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Inputs for the nuclear model
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Neutrino interactions (simplified)
• For BNB and T2K the dominant interaction channel is quasi-

elastic scattering
• Pion production channels contribute less than 25%
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Unprecedented accuracy in the 
determination of neutrino-argon cross 
section  is required to achieve design 
sensitivity to CP violation at DUNE 

More than 60% of the interactions at 
DUNE are non-quasielastic

Theoretical tools for neutrino scattering,  
Contribution to: 2022 Snowmass Summer Study
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Short Baseline Neutrino program
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• The two sub-GeV neutrino beams (BNB and T2K) have very similar medium energy

• The flux for T2K is narrower due to the off-axis effect. 

T2K and BNB fluxes

T2K beam BNB beam

Neutrino flux @SBND

03/10/2019 J. Nowak, Pion Workshop 3

For BNB and T2K the dominant reaction 
mechanisms are quasi-elastic scattering

The contribution of π-production channels is 
~ 25 % 

For the sub-GeV experiments the Delta is 
the only relevant resonance

Three liquid argon TPCs in the Fermilab Booster 
Neutrino Beam : Definitive test of LSND oscillations 
using three baselines

The Short-Baseline Neutrino Program 

03/10/2019 J. Nowak, Pion Workshop 28

SBND MicroBooNE Icarus
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Short Baseline Neutrino program
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A. Papadopoulou W&C seminar June 2023 
& Adi’s talk yesterday

SBND will provide the world’s highest 
statistics cross section measurements in 
LAr: 2 million events for !μ per year for the 
next 3 years

MicroBooNE provided first two-proton knockout 
single-differential cross section on argon 
2211.03734 
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20 10×SBND event rate for 6.6 

protons on the BNB target.
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Figure 8

Event spectra and rates in SBND for 6.6⇥ 1020 protons on target (⇠3 years of operation).
Left: The total ⌫µ inclusive charged-current and neutral-current event spectra (shown not
stacked). Right: The exclusive channel breakdown of the ⌫µ charged-current sample discriminated
according to the number of pions in the final state (shown stacked). The spectra are normalized to
show relative rates, with the total events expected for the exposure indicated in the legend.

SBND will perform many exclusive measurements of di↵erent final states for ⌫µ and

⌫e events with high precision and will measure nuclear e↵ects from the comparison with

di↵erent Monte Carlo (MC) simulations. Figure 9 (right) shows the expected rates of ⌫µ
CC events separated into their main experimental topologies for the same 6.6⇥ 1020 POT

exposure. The largest event sample corresponds to the ⌫µ charged-current “0 meson” final

state, where there is an outgoing muon, one or more recoil nucleons, and no outgoing pions

or kaons. This cross section for scattering o↵ nuclei largely depends on final state inter-

actions and other nuclear e↵ects and SBND data will allow the study of nuclear e↵ects in

neutrino interactions in argon nuclei with high precision. This data will inform neutrino

Monte Carlo generators and aid in disentangling neutrino-nuclear interaction phenomenol-

ogy by discriminating between final state interaction models. One example of the statistical

power of the data is in measurements of neutrinos scattering o↵ correlated nucleon pairs –

according to current simulations there will be ⇠360,000 events per year with one muon and

two protons (1µ+ 2p) in the final state.

The high interaction rate will also allow SBND to measure interaction channels which

remain unmeasured on argon. There are many rare interaction channels which can be

probed by SBND, for example production of hyperons ⇤0 and ⌃+, for which SBND will

collect a total data set of several thousand events over 3 years, recording more than the

current historical data set each month. SBND will also see ⇠400 ⌫e ! ⌫e elastic scattering

events in 6.6 ⇥ 1020 POT. These events provide a unique topological signature, a very

forward electron with no activity around the vertex, easily identified in a LArTPC. The

elastic scattering of neutrinos on electrons is a process with a well known theoretical cross

section, and with this event sample a measurement of the neutrino flux can be made (81).

Furthermore, the MicroBooNE and ICARUS detectors are respectively located approx-

imately 8� and 6� o↵-axis to the higher energy NuMI beam, produced by 120GeV protons

from the Fermilab Main Injector directed onto a carbon target (82, 83). MicroBooNE and

ICARUS can also study neutrino-argon cross sections exploiting the NuMI beam. ICARUS

will collect a large neutrino event sample in the 0-3GeV energy range with an enriched com-

ponent of electron neutrinos (⇠5%). Muon neutrino event rates in the T600 from NuMI

are comparable with the ones from the BNB, while the electron neutrino component is en-

18 Machado • Palamara • Schmitz

P. Machado et al, 1903.04608 (2019)
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Ab initio Methods
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Energy transfer !!e ⇠
q2

2m

QE

Meson Exchange

d�

 Ab-initio methods (CC, IMSRG, SCGF, 
QMC, etc) provide accurate predictions 
for ground state properties of nuclei + 
response functions in the low/moderate 
energy region
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Many-Body method: GFMC

6

QMC techniques projects out the exact lowest-energy state: e�(H�E0)⌧ | T i ! | 0i

Nuclear response function involves evaluating a number of transition amplitudes. 

Valuable information can be obtained from the integral transform of the response function

E↵�(�,q) =

Z
d!K(�,!)R↵�(!,q) = h 0|J†

↵(q)K(�, H � E0)J�(q)| 0i

Inverting the Laplace transform is a complicated problem A. Lovato et al, PRL117 (2016), 082501, 
PRC97 (2018), 022502 
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [47].
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [47].

Inclusive results which are virtually correct in the QE 

Relies on non-relativistic treatment of the kinematics

Different Hamiltonians can be used in the time-
evolution operator

Can not handle explicit pion degrees of freedom

—electron-4He scattering 
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Axial form factor determination
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• The axial form-factor has been fit to the dipole form

FA(q
2) =

gA
(1� q2/m2

A)
2

• Different values of mA from experiments
• mA =1.02 GeV q.e. scattering from deuterium
• mA =1.35 GeV @ MiniBooNE

• Alternative derivation based on z-expansion 
—model independent parametrization

A.S.Meyer et al, Phys.Rev.D 93 (2016) 11, 113015

• The intercept gA=-1.2723 is known from neutron 
β decay

T. KITAGAKI et al. 28

2.0

E
1.2-

"P~

CL+ 0.8-

ANL (Ref. 2)
BVL (Rei. a)
This exp.

milab 15-ft deuterium-filled bubble chamber to a wide-
band neutrino beam. A total of 362 quasielastic events
were found in the 16.7-m fiducial volume, from the
analysis of 96% of the total exposure. In the dipole
parametrization of the axial-vector form factor of the nu-
cleon, we measured the axial-vector mass to be
Mz ——1.05+o &6 GeV, which is consistent with the previous
low-energy measurements. A search for an energy depen-
dence of M~ showed no clear energy dependence„support-
ing the assumptions and the V—2 formulation used for
the quasielastic reaction in our energy range (5—200 GeV).
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FIG. 10. Quasielastic cross section o(v„n~p pl as a func-
tion of E„. The data points from this experiment and Ref. 4 are
calculated from Eq. (7) using the M~ values in Table I. The
curve is derived from Eq. (7) with M& ——1.05 GeV.
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where ni is the number of events in the ith bin, and µi is
the theory prediction (7) for the bin. Errors correspond
to changes of 1.0 in the �2LL function.

