Structure-based drug discovery in biotech and pharma

Michael Hennig on behalf of the leadXpro team and all collaborators 17/05/2023

leadXpro enables structure-based drug discovery on membrane proteins

- Founded in 2015
- Spin-out from the Paul Scherrer Institute (ETH)
- Utilize pioneering technologies (Membrane protein science, Cryo-EM and XFEL)
- Unmet proprietary access to large Swiss research facilities (SLS, SwissFEL and cryo-EM at Uni Basel)

lead∺рго

leadXpro's "Gene to Structure" Work flow

- Choice of the expression system (Bacterial, ٠ insect cells, mammalian cells)
- Plasmids optimization
- **Constructs design**
- Use of viral transduction for large proteins (e.g. lon channels)

- X-ray crystallography
- Serial crystallography at SwissFEL and SLS
- Cryo-electron microscopy (cryo-EM) Kv3.1

Protein extraction Sf9, High 5 HEK293 Constructs and condition, detergent screening, protein formulation Purification and quality check Yield

Binding

Yield

these in

SE

Orexin

MERCK

lead∺pro

Nanobodies Pro-Macrobody (PMb)

Biophysical methods:

Grating-Coupled Interferometry (GCI), Thermal shift, Fluorescence based technologies

lead∺pro

LPTDE

leadXpro portfolio of membrane protein drug targets

Key Benefits of structure information for chemists

Hit finding and validation (LI)

- Biophysical methods to confirm target binding (target engagement)
- Determination of affinity and binding kinetics (Creoptix), prioritize HTS hits
- In-silico screening of large libraries
- Identification of binding site, analysis of interaction, build SAR

Lead optimization (LO)

- Improve potency of binding
- Target specificity, reduce off-target binding
- Scaffold hopping to create novel IP on compounds
- Optimization of drug-like properties
- Get inspired by overlay of different chemical compound classes and their combination

lead∷pro

Use of structure information – Virtual screening

Much improved hit rate compared to HTS with random compound library

From structures to novel lead compounds

Computational chemistry to facilitate drug discovery

Pharmacokinetics predictions

Toxicity predictions / Artificial Intelligence

- Reduce time and costs for profiling of lead compounds
- Reduce animal experiments
- Increase the success of experiments

leadXpro internal drug discovery portfolio

lead∷pro

CONFIDENTIAL

Orphan GPCR - GPR65 drug target validation

Background

- Family of proton sensing GPCR's (GPR4, GPR65, GPR68, GPR132) sensing the acidic tumor or infammatory tissue environment

Aim

- Identification of GPR65 activity modulators
- **Therapeutic Application**
- Agonist/PAM: inflammatory bowel disease (IBD), neuroinflammation

 Antagonist/NAM: cancer, immunosuppressive signalling in tumour-associated macrophages (TAMs), loss of function I231L mutant exhibit improved survival across multiple cancers

lead∷pro

GPR65: Classical "HTS-driven" Discovery – no prior ligand information

lead∺pro

GPR65 screening cascade

Extensive hit validation performed

- Missense LoF variant assay: human GPR65-I231L
- Binding assay: thermal shift, GCI human GPR65 (LXP)
- Orthologue assay: mouse GPR65
- Selectivity assays: GPR4 and GPR68
- Target engagement confimed by biophysical methods
- Structure determination

4 PAM and 4 Antagonist chemical classes identified and SAR exploration performed

- 4 promising PAM series, optimisation in progress
- 5 promising Antagonist series

lead∺рго

Protein engineering: Selection of stabilizing mutations for GPCRs

Engineering increases the chances of optimal protein for biophysics and structure work. Experience based on solving >20 GPCR projects.

lead∷pro

GPR65 - 250 constructs made to achieve Stability & Expression

Wild type (WT) hGPR65 showed very poor expression and stability. Multiple mutations needed, (+truncation, fusion). Detergent screening.

Construct 226 showed +10°C thermal stability and a significant improvement (>6-fold) in expression.

Engineered mutations provided a path forward to biophysics & structure

The High sensitivity critical for membrane proteins

GCI measurements on membrane proteins

BAD

Time (s

Time (s)

M⁻¹s⁻¹

s⁻¹

uМ

UGLY

£ 120

100 80

60 Mas antace 20

50

ja 40

Se 30-

ag 20-

f 10-

GCI and nanoDSF are routinely used to identify and prioritze ligands for structure research.

lead∺pro

-50

0

50

100

150

Time (s)

200

250

300

leadXpro Cryo-EM strategy *Mastering all steps of the analysis*

All protein science, grid freezing and grid quality control screening @leadXpro inhouse

GPU-based server cluster

300kV Titan Krios G4 with Cold-FEG, RF-Cavity, Cs Probe Corrector, Falcon IVi and custom hybrid pixel detector camera

```
@DCI Lausanne
University of Basel
```


