May 14 - 19, 2023 Elba Island, Italy

Meets Life Sciences

LEAPS and...

the Future of Life Sciences at Large Scale Facilities ?

Jean Susini Synchrotron SOLEIL, France

A very personal view from the user facilities' perspective

Special thanks to Pierre Legrand, Andy Thompson, Frédéric Jamme, Sakura Pascarelli & Bárbara Machado Calisto

League of European Accelerator-based Photon Sources

Caterina Biscari – Welcome & Introduction May 15th

LEAPS is the largest consortium of analytical facilities worldwide and further expanding its service to an interdisciplinarity European user community.

19 facilities16 institutions10 countries>300 operating End-Stations>5.000 publications / year>1.000.000 h beam time / year>15 spin off companies>35.000 user / year from all EU and beyond researchers from all research areas

LEAPS and Life Sciences

Estimated number of endstations primarily dedicated to life sciences

- ~ 45 : XRD, MAD, SAD, SAXS, WAXS...
- ~ 35 : X-ray imaging & X-ray microscopy beamlines
- ~ 10 : IR and UV spectroscopy and micro-microscopy

- > 3000 experiments / year
- ~ 6500 visits / year
 - ~ 2215 publications / year

LEAPS database

vno

https://biosync.rcsb.org

https://www.wayforlight.eu/

'Synchrotron light' techniques in life sciences

LEAPS and Life Sciences

We maintain the established discovery-driven **service** provision supporting and developing new, disruptive Ideas

LEAPS

We implement a targeted challenge-driven **service** provision

We develop a new remote service provision

Free of charge

From sample preparation down to data processing

MX: Standardization for a production technique

...that was needed! one example...

The Nobel Prize in Chemistry 2009

Photo: U. Montan

Prize share: 1/3

Photo: U. Montan Venkatraman Ramakrishnan Prize share: 1/3

Photo: U. Montan Thomas A. Steitz Ada E. Yonath Prize share: 1/3

The Nobel Prize in Chemistry 2009 was awarded jointly to Venkatraman Ramakrishnan, Thomas A. Steitz and Ada E. Yonath "for studies of the structure and function of the ribosome".

Over 5 years of use of ESRF beamlines

- Several 100s experimental sessions
- > 15,000 data collections

Structural Biology – some statistics (1)

LEAPS

0

Structural Biology – some statistics (2)

Year

"Running cryo-electron microscopes as beamlines"

2015 eBIC Diamond Light Source, Harwell, UK

"... Synchrotrons are the best place to run cryoelectron microscopes...as user facilities"

Richard Henderson, EMBL Heidelberg 2017

As of today LEAPS partners run 17 (+2) cryo-EMs with access to the whole users' community

2017 CM01 ESRF, Grenoble, France

The three pillars of structural biology at photon source facilities

Automation

Sample handling & management **Cryo-EM X-FEL** "no crystals" Data "measuring before destroying" processing & management FEL **Synchrotron** 10¹³ Photons High expectation High throughput _ 2-100 fs very few instruments High demand Undulator 10⁹ Photons From proof-of-concept increasing capacity 100 ps to science driven applications SPA & ET R&D needed Towards time-resolved In-cellulo High but decreasing demand dataset merging High capacity Serial samples handling Crystallography Data collection data processing sample handling room temperature automated pipelines **Standardization**

time resolution

crystallography

RESEARCH ARTICLE SUMMARY

PHOTOENZYMES

Mechanism and dynamics of fatty acid photodecarboxylase

D. Sorigué, K. Hadjidemetriou, S. Blangy, G. Gotthard, A. Bonvalet, N. Coquelle, P. Samire, A. Aleksandrov, L. Antonucci, A. Benachir, S. Boutet, M. Byrdin, M. Cammarata, S. Carbajo, S. Cuiné, R. B. Doak, L. Foucar, A. Gorel, M. Grünbein, E. Hartmann, R. Hienerwadel, M. Hilpert, M. Kloos, T. J. Lane, B. Légeret, P. Legrand, Y. Li-Beisson, S. L. Y. Moulin, D. Nurizzo, G. Peltier, G. Schirò, R. L. Shoeman, M. Sliwa, X. Solinas, B. Zhuang, T. R. M. Barends, J.-P. Colletier, M. Joffre, A. Royant, C. Berthomieu*, M. Weik*, T. Domratcheva*, K. Brettel, M. H. Vos*, I. Schlichting*, P. Arnoux*, P. Müller*, F. Beisson*

Science., **372**(6538): art.n° eabd5687. (2021). doi.org/10.1126/science.abd5687

- **IBS/ESRF** icOS

Forentarity in time scales

- - **SLS X10SA** •
 - SOLEIL PROXIMA 1

Elucidation of the FAP photocycle by combining spectroscopic, biochemical, crystallographic, and computational studies.