Because we do not use an unbinned likelihood fit, we
do not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting sta-
tistical uncertainties are approximately equal, and only
FNAL shows a discrepancy in central value. A similar
exercise was performed in Refs. [66, 74, 75], and similar
results were obtained. Having reproduced the original
analyses to the extent possible, we will proceed with the
updated constants as in the final column of Table I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor
shape represents an unquantified systematic error. We
now remove this assumption, enforcing only the known
analytic structure that the form factor inherits from
QCD. We investigate the constraints from deuterium
data in this more general framework. A similar analysis
may be performed using future lattice QCD calculations
in place of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FA(q
2) =

1

⇡

Z 1

tcut

dt0
ImFA(t0 + i0)

t0 � q2
, (11)

where tcut = 9m2
⇡ represents the leading three-pion

threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [31],

z(q2, tcut, t0) =

p
tcut � q2 �

p
tcut � t0p

tcut � q2 +
p
tcut � t0

, (12)

where t0, with �1 < t0 < tcut, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

kmaxX

k=0

akz(q
2)k , (13)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.

In any given experiment, the finite range of Q2 implies
a maximal range for |z| that is less than unity. We denote

TABLE III. Maximum value of |z| for di↵erent Q2 ranges
and choices of t0. t

optimal
0 is defined in Eq. (14).

Q2
max [GeV2] t0 |z|max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal
0 (3.0GeV2) = �0.57GeV2 0.35

by toptimal
0 (Q2

max) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max  q2  0. Explicitly,

toptimal
0 (Q2) = tcut(1�

p
1 +Q2

max/tcut) . (14)

Table III displays |z|max for several choices of Q2
max and

t0.
The choice of t0 can be optimized for various applica-

tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2, and therefore take as default
choice,

t̄0 = toptimal
0 (1GeV2) ⇡ �0.28GeV2 , (15)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III
shows that the form factor expressed as FA(z) becomes
approximately linear. For example, taking |z|max = 0.23
implies that quadratic, cubic, and quartic terms enter at
the level of ⇠ 5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative

QCD [76], FA ⇠ Q�4, implies the series of four sum
rules [35]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(16)

We enforce the sum rules (16) on the coe�cients, en-
suring that the form factor falls smoothly to zero at
large Q2. Together with the Q2 = 0 constraint, this
leaves Na = kmax � 4 free parameters in Eq. (13). From
Eq. (16), it can be shown [35] that the coe�cients behave
as ak ⇠ k�4 at large k. We remark that the dipole ansatz
(9) implies the coe�cient scaling law |ak| ⇠ k at large k,
in conflict with perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [31] motivates the
bound of

|ak/a0|  5. (17)

As noted above, from Eq. (16), the coe�cients behave as
ak ⇠ k�4 at large k. We invoke a fallo↵ of the coe�cients
at higher order in k,

|ak/a0|  25/k , k > 5. (18)
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FIG. 5. Same as Fig. 1, but with Q2  1GeV2. These fits
correspond to the Na = 4 z expansion in Table V.
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FIG. 6. Di↵erential scattering cross sections for neutrino-
deuteron scattering at 1GeV neutrino energy, employing dif-
ferent nuclear models. The solid (red) curve is the free-
neutron result. The dashed (blue) curve is obtained from
the free-neutron result using the model from Ref. [65], as in
the original deuterium analyses. The top dot-dashed (black)
curve is extracted at E⌫ = 1GeV from Ref. [70]. The charged
lepton mass is neglected in this plot.

ANL : [ā1, �2LL] =

(
[2.29(14), 30.5] (without)

[2.38(14), 26.3] (with)
,

FNAL : [ā1, �2LL] =

(
[1.88(25), 8.2] (without)

[1.88(25), 8.2] (with)
.

(29)

The parameter ⌘ takes on values of�1.9, �1.0, and +0.01
for data from ANL1982, BNL1981, and FNAL1983 re-
spectively; the negative values indicate a pull to decrease
the predicted cross section to match the data. In each
case there is only modest improvement in the fit quality,
and small impact on the form factor shape. Acceptance
corrections within the quoted range have only minor im-
pact.

C. Deuteron corrections

The analysis to this point, like the original analyses,
used the deuteron correction model R(Q2) of Singh [65].
This model yields a suppression of the cross section for
Q2 < 0.16 GeV2.11 An example of a modern calculation

11
A follow-up analysis [80] considers e↵ects of meson exchange cur-

rents and alternate deuteron wave functions, with a total result

very similar to Ref. [65].
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FIG. 2. The nucleon axial form factor FA(Q
2) determined us-

ing fits to neutrino-deuteron scattering data using the model-
independent z expansion from Ref. [65] (D2 Meyer et al.)
are shown as a blue band in the top panel. LQCD results
are shown for comparison from Ref. [30] (LQCD Bali et al.,
green), Ref. [34] (LQCD Park et al., red) and Ref. [35] (LQCD
Djukanovic et al., purple). Bands show combined statistical
and systematic uncertainties in all cases, see the main text
for more details. A dipole parameterization with MA = 1.0
GeV and a 1.4% uncertainty [107] is also shown for compari-
son (black). The lower panel shows the absolute value of the
di↵erence between D2 Meyer et al. and LQCD Bali et al.
results divided by their uncertainties added in quadrature,
denoted �FA/�; very similar results are obtained using the
other LQCD results.

factor results determined from experimental neutrino-
deuteron scattering data in Ref. [65]. Fits were performed
using results with Q

2
 1 GeV2 in Refs. [30, 34, 65] and

with Q
2
 0.7 GeV2 in Ref. [35] with the parameteri-

zation provided by the z expansion used to extrapolate
form factor results to larger Q

2. Clear agreement be-
tween di↵erent LQCD calculations can be seen. However,
the LQCD axial form factor results are 2-3� larger than
the results of Ref. [65] for Q

2 & 0.3 GeV2. The e↵ects of
this form factor tension on neutrino-nucleus cross section
predictions is studied using nuclear many-body calcula-
tions with the GFMC and SF methods in Sec. IV below.
The LQCD results of Refs. [30, 34] lead to nearly in-
distinguishable cross-section results that will be denoted
“LQCD Bali et al./Park et al.” or “LQCD” below and
used for comparison with the deuterium bubble-chamber
analysis of Ref. [65], denoted “D2 Meyer et al.” or “D2”
below.

