€p,

g
R

- b 8= 4\/87y 5 Ly
A Ve

—— P—
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e Effective Hamilton evolution eq.s:

Initial data on Y. — event horizon (the classical solution satisfies the effective EOM with vanishingly small error)

1
RC(T) =2G'm @T/QGm, PRC (7_) _ ﬁ {2 . 6—T/2G7’)’Li|,

AC(T) — \/6—7'/2Gm _ 1’ PAC (7_) — —9m 67‘/4Gm\/1 . eT/QGm

R = {R, He[N]} = Llo a%e]fim ,

P = {Pr, o]} = -1 2l . R

A= (A fla V) = - 25n nlon (56) ()
Py = {Py, Hug[N]} = — Llo aHngW b & HaN =0

The effective dynamics depends on 2 free parameters: 7,7

The solutions to the evolution equations above present three a /27 n<ln=1n>1
different regimes labelled uniquely by: == E - 8~ ’ ’
All curvature invariants have a mass-independent bound (€ Singularity resolution

In all cases, the classical black hole singularity is replaced by a homogeneous expanding Universe.

However, various aspects of the post-bounce effective geometry depend on the choice of 7
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Kretschmann scalar 4
[ 3€p ]

Gm
— _£§;Z_. .' " ° c ~y ]_ él /7 * e —
,CC = Igabcd Rade — 3 e om QG regl < IC /Ep ’ For 3 log (4G4m4)

" 4(Gm)*

e The effective metric function R(7) has a qualitatively similar behavior in all three regimes:

‘ : : :
12
8x10 120000

100000
6x 1012 80000

60000

40000

It follows the classical trajectory Rc till ,
the quantum region 7 ~ T, is reached, e . -R
. . . ' —R

at which point a bounce occurs and it o ¢

starts increasing exponentially 210” \ T /J

-8x10" -6x10" -4x10" -2x10" 0
T

Numerical Solution: m =10""m,, 7.~ -3.7x10"

e The effective metric function A(7) has a has a different asymptotic behavior in each sector:

600000

500000

- It vanishes exponentially for n < 1; 400000

- It approaches a constant value for n = 1; 300000

200000 1-Ac

- It grows exponentially for n > 1

100000

0

-5x10" -4x10"® -3x10"® -2x10" -1x10" 0
T
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= const

N n

d . N
t=ux, / 4 :/N(T> dr — rzﬁcosh( AT>, f;:£
’E_z_l 14 N

2 _ 272 o2 (7 2 2 /2 2 (T 2 3
ds® = —N“dt* + sinh (z) dx® + N“{* cosh (Z) d)”, \ = RETE
r=0o0,7T=-—-060
r=14{
T=0
2 2
ds® = _(1 _ L)dtQ PRSI e
2 1—-% ’
3 r=0
/2
t = const
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Is there a numerical value of the Immirzi parameter such that a de Sitter Universe
is recovered in the post-bounce asymptotic region?

& Desiderata: ds* = —-NGdr* + sinh” (%) dax® + NE0° cosh” (%) dQ?, = Ng@
N1 N
lim N(z) = No+— + — +0O(2™®)
bThe s’rra’regy) S z z
1 1
lim A(z) = —(z——)+(’) 72
Start with the following 2—00 (2) 2 z (=), i, Vi
symptotic expansion: . Nol 1 _ to-be-determi
asymptotic expansion lim R(z) = 0 (Z+—)+O(Z 2) o-be-determined
2—> 00 2 P constants

z:=exp(—-71/4
(/) lim Pp(2) = poz® + 1z + o + O(271),
with ¢ some length scale =T

lim Pr(z) = voz® + 1z +1v0+ O(271)

z—>00

Total of 4 equations, which must be solved in vicinity of 2 = 00 for up to three orders in z.

They impose a number of algebraic relations to be satisfied by the parameters of the theory
0 2Gm Same numerical value as from the
0.974° SU(2) black hole entropy calculation!