GPU-based server cluster los

Leica Pluncher for conventional blotting

Vitrojet for pinprinting of grids Talos grid screening

lead∺pro

High resolution cryo-EM structure (2.8 A) of

GPR65/G-protein complex to support drug discovery

GPR65 receptor in green

View showing the resolution close to ligand binding area

G-protein

GPR65 program summary

Status & Assets

- HTS completed, cAMP: several hit classes identified (PAMs, Antagonists)
- Hit-to-lead performed on three series (chemistry by leadXpro, biology by Axxam), initial SAR established.
- Primary and secondary functional cellular assays (loss of function GPR65-I231L mutant, selectivity, mouse).
- Purified proteins for biophysical methods, and world first cryo-EM structure of proton-sensing GPCR available to support drug discovery.
- Unique combination of assets and expertise to advance lead series.

lead∺pro

X-ray

(with some emphasis on serial X-ray crystallography)

GPCR structure from scratch CCR2A

- 5 mutations: N14Q, C70^{1.60}Y, G175^{4.60}N, A241^{6.33}D, K311^{8.49}E —
- Rubredoxin in ICL3 _
- Protein crystallized in LCP in high PEG (>40%) condition _
- 3.3Å dataset from a single crystal with orthosteric compound _ MK-0812

lead∺pro

Orthosteric antagonist

_		CCR2A
	Number of crystal	1
	Spaceroup	P2 ₁
	Cell dimensions	
	a, b, c (Å)	38.50, 61.20, 123.57
	α, β, γ (°)	90.00, 97.65, 90.00
	No. of reflections	26000
	Resolution (Å)	43.29–3.30 (3.57–3.30)
	R _{merge}	0.134 (1.056)
	CC _{1/2}	0.995 (0.479)
	Ι/σΙ	5.7 (0.9)
	Completeness (%)	95 (96.4)
	Redundancy	3.1 (3.0)
	R_{work}/R_{free}	0.243/0.296

Apel A. Structure et al. 2019 Cheng, K.Y. et al. 2019

Collaboration with:

CCR2A – Example for In-Meso In-Situ Serial X-ray (IMISX)

Boehringer Ingelheim

- To address sensitivity of crystal manipulation and freezing
- Diffraction test after freezing indicated freezing not seemed to be an issue
- Samples were measured at SLS, PXII
 <10° mini-dataset from 77 crystals using CY+ GUI interface (Wojdyla et al., 2018)

Apel A. et al. 2019 Cheng, R. et al. 2019

lead∺рго

CCR2A – conventional and IMISX technology

Collaboration with:

	CCR2A (3.3Å)	CCR2A (2.7Å)
Crystals (dataset)	1	77
Spaceroup	P2 ₁	P2 ₁
Cell dimensions		
a, b, c (Å)	38.50, 61.20, 123.57	54.57, 64.55, 131.20
α, β, γ (°)	90.00, 97.65, 90.00	90.00, 91.18, 90.00
Resolution (Å)	43.29–3.30 (3.57–3.30)	50-2.7 (2.77-2.70)
R _{merge}	0.134 (1.056)	0.55 (0.863)
CC _{1/2}	0.995 (0.479)	0.993 (0.656)
Ι/σΙ	5.7 (0.9)	6.93 (1.17)
Completeness (%)	95 (96.4)	100 (100)
Redundancy	3.1 (3.0)	15.8 (14.8)

 Structure guided optimization of selectivity for CCR2 against other CCR receptors

> Apel A. Structure et al. 2019 Cheng, R. et al. 2019

Serial Crystallography @ leadXpro = LCP only sample delivery is key to success

- + main delivery method now
- + LCP/Vapour feasible
- + Room temperature
- Sample consumption (0.2-x. mg/data set)
- Hit rate/efficacy
- Jet flow needs optimization

- + low sample consumption
- + less sample handling
- + ligand soaking automation
- + Room temperature
- Requires larger crystals
- No routine application

- + low sample consumption
- + Room temperature AND freezing
- + minimum sample handling
- + maximum sample hit rate
- Higher background
- Automation challenges

--- Optimization of crystallisation for each protein required

Serial Crystallography

Sample delivery by acoustic dispensing & levitation

Acoustic dispensing (well plate with crystal suspension) Levitator

CTI/Innosuisse funded technology project of PSI & leadXpro T. Tomizaki, S. Tsujino, J. Standfuss

Serial Crystallography *Sample delivery by levitation*

Levitator

Eiger read-out 1-3 kHz

CTI/Innosuisse funded technology project of PSI & leadXpro T. Tomizaki, S. Tsujino, J. Standfuss

Acoustic dispensing (well plate with crystal suspension)

lead∺рго

Serial Crystallography LCP - Sample delivery by levitation

CTI/Innosuisse funded technology project of PSI & leadXpro T. Tomizaki, S. Tsujino, J. Standfuss