IV. FLUX-AVERAGED CROSS SECTION
RESULTS

To evaluate both the nuclear model and nucleon axial
form factor dependence of neutrino-nucleus cross-section
predictions and their agreement with data, the GFMC
and spectral function methods are used to predict flux-
averaged cross sections that can be compared with data
from the T2K and MiniBooNE experiments. The Mini-
BooNE data for this comparison is a double di↵eren-
tial CCQE measurement where the main CC1⇡+ back-
ground has been subtracted using a tuned model [13],
and the T2K data is a double di↵erential CC0⇡ measure-
ment [114]. Muon neutrino flux-averaged cross sections
were calculated from

d�

dTµd cos ✓µ

=

Z
dE⌫�(E⌫)

d�(E⌫)

dTµd cos ✓µ

, (43)

where �(E⌫) are the normalized ⌫µ fluxes from Mini-
BooNE and T2K. Details on the neutrino fluxes for
each experiment can be found in the references above.

d�(E⌫)
dTµd cos ✓µ

are the corresponding inclusive cross sections

computed using the GFMC and SF methods as described
in Sec. II.

The fractional contribution of the axial form factor
to the one-body piece of the MiniBooNE flux-averaged
cross section is determined by including only pure axial
and axial-vector interference terms in the cross section
and shown in Fig. 3. These pure axial and axial-vector
interference terms account for half or more of the to-
tal one-body cross section for most Tµ and cos ✓µ, which
emphasizes the need for an accurate determination of the
nucleon axial form factor.

Figures 4 and 5 show the GFMC and SF predictions for
MiniBooNE and T2K, respectively, including the break-
down into one-body and two-body contributions. For
these comparisons we use the D2 Meyer et al. z expan-
sion for FA. Two features of the calculations should be
noted before discussing the results of these comparisons.
First, the uncertainty bands in the SF come only from the
axial form factor, while the GFMC error bands include
axial form factor uncertainties as well as a combination
of GFMC statistical errors and uncertainties associated
with the maximum-entropy inversion. Secondly, the axial
form factor enters into the SF only in the one-body term,
in contrast to the GFMC prediction where it enters into
both the one-body and one and two-body interference
term.

Below in Table I we quantify the di↵erences between
GFMC and SF predictions for both MiniBooNE and
T2K. The percent di↵erence in the di↵erential cross sec-
tions at each model’s peak are shown. The GFMC predic-
tions are up to 20% larger in backwards angle regions for
MiniBooNE and 13% larger for T2K in the same back-
ward region. The agreement between GFMC and SF
predictions is better at more forward angles but a 5-10%
di↵erence persists.
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FIG. 2. The nucleon axial form factor FA(Q
2) determined us-

ing fits to neutrino-deuteron scattering data using the model-
independent z expansion from Ref. [65] (D2 Meyer et al.)
are shown as a blue band in the top panel. LQCD results
are shown for comparison from Ref. [30] (LQCD Bali et al.,
green), Ref. [34] (LQCD Park et al., red) and Ref. [35] (LQCD
Djukanovic et al., purple). Bands show combined statistical
and systematic uncertainties in all cases, see the main text
for more details. A dipole parameterization with MA = 1.0
GeV and a 1.4% uncertainty [107] is also shown for compari-
son (black). The lower panel shows the absolute value of the
di↵erence between D2 Meyer et al. and LQCD Bali et al.
results divided by their uncertainties added in quadrature,
denoted �FA/�; very similar results are obtained using the
other LQCD results.
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tween di↵erent LQCD calculations can be seen. However,
the LQCD axial form factor results are 2-3� larger than
the results of Ref. [65] for Q
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this form factor tension on neutrino-nucleus cross section
predictions is studied using nuclear many-body calcula-
tions with the GFMC and SF methods in Sec. IV below.
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distinguishable cross-section results that will be denoted
“LQCD Bali et al./Park et al.” or “LQCD” below and
used for comparison with the deuterium bubble-chamber
analysis of Ref. [65], denoted “D2 Meyer et al.” or “D2”
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RESULTS

To evaluate both the nuclear model and nucleon axial
form factor dependence of neutrino-nucleus cross-section
predictions and their agreement with data, the GFMC
and spectral function methods are used to predict flux-
averaged cross sections that can be compared with data
from the T2K and MiniBooNE experiments. The Mini-
BooNE data for this comparison is a double di↵eren-
tial CCQE measurement where the main CC1⇡+ back-
ground has been subtracted using a tuned model [13],
and the T2K data is a double di↵erential CC0⇡ measure-
ment [114]. Muon neutrino flux-averaged cross sections
were calculated from
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where �(E⌫) are the normalized ⌫µ fluxes from Mini-
BooNE and T2K. Details on the neutrino fluxes for
each experiment can be found in the references above.
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are the corresponding inclusive cross sections

computed using the GFMC and SF methods as described
in Sec. II.

The fractional contribution of the axial form factor
to the one-body piece of the MiniBooNE flux-averaged
cross section is determined by including only pure axial
and axial-vector interference terms in the cross section
and shown in Fig. 3. These pure axial and axial-vector
interference terms account for half or more of the to-
tal one-body cross section for most Tµ and cos ✓µ, which
emphasizes the need for an accurate determination of the
nucleon axial form factor.

Figures 4 and 5 show the GFMC and SF predictions for
MiniBooNE and T2K, respectively, including the break-
down into one-body and two-body contributions. For
these comparisons we use the D2 Meyer et al. z expan-
sion for FA. Two features of the calculations should be
noted before discussing the results of these comparisons.
First, the uncertainty bands in the SF come only from the
axial form factor, while the GFMC error bands include
axial form factor uncertainties as well as a combination
of GFMC statistical errors and uncertainties associated
with the maximum-entropy inversion. Secondly, the axial
form factor enters into the SF only in the one-body term,
in contrast to the GFMC prediction where it enters into
both the one-body and one and two-body interference
term.

