

Dr. Jörg Standfuss :: Group Leader :: Laboratory of Biomolecular Research

Watching the release of a photopharmacological drug over fourteen orders of magnitude in time

Leaps meets Life Sciences, May 2023

Human And Animal Locomotion Photographs "Eadweard Muybridge, 1887"

Temporal snapshots allow the study of dynamic-function relationships

Time-resolved structural biology group

(a) Laboratory of Biomolecular Research, PSI

Members: Hannah Glover, Robin Stipp, Peter Seidel, Georgii Khusainov, Thomas Mason, Melissa Carrillo, Matthias Mulder, Sina Hartmann, Quentin Bertrand, Yasushi Kondo, Fabienne Stierli, Michal Kepa, Tobias Weinert, Jörg Standfuss

Former Members: Max Wranik, Przemek Nogly, Antonia Furrer, Dan James, Petr Skopintsev, Demet Kekilli, Kathrin Jäger, Dardan Gashi, Steffen Brünle

Mission statement:

We include time as a fourth dimension in structural biology to resolve transient conformational states important for protein function.

"High-speed cameras" at the PSI

Swiss Light Source and Swiss X-ray Free Electron Laser

SLS (& SLS 2.0)

SwissFEL

Macromolecular crystallography

MΧ

Macromolecular crystallography: X06SA PXI MAD, SAD, large unit cells, small crystals, X10SA PXII **X06DA PXIII** spectroscopy, screening, multi-axis go-SwissFEL niometer, ...

1.experimental station Alvra 2.experimental station Bernina 3.experimental station Cristallina

Collaboration: F. Dworkowski, M. Wang and co-workers

C. Milne, J. Beale, C. Bacellar, and co-workers

Bringing time-resolved measurements to the molecular scale

Standfuss, Curr. Opin. Struc. Biol., 2019

Pioneering works at synchrotrons and X-ray lasers

Learning and establishing technology abroad before bringing it to PSI

Light-driven proton pump bacteriorhodopsin

- Largest structural dynamics data resource available for any protein
- The (nearly) whole pumping cycle resolved from isomerization to proton release and re-uptake

First user experiments at SwissFEL

Rhodopsins pave the way into a dynamic future for structural biology

Skopintsev *et al.*, 2020, Nature

Mous *et al.,* 2022, Science

Sodium pumping rhodopsin

- Ten molecular snapshots of sodium transport out of the cell
- Next-generation optogenetic tool

Chloride pumping rhodopsin

- SwissFEL and SLS resolves
 chloride transport into the
 cell
- Electrostatic gates explain transport
 Nice seeing you Sandra!!

Gruhl *et al.*, 2023, Nature

Visual GPCR rhodopsin

- Molecular snapshots of the early events in vision
- GPCR activation

Great talk Valerie!!

Collaboration Nogly & Schertler

Perhaps using the right kind of experiments these questions can be addressed

- Binding and drug design: Protein-ligand interactions are best described by dynamic induced-fit or conformational selection mechanisms and not a simplistic key-and-lock.
- Binding kinetics: Protein dynamics influence the rate at which a drug molecule binds to its target protein and the residence time of the drug at the binding site.
- Allosteric regulation: Protein dynamics are critical for transmitting allosteric signals from a drug binding site to distant sites affecting protein function.
- Drug resistance: Mutations can alter protein dynamics, reducing the effectiveness of a drug.
- Mechanisms of drug action: Conformational changes in receptors, transporters, channels or kinases can explain drug action in detail.

X-ray lasers allow us to observe structural changes in a wide temporal window

Blink of an eye= 0.1 sPhotocycle= 0.01 sRetinal excitation= 0.000 000 000 000 1 s

-> But drug targets don't have photoswitches! ...or do they?

The field of photopharmacology

Allows for remote spatial and temporal control of bioactivity by light

Taken from: W. Velema, W. Szymanski & B. Feringa (2014)

Photoswitchable Inhibitors of Cell Mitosis

The field of photopharmacology develops drugs activatable by light

Target of interest:

Photopharmacology:

Tubulin binding drugs:

- Kill cancer cells (Taxol chemotherapy)
- Reduce inflammation (Colchicine)
- Lower Covid-19 death rate (Sabizabulin)

Collaboration Steinmetz Group (PSI)

From: Borowiak et al., Cell, 2015

Microtubule dynamics: Colchicine binding site

Selection of small molecule drugs under development

Prototypical azobenzene photoswitch

Azo-combretastatin A4, a photoswitchable anti-cancer compound

Natural source

Combretastatin A4 is a promising anticancer drug candidate from the bark of the South African bushwillow (a medical plant of the Zulu).