Serial Crystallography LCP - Sample delivery by levitation

2.5A resolution structure of KR2 membrane protein

Kepa et al., Scientific Reports | (2022) 12:5349

Serial Crystallography @ leadXpro = LCP only sample delivery is key to success

- + main delivery method now
- + LCP/Vapour feasible
- + Room temperature
- Sample consumption (0.2-x. mg/data set)
- Hit rate/efficacy
- Jet flow needs optimization

- + low sample consumption
- + less sample handling
- + ligand soaking automation
- + Room temperature
- Requires larger crystals
- No routine application

- + low sample consumption
- + Room temperature AND freezing
- + minimum sample handling
- + maximum sample hit rate
- Higher background
- Automation challenges

--- Optimization of crystallisation for each protein required

lead∺pro

Serial Crystallography using LCP jet

- A_{2A} receptor as membrane protein model system
- Crystallisation in syringes. ~30-40µm crystals, high density of crystals
- Injector jetting tested before beamtime

lead∺рго

Serial Crystallography on A_{2A}

	Synchrotron, SLS, room Temperature Serial X-ray	X-FEL, LCLS Room temperature, Serial X-ray	Synchrotron, Diamond Conventional X- ray from 21 xtals
	SMX	SFX	Сгуо
Energy (keV)	12.4	9.5	12.4
Measurement time (h)	6.6	0.36	4
Beam size (uM)	20x5	1x1	20x5
Collected images	1,180,705	155,241	3500
Indexed patterns	128,086	3563	3500
Indexed %	10.8	2.3	100
Resolution	2.14	1.7	1.95
Redundancy	1007.4	23	9

- Serial X-ray
- SLS
- Room
 Temperature

Serial X-ray

Temperature

LCLSRoom

- SFX
- Cryo
- Conventional
- Cryo X-ray
- Diamond
- 21 xtals

Weinert, T. et al. 2017

lead∺рго

SwissFEL ALVRA (ESA) measurement station at ARAMIS

Measurement chamber equiped with LCP jet

lead∺рго

ESA

ESB

ESC

TITTT

SwissFEL – Alvra (ESA)

leadXpro with priority access to Free Electron Laser (SwissFEL)

- Pilot SFX experiment on GPCR
- LCP Jet
- Native S-SAD phasing using long wavelength (2.713 Å, 4.57 keV)
- Much less data required than previous works at XFEL (Batyuk A. et al., 2016) and synchrotron (Weinert et al., 2017)
- 25Hz, 10um beam, 6e11 photons/pulse
- 2.6Å resolution

Final density

Nass, K. et al. IUCR, Volume 7| Part 6| November 2020| Pages 965-975, 2020

The future of Structure-based drug discovery is dynamic!

lead∷pro

CONFIDENTIAL

leadXpro – PSI Jörg Standfuss Group collaboration

3 GPCR targets with therapeutic value for pharma industry:

lead∷pro

A2a time resolved data

Receptor region with extensive changes in electron density suggesting major structural adaptation to the antagonist ligand escape form binding site

BRIL fusion region (introduced in the ICL3 loop to facilitate crystallisation) shows little or no positive or negative difference electron density suggesting no structural change

Impact of structure data of time resolved compound (un)binding to drug discovery

- Understanding of protein mechanics and flexibility
 - Understanding GPCR dynamics and mode of action
 - Analysis of ligand activity, selectivity & ligand binding kinetics
 - Investigation of induced fit ligand binding,
 - Ensemble of structures for in-silico screening approaches (apo, intermediate and ligand bond structures)
- Enhance the impact of computational methods:

lead∷pro

- Virtual Screening with information on structural flexibility of ligand binding site
- New/Improved Quantitative Structure Activity Relationship (QSAR) models, FEP (free energy perturbation) calculation to calculate ligand affinities

Development of photo-activated drug molecules (Amadeu Lleberia talk)

Experimental pl

leadXpro Vision:

«Visualize experimentally ligand binding induced molecular dynamics for the use in the design of novel medicines»

• **EM** for large conformational changes (ion channel, transporter activation states)

TRPV4 apo closed and agonist activated/open structure https://doi.org/10.1101/2020.10.13.334797

lead∷pro

leadXpro Vision:

«Visualize experimentally ligand binding induced molecular dynamics in the design of novel medicines»

- **EM** for large conformational changes (ion channel, transporter activation states)
- **Synchrotron** for up to µs, ms timescale
- **XFEL** for up to fs timescale to visualize small and fast structural changes (induced fit, water structure changes)

lead∺рго

Areas to address for a bright future of time resolved X-ray

- Sample delivery systems to reduce sample consumption, efficiency and accuracy of data collection
- **Improved software**, experimental control, data management and analysis taking the variation of the properties of X-ray pulses (wavelength and flux density) into account
- Efficient design and synthesis of optimized **photo-switchable compounds** for timeresolved experiments (robust other methods to initiate structural changes)
- Better accessibility of XFEL facilities

Backup

Serial Crystallography Sample delivery by solid support

b) Top view

....we look forward to the use of SwissFEL-Cristallina end station dedicated to solid support measurements.

lead∺рго