Below in Table I we quantify the di↵erences between
GFMC and SF predictions for both MiniBooNE and
T2K. The percent di↵erence in the di↵erential cross sec-
tions at each model’s peak are shown. The GFMC predic-
tions are up to 20% larger in backwards angle regions for
MiniBooNE and 13% larger for T2K in the same back-
ward region. The agreement between GFMC and SF
predictions is better at more forward angles but a 5-10%
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D2 Meyer et al: fits to neutrino-deuteron 
scattering data
LQCD result: general agreement between 
the different calculations

LQCD results are 2-3σ larger than D2 
Meyer ones for Q2 > 0.3 GeV2
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Figure 1. (Left) Comparison of the nucleon axial-vector form factor GA

�
Q2

�
= �FA

�
Q2

�
as a function of the momentum

transfer squared Q2 obtained from (i) fit to the deuterium bubble-chamber data [27] shown by blue solid lines with error band;
(ii) fit to recent MINERvA antineutrino-hydrogen data [28], shown by black dashed lines and turquoise error band; and (iii)
lattice QCD result obtained by the PNDME Collaboration [29] shown by red dotted lines. (Right) A comparison of LQCD
axial-vector form factors from various collaborations labeled RQCD 19 [31], ETMC 21 [32], NME 22 [33], Mainz 22 [34], and
PNDME 23 [29]. The ⌫D [27] band is the same as the deuterium fit shown in the left panel.

contributions from all excited states that couple to,
and are thus created, by the interpolating opera-
tors used. This problem can be severe for nucleons
especially if towers of multihadron states, starting
with the N⇡ states that have mass gaps starting
at ⇡ 1200 MeV (much smaller than the N(1440)
radial excitation) as M⇡ ! 135 MeV, make large
contributions. This has been shown to be the case
for the axial channel [35]. The PNDME calculation
includes a detailed analysis to remove contributions
of such excited states.

• Satisfying, to within the expected size of discretiza-
tion errors, the partially conserved axial current
(PCAC) relation between the three form factors,
axial FA(Q2), induced pseudoscalar FP (Q2), and
pseudoscalarGP (Q2), obtained after removing con-
tributions from N⇡ excited states. Since the lat-
tice correlation functions automatically satisfy the
PCAC relation, this is a check of the decomposi-
tion into form factors that relies on the absence
of transition matrix elements to excited states. It
is a necessary requirement that must be satisfied
by all LQCD calculations of the three form fac-
tors. Note that PNDME paper uses the notation
GA(Q2) ⌘ �FA(Q2) and eGP (Q2) ⌘ �FP (Q2)/2.

• The data for FA(Q2)|{a,M⇡,M⇡L} obtained at dis-
crete values of Q2 on each of the thirteen ensem-
bles is well-fitted using the model-independent z-
expansion. The lattice size L is in units of M⇡.

• Extrapolation of the thirteen FA(Q2)|{a,M⇡,M⇡L}

to get the form factor at the physical point, a = 0
and M⇡ = 135 MeV, is carried out for eleven
equally spaced values of Q2 between 0–1 GeV2 us-
ing the leading-order corrections in {a,M⇡,M⇡L}.
This full analysis is done within a single overall
bootstrap process and the reasonableness of the re-
sulting error estimates are discussed. The finite-
volume artifacts are found to be small forM⇡L & 4,
which holds for all but two ensembles.

• All fits to FA(Q2) are presented using the z2 trun-
cation of the z-expansion. Results with z3 trun-
cation give essentially the same values, indicating
convergence. The z2 results were chosen to avoid
overparameterization as defined by the Akaike In-
formation Criterion (AIC) [36].

Raw lattice data with reliable error estimates are avail-
able at discrete values of Q2 over a limited range of mo-
mentum transfer, 0 < Q2 . 1 GeV2. As shown below,
for the calculation of the cross section outside this range,
a robust parameterization of the form factor is needed
to connect to the 1/Q4 behavior (with possible logarith-
mic corrections) expected at large Q2 [37, 38]. This is
typically done by enforcing sum rules [39]. This has not
been done in the PNDME analysis [29]. It is, there-
fore, reasonable to make comparisons of the lattice and
the experimental determinations for the (anti)neutrino-
nucleon charged-current elastic cross sections for di↵er-
ential distributions only at Q2 . Q2

max ⇡ 1 GeV2.
For inclusive cross sections with (anti)neutrino energy

E⌫ . M
�
⌧max + r2`

� ⇣
1 +

p
1 + 1/⌧max

⌘
⇡ 0.84 GeV,

O. Tomalak, R. Gupta, T. Battacharaya, 2307.14920

Comparison with recent MINERvA 
antineutrino-hydrogen charged-current 
measurements 

1-2σ agreement with MINERvA data and 
LQCD prediction by PNDME Collaboration 

Novel methods are needed to remove excited-
state contributions and discretization errors
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MiniBooNE results; study of the dependence on the axial form factor:
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MiniBooNE 0.2 < cos ✓µ < 0.3 0.5 < cos ✓µ < 0.6 0.8 < cos ✓µ < 0.9
SF Di↵erence in d�peak (%) 16.3 17.1 9.3

GFMC Di↵erence in d�peak (%) 18.6 17.1 12.2

T2K 0.0 < cos ✓µ < 0.6 0.80 < cos ✓µ < 0.85 0.94 < cos ✓µ < 0.98
SF di↵erence in d�peak (%) 15.3 8.2 3.3

GFMC di↵erence in d�peak (%) 15.8 8.0 4.6

TABLE II. Percent increase in d�
dTµd cos ✓µ

at the quasielastic peak between predictions using LQCD Bali et al./Park et al.

z expansion versus D2 Meyer et al. z expansion nucleon axial form factor results.

FIG. 7. The ⌫µ flux-averaged di↵erential cross sections for MiniBooNE. The top panel shows Spectral Function predictions in
three bins of cos ✓µ with the D2 Meyer et al. z expansion FA in blue, as well as the LQCD Bali et al./Park et al. z expansion
FA in green. The dipole parameterization with MA = 1.0 GeV is shown without uncertainties as a black line. The lower
panel shows GFMC predictions using the same set of axial form factors, although in the GFMC case systematic uncertainties
including those arising from inversion of the Euclidean response functions are included in all results and the MA = 1.0 GeV
dipole form factor results are therefore shown as a black band.

dipole parameterization of FA as well as modified dipole
parameterizations of C

A

5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
15% variation in either C

A

5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.