Photochemical affinity switch

A couple of night shifts later

A big !!!THANK YOU!!! to everyone at SLS and SwissFEL

A few shifts at SLS

Crystal enthusiasts

HE Cellulose

A few shifts at SwissFEL

Microcrystals

Molecular snapshots of drug release

Using synthetic photoswitches for time-resolved crystallography

>2.000.000 patterns, 1.7 Å resolution
Ligand-protein interactions at
near-atomic resolution over
fourteen orders of magnitute in time

Photon energy is translated into mechanical energy via a transition in molecular shape! ... but the mechanisms remain controversial

From: Conti et al., JACS, 2008

Collaboration Schapiro group Hebrew University Jerusalem

Femtosecond Structural Photochemistry

Ultrafast Photoreaction of a Molecular Switch

But the reaction is not finished within femtoseconds

Time-resolved absorption spectroscopy

Collaboration Wachtveitl group, University of Frankfurt

Ultrafast Photoreaction of a Molecular Switch

Two principal steps characterize the photoreaction

Photoreaction in context of tubulin

Protein environment constrains the early ligand response

PAUL SCHERRER INSTITUT

Binding pocket adaptations in the microseconds

Movements of the 6T7 gating loop lead to azo-CA4 release

Molecular mechanism of ligand release

Rearrangements of 6T7 loop open ligand release pathway

Drug release "The Movie"

Dynamics within the colchicine site targeted by gout, cancer and covid-19 drugs

$\langle \rangle$													
	Isom. Pocket widening			g Lig	Ligand relaxation			Pocket adaptations				Ligand release	
	1	11	1	1	1	1	1	1	1	1	1	1	
	Dark 1 ps	25/35 ps	125 ps	1 ns	10 ns	100 ns	1 µs	10 µs	100 µs	1 ms	10 ms	100 ms	

tubulin heterodimer

β-tubulin

azo-cis-Combretastatin A4

α-tubulin

But can we learn something about the molecular mechanisms of drug action?

Global tubulin rearrangements

Local changes in the binding pocket have global impact on tubulin

Wranik et al., Nature Comm., 2023

PAUL SCHERRER INSTITUT

Why watch protein-drug interactions dynamics?

	Pocket widening Lig				nd relax	ation	Pocket adaptations				Ligand r	>	
	1	11	1	1	1	1	1	1	1	1	1	1	
0	Dark 1 ps	25/35 ps	s 125 ps	1 ns	10 ns	100 ns	1 µs	10 µs	100 µs	1 ms	10 ms	100 ms	

Insights for drug development approaches:

- Photopharmacology
- Expanding binding pocket
- Metastable trans binding pose
- Not a simple Key and Lock

Intermediate states for simulations:

Verifying QM/MM of early photochemistry Opening of ligand release pathway at 1 ms

Methodological proof of concept:

Watch molecular motions in a wide range of targets with highest temporospatial resolution.

Optimizing "residence time"

.

Milliseconds out of reach Experimental verification

Diffusion based methods versatile, but slow

Acknowledgments:

Time-resolved structural biology:

Max Wranik, Hannah Glover, Robin Stipp, Peter Seidel, Georgii Khusainov, Thomas Mason, Melissa Carrillo, Matthias Mulder, Sina Hartmann, Quentin Bertrand, Yasushi Kondo, Fabienne Stierli, Michal Kepa, **Tobias Weinert**, Jörg Standfuss

Main PSI collaborators:

Macromolecular Crystallography (SLS): Meitian Wang and co-workers

Alvra Experimental Station (SwissFEL): Chris Milne, Camilla Bacellar and co-workers

Membrane Protein Structural Biology (Bio): Gebhard Schertler and co-workers

Biomolecular Complexes (LBR): Michel Steinmetz and co-workers

External collaborators:

LeadXpro AG (Park Innovaare) Michael Hennig and co-workers

Ultrafast Spectroscopy Group (Uni. Frankfurt) Josef Wachtveitl and co-workers

Institute of Chemistry (Uni. Jerusalem) Igor Schapiro and co-workers

Data Science and Computation (Uni. Bologna) Andrea Cavalli and co-workers

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Life Science Graduate School Zürich

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