\ 3 0.06 Emergent CC purely of

- NG 025 quantum gravitational origin

I —————
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QG regime: Ke~ 1/4‘;, at T =T« Numerical Solution: m = 10%m,, 7, ~ —3.7x 10

6x1012

200000 | |
12
5x10°% 150000 - 1 i
4x10"2. 100000 1 |
50000 - 1 1
3x10'% |
, , — R

Z4.0x10"-3.9x10"-3.8x101-3.7 x107°-3.6 x101°-3.5 x 101°-3.4 x 103 R

2x10"2 T 1
1x10"2- |

o

o L _|
—7x10" —6x10" —5x10" —4x10" —3x10" —2x10"® —1x10"® 0
T
B R S S
700000~ ! ! ! ! )
3.0x1013" -
600000~ -
500000~
2.5x1013" |
400000+ 4 ]
300000~ 7
13
2.0x10"3 2000001 ) f
100000+
1.5x10" ol , A
—3.9x10%  —-3.8x107 —-37x10" —36x10"® -3.5x10"

. T — ANc
1.0x10"3" -
5.0x10'2 |

—7x10™ —6x10" -5x10® -4x10" -3x10™® -2x10" -1x10"® 0

T
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Conformal factor w := 1/2 = (ab = w29ab

Conformal boundary w =0 =  Space-like hypersurface I;;t (with topology R x §?)

T;gf = [Gab + )\gab] — 5 () at least as fast as w

1
Sr(G w — 0

W The interior spacetime is asymptotically Schwarzschild-de Sitter [Ashtekar, Bonga, Kesavan, 2015]

(same Penrose diagram as “regular phantom black holes” [Bronnikov, Fabris, 20061, [Bronnikov, Melnikov, Dehnen, 2007]
but with no need for exotic matter)
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Are we living inside a huge black hole?

Quantum gravitational effects give birth to an expanding Universe that is both
homogeneous and locally isofropic asymptotically, away from the cosmic bounce:

J On the initial Cauchy surface
0.06 .

. near the event horizon
2 .
=g

(2m)* = E;j]\f2

A

A prescription for evolving J is not accessible within our effective dynamics approach

We expect J to be renormalized by the microscopic dynamics, particularly in the deep Planckian regime:
\ should remain regular in the limit A >0 = {2~ (Gm)’

However, coarse graining operation derived from application of LQG techniques in the cosmological sector
suggest a renormalization flow of the spin [Bodendorfer, 2017]; [Ben Achour, Livine, 2019]:

5 = (Gm)? 22
o
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In a wild stretch of imagination, it is tempting fo entertain the idea that
our own Universe is couched within a Schwarzschild black hole:

Effects of a matter dominated phase encoded ina (1) <1

3HZQ,, N oct
2 0.06(Gm)?

(*) A=

BH ADM mass Baryonic + cold dark matter of the observable Universe

(G v

3
Qs+ Qo)e? > dz
(**) Gm = G(p +Q Pcri Vobs = ( = /
( C) t \ 2H 0 \/QA + (QB ‘|‘Qc)(1‘|—2)3
determined by the comoving particle horizon X = CHo_l
> d ’ 4

z o
N
(+) + (+%) - [/ Jo g o] Ve ) =3

New equation among the density parameters of ACDM model

and a quantum geometry renormalization parameter:

The Hubble constant becomes a function of the Planck scale physics parameter O
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Planck collaborations by combinig TT, TE, EE+lowE+lensing+BAO data [N. Aghanim et al. (Planck), A&A 2020]

Q,h° =0.02242 £ 0.00014, Q.h%=0.11933+0.00091, Neg =2.99+0.34

where h = Hy/(100 km 5™ Mpc_l)

0.76
0.74}
0.72}

< 070
0.68

0.66

0.64

34 36 38 40 42
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Summary & Outlook

4 By performing the symmetry reduction at the quantum level all relevant DOF are
encoded in the effective dynamics and the Hamiltonian can be derived for the first time:

-> Crucial modifications w.r.t. minisuperspace quantization models: Baby Universe inside

€]

Geometric considerations to fix the most relevant dynamics ambiguities:

-> Asymptotically de Sitter effective metric for the same Immirzi parameter value as in
SU(2) BH entropy calculation.

€]

Emerging cosmological constant due to quantum gravity effects.

[ Construct a graph changing Hamiltonian: Study renormalization of CC in terms of N

-> Precise prediction for the Hubble constant?

[J Inclusion of matter: Does the gravitational collapse encode the history of the Universe??

[ Horizon penetrating foliation (exterior and interior dynamics together for the first time):
- Algebra of effective constraints.

- Study the shear operator in the near horizon region and compare its modes to the
QNM of the (luminosity of the) outgoing radiation of a GW flux.
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