Focusing now on FA, Figs. 7 and 8 compare flux-
averaged cross sections with di↵erent axial form factor
determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
Bali et al./Park et al. z expansion. One can see that

the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ

corresponding to backward angles and higher Q
2. This

is quantified in Table II, which shows the percentage dif-
ference in the peak values of d�

dTµd cos ✓µ
for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
ak are computed as described in Sec. III A. Figure 9
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FIG. 8. The ⌫µ flux-averaged di↵erential cross sections for T2K. Details are as in Fig. 7.

FIG. 9. Percent change in peak value of MiniBooNE flux-averaged cross section for 0.5 < cos ✓µ < 0.6 vs. percent change in
the z expansion parameters ak. Results are shown for predictions using SF (black) and GFMC (blue) methods, including the
slopes extracted from linear fits.

shows the percent di↵erences in flux-averaged cross sec-
tions evaluated at the quasielastic peak that have been
computed using both GFMC and SF methods after in-
dependently varying each ak by ±5, 10%. The slopes of
the resulting linear fits provide model-independent deter-
minations of the sensitivity of the peak cross section to
variations in FA. It is clear that the impact of varying

each ak decreases as k increases, as expected since the
contribution of each ak is suppressed by the k-th power
of z(Q2) < 1. In particular, a 10% change in a0 results
in a 10% change to the peak cross section, while a 10%
change in a1 results in a 1% change in the peak cross
section, and 10% variation of ak with k � 2 leads to
sub-percent changes in the peak cross section. It is note-
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This paper is organized as follows. In Section II,
we outline the connection between inclusive neutrino-
nucleus cross sections and electroweak response func-
tions, review the Lorentz transformations to di↵erent ref-
erence frames, and apply them to the GFMC electroweak
response functions. In Section III, we gauge the role of
relativistic e↵ects in the charged-changing response func-
tions, while inclusive cross-section results are discussed in
Section IV. Finally, in Section V, we draw our conclusions
and outline future perspectives of this work.

II. IMPLICATIONS OF RELATIVITY FOR

NUCLEAR RESPONSES

A. Nuclear responses and charged-current cross

section

The di↵erential cross section for inclusive charged-
current (CC) scattering of a neutrino with the nucleus
can be written as

d�

dEld⌦l
=

G2

4⇡2
klEl(vCCRCC � vCLRCL + vLLRLL

+ vTRT + vT 0RT
0), (1)

with G = GF cos ✓c, and El, kl denote the energy and
momentum of the final-state lepton, respectively. The
decomposition into factors vX that depend only on the
lepton kinematics, and nuclear responsesRX follows from
considering a single boson exchange. The expressions for
the lepton factors can be found in Refs. [25]. The inclu-
sive nuclear electroweak response functions correspond to
specific elements of the hadron tensor, defined as

Rµ⌫ =
X

f

h 0|Jµ†(!,q)| f ih f |J⌫(!,q)| 0i

⇥ � (! + E0 � Ef ) , (2)

where | 0i and | f i denote the nuclear initial ground-
state, and final bound- or scattering-state of energies E0

and Ef . The nuclear electroweak current Jµ(!,q) de-
pends upon the energy and momentum transferred to the
nuclear system ! = E⌫ � El, and q = k⌫ � kl. Without
loss of generality, we take q to be parallel to the z-axis,
so that the five inclusive nuclear responses in Eq. (1) can
be expressed as

RCC(!, q) = R00(!, q),

RCL(!, q) = 2ReR0z(!, q),

RLL(!, q) = Rzz(!, q),

RT (!, q) =
Rxx +Ryy

2
(!, q),

RT 0(!, q) = 2 ImRxy(!, q) , (3)

where q = |q|. The longitudinal contribution to the cross
section can be written to make the dependence on lepton

mass explicit as

vCCRCC � vCLRCL + vLLRLL =

vCCRL � m2
l

qEl
RCL +

m2
l

q2


2
E⌫

El
� vCC

�
RLL. (4)

Hence, the following combination of response functions

RL ⌘ RCC � !

q
RCL +

✓
!

q

◆2

RLL, (5)

yields the leading longitudinal contribution when the mo-
mentum transfer and lepton energy are large compared
to the outgoing lepton mass.

B. Lorentz transformations to di↵erent reference

frames

The laboratory frame (LAB) is the reference frame in
which the initial nucleus is at rest, Pi = 0. In this work,
we evaluate the electroweak response functions in dif-
ferent reference frames which move with respect to the
LAB frame along the direction specified by the momen-
tum transfer q.
Since the inclusive electroweak currents transform as

four-vectors under a Lorentz-boost, the hadron tensor
elements transform as

Rµ⌫
LAB(!, q) = Bµ

↵ [�]B⌫
� [�]R

↵�
fr (!

fr,qfr) . (6)

In the last equation, B indicates a Lorentz boost, and
Rfr the response evaluated in a frame that moves with
relative velocity � with respect to the LAB frame. For
boosts along q, one can write B in matrix notation as

Bµ
⌫ =

0

B@

� 0 0 ��
0 1 0 0
0 0 1 0
�� 0 0 �

1

CA , (7)

where � = |�| and � = 1/
p

1� �2. Whilst the trans-
verse responses are unchanged by a boost along q, the
longitudinal responses transform as

RLAB
CC =�2

h
Rfr

CC + �2Rfr
LL + �Rfr

CL

i
(8)

RLAB
LL =�2

h
Rfr

LL + �2Rfr
CC + �Rfr

CL

i
(9)

RLAB
CL =�2

h
2�

⇣
Rfr

CC +Rfr
LL

⌘
+ (1 + �2)Rfr

CL

i
. (10)

The energy and momentum transfer in the moving
frame are connected to the ones in the LAB frame by
the inverse boost

qfr = �(q� �!), !fr = �(! � �q), (11)

thus one can write the boost parameter as

� =
!q + !frqfr

!qfr + !frq
, (12)

Lorentz Boost connects the two frames

The momentum and energy transfer in the different reference frames are connected:
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Rµ⌫ =
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h 0|Jµ†(!,q)| f ih f |J⌫(!,q)| 0i

⇥ � (! + E0 � Ef ) , (2)

where | 0i and | f i denote the nuclear initial ground-
state, and final bound- or scattering-state of energies E0

and Ef . The nuclear electroweak current Jµ(!,q) de-
pends upon the energy and momentum transferred to the
nuclear system ! = E⌫ � El, and q = k⌫ � kl. Without
loss of generality, we take q to be parallel to the z-axis,
so that the five inclusive nuclear responses in Eq. (1) can
be expressed as
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RT (!, q) =
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yields the leading longitudinal contribution when the mo-
mentum transfer and lepton energy are large compared
to the outgoing lepton mass.