COMMUNICATIONS

Trends: towards more challenging samples

SPB-SFX@EuXFEL

ARTICLE https://doi.org/10.1038/s41467-022-31746Check for updates

OPEN

De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals

Guillaume Tetreau^{1,18}, Michael R. Sawaya^{1,18}, Elke De Zitter^{1,18}, Elena A. Andreeva^{1,3}, Anne-Sophie Banneville 1, Natalie A. Schibrowsky^{2,4}, Nicolas Coquelle⁵, Aaron S. Brewster 6, Marie Luise Grünbein³, Gabriela Nass Kovacs³, Mark S. Hunter¹⁰, Marco Kloos^{3,8}, Raymond G. Sierra¹⁰, Giorgio Schiro¹, Pei Qiao⁹, Myriam Stricker ³, Dennis Bideshi^{10,11}, Iris D. Young ⁶, Ninon Zala¹, Sylvain Engilberge¹, Alexander Gorel³, Luca Signor ¹, Jean-Marie Teulon¹, Mario Hilpert³, Lutz Foucar³, Johan Bielecki⁸, Richard Bean⁸, Raphael de Wiin⁸, Tokushi Sato⁸, Henry Kirkwood⁸, Romain Letrun⁸, Alexander Batyuk ⁷, Irina Snigireva ¹², Daphna Fenel¹, Robin Schubert ⁸, Ethan J. Canfield¹³, Mario M. Alba ¹⁴, Frédéric Laporte ¹⁵, Laurence Després ¹⁵, Maria Bacia¹, Amandine Roux¹⁶, Christian Chapelle¹⁷, François Riobé¹⁶, Olivier Maury¹⁶, Wai Li Ling¹, Sébastien Boutet⁷, Adrian Mancuso⁸, Irina Gutsche¹, Eric Girard¹, Thomas R. M. Barends¹, Jean-Luc Pelleguer¹, Hyun-Woo Park^{10,11}, Arthur D. Laganowsky⁹, Jose Rodriguez^{2,4}, Manfred Burghammer¹², Robert L. Shoeman ³, R. Bruce Doak³, Martin Weik¹, Nicholas K. Sauter⁶, Brian Federici¹⁰, Duilio Cascio², Ilme Schlichting ⁰ ³ & Jacques-Philippe Colletier ⁰ ^{1⊠}

collected	hite	indexed	hitrato	indexing rate	Perclution
Conecteu	າແອ	inuexeu	initiate	late	Resolution
2610133	2474407	2307611	94.80	88.41	1.62
466741	378301	338153	81.05	72.45	1.73
707992	568035	450520	80.23	63.63	1.73
359061	324289	283638	90.32	78.99	1.65
1296717	1262648	1232801	97.37	95.07	1.8
430200	402334	196238	93.52	45.62	1.9
430200	402334	34686	93.52	8.06	2.2
634317	590155	484125	93.04	76.32	1.9

From Biology to Life Sciences

...to explore life in context by studying both classical and novel model organisms in the context of their real-world environment.

...to study life across interconnected scales (cells, tissues, organisms, populations) in different genetic and environmental contexts...

from "Vision Paper and Basis for Strategic Research Agenda for NanoMedicine", European Technology Platform on NanoMedicine, 2005.

XRF Imaging and correlative microscopy

Trends in Cell Biology

Review Subcellular Chemical Imaging: New Avenues in Cell Biology

Johan Decelle,^{1,*} Giulia Veronesi,^{2,3} Benoit Gallet,⁴ Hryhoriy Stryhanyuk,⁵ Pietro Benettoni,⁵ Matthias Schmidt,⁵ Rémi Tucoulou,³ Melissa Passarelli,⁶ Sylvain Bohic,^{3,7} Peta Clode,^{8,9} and Niculina Musat⁵

Ir (XRF) + Structure (SoftXT)

J. Conesa et al., Angew. Chem., 59, 1270-1278 (2020)

Infected cells

Neurons

Bend

magnet Mirror

15 min

2-3 days

New cryo preparation protocols in X-ray microscopies

Plunge freezing

STARS Protocol : a protocol for full-rotation soft X-ray tomography of single cells

https://doi.org/10.1016/j.xpro.2022.101176

S. Bohic, P. Cleotens et al., ID16A, ESRF

Advent of the 4th generation SR sources

9 order of magnitude in 35 years ! 53 Product of the horizontal Horizontal beam size in a straight section. size and divergence of the free electron lasers EuXFEL electron beam in a straight MAX IV Horizontal divergence in a 2017 330 330 section in µm.µrad. SACLA straight section. Lund, Sweden 2011 1030 Diamond-II synchrotron radiation sources 136 Didcot, United Kingdom **BESSY III** 4th generation 106 Berlin, Germany ESRF 3rd generation 2020 **ESRF 2014 ESRF 1994** Upgrade de SOLEIL 2nd generation SLS-II 53 -157 Saint-Aubin, France Villigen, Switzerland 1st generation X-ray tubes ALBA ELETTRA-2.0 140 212 Barcelona, Spain Trieste, Italy 1900 1925 1950 1975 2000 2025 ESRF-EBS year 135 V Cerantola et al, Grenoble, France J. Phys.: Condens. Matter 33 (2021) 274003

Advent of the 4th generation SR sources

LEAPS

0

Impact of 4th generation SR sources ?

Impact of 4th generation SR sources ?