B. Lorentz transformations to di↵erent reference

frames

The laboratory frame (LAB) is the reference frame in
which the initial nucleus is at rest, Pi = 0. In this work,
we evaluate the electroweak response functions in dif-
ferent reference frames which move with respect to the
LAB frame along the direction specified by the momen-
tum transfer q.
Since the inclusive electroweak currents transform as

four-vectors under a Lorentz-boost, the hadron tensor
elements transform as

Rµ⌫
LAB(!, q) = Bµ
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In the last equation, B indicates a Lorentz boost, and
Rfr the response evaluated in a frame that moves with
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The energy and momentum transfer in the moving
frame are connected to the ones in the LAB frame by
the inverse boost

qfr = �(q� �!), !fr = �(! � �q), (11)

thus one can write the boost parameter as

� =
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, (12)
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This paper is organized as follows. In Section II,
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tions, review the Lorentz transformations to di↵erent ref-
erence frames, and apply them to the GFMC electroweak
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Section IV. Finally, in Section V, we draw our conclusions
and outline future perspectives of this work.
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mentum transfer and lepton energy are large compared
to the outgoing lepton mass.
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which the initial nucleus is at rest, Pi = 0. In this work,
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LAB frame along the direction specified by the momen-
tum transfer q.
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elements transform as
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The energy and momentum transfer in the moving
frame are connected to the ones in the LAB frame by
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ζ=1/2  Active nucleon Breit frame 

qfr
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Pf=-A/2 qfr+qfr

Frame that minimizes relativistic corrections 

pfri ≃-qfr/2 

pfrf≃ qfr/2

• At the single nucleon level:

• Same position of the quasielastic peak

!QE = !nr
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• Charge Current electroweak responses of 12C : 
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FIG. 2. Energy transfer dependence of the transverse re-
sponse in the LAB (solid) and ANB (dashed) frames with the
two-fragment model for di↵erent values of q. The left (right)
panel shows the responses as a function of the nonrelativistic
(relativistic) scaling variables.

field.
The results obtained in the ANB (with or without the

two fragment model), incorporate relativistic corrections
to the kinematics. This is shown explicitly in Fig. 2,
where we compare the energy-dependence of the response
in the LAB and ANB frames, for di↵erent values of q as a
function of the relativistic (left panel) and nonrelativistic
(right panel) scaling variable [29, 30], which is defined as

 nr(!, q) =
m

|q|kF

✓
! � q2

2m
� ✏nr

◆
(23)

where the Fermi momentum for 12C is taken to be
kF = 225 MeV, and the energy shift ✏nr ⇠ 40 MeV is
included to center the peaks at  nr = 0. It is clear that
the LAB results, corresponding to the solid lines, exhibit
a universal energy-dependence in terms of  nr for the
three di↵erent values of momentum transfer: q = 500,
700, and 900 MeV. On the other hand, the peaks of the
responses obtained using the two-fragment model (or the
ANB) are shifted to smaller  nr, while the high- nr tail
shrinks more rapidly, as q increases. The same responses
are shown in the right-hand panel, as function of the rel-
ativistic scaling variable [29, 31]

 (!, q) =
1

⇠F

�0 � ⌧
h
⌧(1 + �0) + 

p
⌧(⌧ + 1)

i1/2 , (24)

with the dimensionless variables defined as

�0 =
! � ✏r
2MN

,  =
|q|

2MN
, ⌧ =

Q2

4M2
N

(25)

⇠F =

s

1 +

✓
kF
MN

◆2

� 1. (26)

In the definition of  we set ✏r ⇠ 30 MeV so as to aligh
the peak of the ANB responses at approximately  =
0. Comparing the di↵erent dashed lines, it emerges that

the ANB results are aligned when plotted as a function
of the relativistic scaling variable, thus confirming that
relativistic e↵ects are properly accounted for in the ANB
frame. On the other hand, the nonrelativistic responses
evaluated in the LAB frame manifestly violate relativistic
scaling.
For benchmark purposes, we consider alternative

schemes that have been develop to account for relativistic
e↵ects in nonrelativistic calculations. In Refs. [33], rela-
tivistic corrections for nucleon knockout in a nonrelativis-
tic shell model are implemented by shifting the outgoing
nucleon energy when solving the Shrödinger equation as

TN ! T 0
N = TN

✓
1 +

TN

2m

◆
. (27)

Since the the nonrelativistic kinetic energy is p2 = 2mT 0
N ,

the above shift corresponds to using the relativistic mo-
mentum p2 = TN (2m + TN ), thereby e↵ectively trans-
forming the nonrelativistic Shrödinger equation into a
form similar to a radial Dirac equation for the upper
components of the spinors [34]. The latter indeed uses
as “energy” p2/(2m), p being the relativistic momentum.
The e↵ect of this substitution in a CRPA calculation of
the transverse response [35, 36] is shown in Fig. 3. Note
that in Ref. [37], the CRPA results additionally includes
the leading order correction to the electroweak currents of
Ref. [38]. In this figure, we compare the e↵ect of shifting
the kinetic energy of the nucleon as in Eq. (27) with com-
puting the response in the ANB fram and then boosting it
back to the LAB frame. It is clear that both approaches
lead to very similar ! dependence of the corrected re-
sponses. Note that the shift of Eq. (27) cannot be readily
implemented to correct the GFMC responses. However,
comparing with Eq. (22), the shift of Eq. (27) resembles
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FIG. 3. CC vector transverse response functions at q =
700 MeV. The red and purple curves display the GFMC and
CRPA results. The solid lines show the fully nonrelativistic
calculations while the dashed ones have been obtained com-
puting the response in the ANB frame. The dotted lines im-
plement the shift of outgoing nucleon energies (see Eq. (27)).
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FIG. 2. Energy transfer dependence of the transverse re-
sponse in the LAB (solid) and ANB (dashed) frames with the
two-fragment model for di↵erent values of q. The left (right)
panel shows the responses as a function of the nonrelativistic
(relativistic) scaling variables.
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where we compare the energy-dependence of the response
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kF = 225 MeV, and the energy shift ✏nr ⇠ 40 MeV is
included to center the peaks at  nr = 0. It is clear that
the LAB results, corresponding to the solid lines, exhibit
a universal energy-dependence in terms of  nr for the
three di↵erent values of momentum transfer: q = 500,
700, and 900 MeV. On the other hand, the peaks of the
responses obtained using the two-fragment model (or the
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shrinks more rapidly, as q increases. The same responses
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frame. On the other hand, the nonrelativistic responses
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scaling.
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forming the nonrelativistic Shrödinger equation into a
form similar to a radial Dirac equation for the upper
components of the spinors [34]. The latter indeed uses
as “energy” p2/(2m), p being the relativistic momentum.
The e↵ect of this substitution in a CRPA calculation of
the transverse response [35, 36] is shown in Fig. 3. Note
that in Ref. [37], the CRPA results additionally includes
the leading order correction to the electroweak currents of
Ref. [38]. In this figure, we compare the e↵ect of shifting
the kinetic energy of the nucleon as in Eq. (27) with com-
puting the response in the ANB fram and then boosting it
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FIG. 5. T2K flux folded GFMC results, nonrelativistic (nr), and in the ANB, both including one- and two-body current
contributions. The black data points are from Ref. [39], while the data from the analysis reported in Ref. [40] is shown by the
gray data points.

overall 10% normalization error which is not taken into
account in the error-bars.

The e↵ect of the relativistic corrections implemented
through the ANB response is a reduction of the peak
strength with a redistribution towards larger values of
Tµ. It is interesting to note that the calculations tend to
saturate the data at small Tµ, while leaving space at large
Tµ, as has been previously pointed out in Refs. [25, 35].
The present calculations use a dipole parametrization of
the axial form factor with a cut-o↵ MA = 1 ⇠ GeV.
However, recent Lattice-QCD calculations suggest a sig-
nificantly larger axial form factor at Q2 = q2 � !2 ⇠ 1
GeV2 [52–54]. Including an axial form factors consistent
with these Lattice-QCD results in GFMC and spectral-
function calculations [55] increases the inclusive cross
sections at high-Tµ, compared to a dipole with MA =
1 ⇠ GeV. This enhancement is consistent with earlier
works [32] based on simplified models of nuclear dynam-
ics. On the other hand, a number of neutrino event gener-
ators that use a dipole form with MA ⇡ 1 ⇠ GeV provide
a reasonable description of the MiniBooNE data, once the
model-dependent background is added [41]. Notably, in
this latter comparison, the data points seem to be shifted

to smaller Tµ.
The relativistic corrections computed in this work

are critical to perform meaningful comparisons between
GFMC calculations and MiniBooNE data [25]. In partic-
ular, including relativistic e↵ects is critical to test di↵er-
ent parameterizations of the axial form factor. However,
the uncertainties in the MiniBooNE analysis hamper a
firm conclusions in a theory-data comparison. In view
of the statistical significance of the MiniBooNE dataset,
the unresolved tensions with other experiments, and the
possible importance for informing modeling in the SBN
program at Fermilab, a reanalysis of the MiniBooNE
dataset(s) would be immensely beneficial [41].

B. T2K

Fig. 5 displays our results for the T2K experiment
using the flux tabulated in Ref. [56]. The GFMC cal-
culations again include one and two-body terms in the
charged-current operator. The two sets of data corre-
spond to the original analysis of Ref. [40] and the more
recent one reported in Ref. [39]. As expected, the dif-

T2K results including relativistic corrections A.Nikolakopoulos, A.Lovato, NR, arXiv:2304.11772
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MiniBooNE results including relativistic corrections
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FIG. 4. Flux averaged double di↵erential cross section for MiniBooNE. The nonrelativistic GFMC results (nr) are compared
to the results obtained in the ANB. They both include one- and two-body current contributions. The open circles are the cross
section to which the background reported in Ref. [32] is added.

applying the two-fragment model in the LAB frame in
the limit of large A, i.e. using the kinetic energy derived
from the relativistic momentum as discussed above.

IV. FLUX-AVERAGED CROSS SECTIONS

We compute the CC inclusive cross sections for di↵er-
ent kinematic setups, relevant for the MiniBooNE [22],
T2K [23], and MINER⌫A [24] experiments. Their in-
coming neutrino fluxes are characterized by average en-
ergies ranging from 700 MeV for T2K up to 6 GeV of the
medium-energy NuMI beam in MINER⌫A. Therefore,
the cross section receives contributions from the high mo-
mentum region of the phase space, where a proper treat-
ment of relativistic e↵ects become relevant. We account
for the latter by evaluating the GFMC electroweak re-
sponses in the ANB frame and boosting them back to
the LAB fram. As argued above, since the ANB frame
minimizes relativistic e↵ects, we find that applying the
two-fragment model brings about minimal di↵erences.

A. MiniBooNE

Our theoretical calculations for the flux averaged dou-
ble di↵erential cross section for the MiniBooNE kinemat-
ics are shown in Fig. 4. Both the nonrelativistic and
ANB results include one- and two-body current contri-
butions. The black squares correspond to the ‘CCQE-
like’ data reported in Ref. [32], whose extraction from
experimental measurements entails some model depen-
dence [41]. In particular, an irreducible ’non-CCQE’
background, mainly consisting of the production of a sin-
gle ⇡+ which is either absorbed or remains otherwise un-
detected [8, 42, 43], is estimated using the NUANCE
generator [44], and subtracted from the data. This
background is partly constrained by their own measure-
ment [45], but inconsistencies in the description of the
MiniBooNE ⇡+ production data and data from T2K [46]
and MINER⌫A [47] have been pointed out [41, 48–50].
Hence, to better gauge the uncertainties associated with
this procedure, it is best practice to add this background
back to the data points; we show the resulting distribu-
tion in Fig. 4 as empty circles. Finally, one should keep
in mind that the MiniBooNE collaboration reports an

A.Nikolakopoulos, A.Lovato, NR, arXiv:2304.11772
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Electron scattering results including relativistic corrections for some kinematics covered by the 
calculated responses
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Motivation: GeV neutrino reaction
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1

2

3

4

5

2.5
0

3GeV

2GeV

1GeV

DIS

RES

W =
√

(p+ q)2, Q2 = −q2 = −(pν − pl)2

T. Sato (Osaka U.) Meson Production Oct. 2019, NuSTEC Workshop 3 / 40

Address new experimental capabilities
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T.Sato talks @ NuSTEC Workshop on Neutrino-Nucleus 
Pion Production in the Resonance Region

• Excellent spatial resolution

• Precise calorimetric information

• Powerful particle identification
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Factorization Based Approaches
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!Energy transfer!e ⇠
q2

2m

d�

QE

RES

DIS

 Factorization of the hadronic final states: 
allows to tackle exclusive channels + higher 
energies relevant for DUNE

Meson Exchange
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Spectral function approach 
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At large momentum transfer, the scattering reduces to the sum of individual terms

The incoherent contribution of the one-body response reads

J↵ =
X

i

ji↵ | f i ! |pi ⌦ | f iA�1

| 0i | f iA�1

|pi

NR, Frontiers in Phys. 8 (2020) 116 

FACTORIZATION SCHEME
At large momentum transfer, the scattering reduces to the sum of individual terms

Jµ !
X

i

jµi | A
f i ! |pi ⌦ | A�1

f i
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The incoherent contribution of the one-body response reads

R↵� '
Z

d3k

(2⇡)3
dEPh(k, E)

X

i

hk|ji↵
†|k + qihk + q|ji� |ki�(! + E � e(k+ q))
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We include excitations of the A-1 final state with two nucleons in the continuum
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The Spectral Function is the imaginary part 
of the two point Green’s Function

I. Korover, et al Phys.Rev.C 107 (2023) 6, L061301 

Different many-body methods can be 
adopted to determine it

O. Benhar et al, Rev.Mod.Phys. 80 (2008)
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QMC Spectral function of nuclei with A=3,4
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Figure 1: VMC mean-field and full momentum distributions of 4He.