First X-ray diffraction experiments using synchrotron radiation, carried out by Holmes, Rosenbaum and Witz at DESY, Hamburg, in September 1970.

G. Rosenbaum et al., Nature 230, 434 (1971)

Model of the structural dynamics of myosin filament domains during contraction E. Brunello et al., PNAS 117, 8177 (2020)

30 .

active

3 m

active

Facility paradigm in the Life Sciences

LEAPS

0

- Cross-fertilisation and synergy between the two approaches
- Expectation management ?
- Perimeter of services (from sample handling down to interpretable data)?

Strategic role of local ecosystems : X-ray based techniques are often one step in a long journey

Expert users

CSSB

Centre for Structural Systems Biology

diamond

EMBL 💿

Institute for Integrative Biology of the Cell

SERVIER * moved by you

From individual projects to integrated programmes

- Expert users or facility experts as single entry point and chaperon
- Coordinated access to various instruments across one or several facilities

Cell

Leading Edge

Review

Cancer neuroscience: State of the field, emerging directions

Frank Winkler,^{1,16,*} Humsa S. Venkatesh,^{2,16} Moran Amit,³ Tracy Batchelor,² Ihsan Ekin Demir,⁴ Benjamin Deneen,⁵ David H. Gutmann,⁶ Shawn Hervey-Jumper,⁷ Thomas Kuner,⁸ Donald Mabbott,⁹ Michael Platten,¹⁰ Asya Rolls,¹¹ Erica K. Sloan,¹² Timothy C. Wang,¹³ Wolfgang Wick,¹ Varun Venkataramani,^{1,8,16,*} and Michelle Monje^{14,15,16,*}

Databases are needed for

drug design, preventive medicine, diagnosis & prognosis

LEAPS

Prostate cancer histopathology using label-free multispectral deep-UV microscopy quantifies phenotypes of tumor aggressiveness and enables multiple diagnostic virtual stains

Soheil Soltani, Ashkan Qjaghi, Hui Qiao, Nischita Kaza, Xinyang Li, Qionghai Dai, Adeboye O. Osunkoya & Francisco E. Robles 🖂

0

LEAPS

Scientific Reports 12, Article number: 9329 (2022) Cite this article

Nucleic acid circular dichroism database

Nucleic Acids Research, 2022 1 https://doi.org/10.1093/nar/gkac829

NACDDB: Nucleic Acid Circular Dichroism Database

Andrea Cappannini^{®1,†}, Kevin Mosca^{2,†}, Sunandan Mukherjee^{®1}, S. Naeim Moafinejad¹, Richard R. Sinden³, Veronique Arluison^{®2,4,*}, Janusz Bujnicki^{1,*} and Frank Wien^{®5,*}

¹Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland, ²Université Paris-Saclay, CEA, CNRS, LLB, 91191, Gif-sur-Yvette, France, ³Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA, ⁴Université Paris Cité, UFR SDV, 75006 Paris, France and ⁵Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France

Received August 19, 2022; Editorial Decision September 04, 2022; Accepted September 15, 2022

Open source organ atlas

nature methods

ARTICLES https://doi.org/10.1038/s41592-0<u>21-01317-x</u>

Check for updates

Human Organ Atlas

EXPLORE SEARCH

3D RECONSTRUCTIONS

https://human-organ-atlas.esrf.eu/

OPEN

Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography

C. L. Walsh[®]^{1,2,17} [⊠], P. Tafforeau[®]^{3,17} [⊠], W. L. Wagner^{4,5,17}, D. J. Jafree^{6,7}, A. Bellier[®]⁸, C. Werlein[®]⁹, M. P. Kühnel^{9,10}, E. Boller³, S. Walker-Samuel[®]², J. L. Robertus^{11,12}, D. A. Long[®]⁶, J. Jacob^{13,14}, S. Marussi¹, E. Brown², N. Holroyd[®]², D. D. Jonigk^{9,10} [⊠], M. Ackermann[®]^{5,16} [⊠] and P. D. Lee[®]¹ [⊠]

https://doi.org/10.1038/s41592-021-01317

Welcome to the Human Organ Atlas

The Human Organ Atlas uses **Hierarchical Phase-Contrast Tomography** to span a previously poorly explored scale in our understanding of human anatomy, the micron to whole intact organ scale.

Left kidney	Heart	Left lung	Spleen
	ÓÓÓ		
	<u>90mm</u>		
Brain	Kidney		
			Chan
			SRF Initiative

Virtual (digital) histology

Complexity & investments

EAPS

LEAPS Strategy in Life Sciences

"...Boosting existing capacities with adequate national and European funding programmes, places Europe's Acceleratorbased Photon Sources in a strong position to be a major player in addressing public health challenges such as cancer, neurodegenerative diseases, resistance to antibiotics, or the emergence of infectious diseases. Preventive medicine will also need a wider range of topics to be addressed, such as food science, absorption of vitamins and minerals, which are possible to explore using Accelerator-based Photon Sources..."

May 14 to 19, 2023 Elba Island, Italy

Meets Life Sciences

Thank you very much for your attention !

A motto for LEAPS ?

"Alone we go faster, together we go further..."

Yes, but in which direction(s)?