Z
dE

d
3
k

(2⇡)3
Pn(k, E) =

Z
d
3
k

(2⇡)3
nn(k) = A� Z , (4)

where Z is the number of protons and A is the number of nucleons of a given
nucleus. This normalization is consistent with the one of the variational
Monte Carlo (VMC) single-nucleon momentum distribution reported in [2].

Spectral function of
4
He

For clarity, let us deal with the proton spectral function first. The single-
nucleon (mean-field) contribution P

MF

p (k, E) corresponds to identifying | A�1

n i
with | 3

H

0
i, the ground-state of 3H

P
MF

p (k, E) = n
MF

p (k)�
⇣
E � B4He +B3H � k

2

2m3H

⌘
. (5)

where B4He ' 28.30 MeV and B3H ' 8.48 MeV are the binding energies of
4He and 3H, respectively and m3H is the mass of the recoiling nucleus. In the
above equation we introduced the mean-field proton momentum distribution

n
MF

p (k) = |h 4
He

0
|[|ki ⌦ | 3

H

0
i]|2 , (6)

in which h 4
He

0
|[|ki ⌦ | 3

H

0
i is the Fourier transform of the single-nucleon

radial overlap that can be computed within both VMC and Green’s function
Monte Carlo (GFMC) [3].

2

PMF

p (k, E) = nMF

p (k)�
⇣
E �B4He +B3H � k2

2m3H

⌘

|h 
4
He

0
|[|ki ⌦ | 

3
H

0
i]|2

• The single-nucleon overlap has been computed 
within VMC ( center of mass motion fully 
accounted for)0 2 4 6 8 100.0
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• Single-nucleon spectral function:
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Spectral function approach 
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P corr
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 Only SRC pairs should be considered:                and                       be orthogonalized |k0i| A�2

n i

One can introduce cuts on the 
relative distance between the 
particles in the two-body 
momentum distribution 

Using QMC techniques
X

⌧k0=p,n

np,⌧k0 (k,k
0)�

⇣
E �B4He � e(k0) +BA�2 �

(k+ k0)2

2mA�2

⌘
A

| A�1
0 i
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QMC Spectral Function of 12C
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• The p-shell contribution has been obtained 
by FT the radial overlaps:

12C(0+) !11 B(3/2�) + p
12C(0+) !11 B(1/2�) + p
12C(0+) !11 B(3/2�)⇤ + p .

• The quenching of the spectroscopic factors automatically emerges from the VMC calculations

17

Extended Data Fig. 8. | Radiative and coulomb corrections. The combined radiative and Coulomb corrections,
RCA/d(xB), for (e, e

0p) events for nucleus A relative to the deuteron for (a) carbon, (b) aluminum, (c) iron, and (d) lead. The
points show the correction factors and the error bars show the 1� or 68% confidence limits.

Extended Data Fig. 9. | Calculated nucleon momentum distributions in
12
C. The filled blue circles represent the

total momentum distribution n(k) of 12C computed within the VMC method. The solid orange line shows the sum of the p-wave
overlaps between the 12C and 11B+p VMC wave functions. The momentum distributions obtained by adding to the p-wave
overlaps the di↵erent prescription for the s-wave contribution are displayed by the green dashed line (harmonic oscillator),
dotted red line (Wood-Saxon) and dash-dotted purple line (s-wave overlaps between 4He and the 3H+p VMC wave functions).

Computing the s-shell contribution is non trivial 
within VMC. We explored different alternatives:

• Quenched Harmonic Oscillator

• Quenched Wood Saxon 

• VMC overlap associated for the 
  transition

4
He(0

+
) ! 3

H(1/2+) + p

R. Crespo, et al, Phys.Lett.B 803 (2020) 135355

Korover, et al, CLAS collaboration PRC 107 (2023) 6, L061301

mailto:nrocco@fnal.gov


Noemi Rocco, nrocco@fnal.gov24

|fi ! |pp0ia ⌦ |fA�2i

The hadronic tensor for two-body current 
factorizes as

Rµ⌫
2b (q,!) /

Z
dEd3kd3k0P2b(k,k

0, E)

⇥d3pd3p0|hkk0|jµ2b|pp
0i|2

Production of real π in the final state

|fi ! |p⇡pi ⌦ |fA�1i

Rµ⌫
1b⇡(q,!) /

Z
dEd3kP1b(k, E)

⇥d3pd3k⇡|hk|jµ|pk⇡i|2

 Pion production elementary amplitudes 
currently derived within the extremely 
sophisticated Dynamic Couple Chanel 
approach; 

Spectral function approach 

��
��������

� ��� ��� ��� ��� ��� ���ԓᅼ�ԓဇ ր
஬ԓӺ ր஬(M

#f
b`

J
2o

)

ᆂ (:2o)

2tT
iQi .**

R#
k#ᅺ .**

Ӻր4djy J2o- ᅲր4jdXyੋ

NR, Frontiers in Phys. 8 (2020) 116 
S.X.Nakamura, et al PRD92(2015)  
T. Sato, et al PRC67(2003)  
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Axial Form Factors Uncertainty needs

13

MiniBooNE 0.2 < cos ✓µ < 0.3 0.5 < cos ✓µ < 0.6 0.8 < cos ✓µ < 0.9
SF Di↵erence in d�peak (%) 16.3 17.1 9.3

GFMC Di↵erence in d�peak (%) 18.6 17.1 12.2

T2K 0.0 < cos ✓µ < 0.6 0.80 < cos ✓µ < 0.85 0.94 < cos ✓µ < 0.98
SF di↵erence in d�peak (%) 15.3 8.2 3.3

GFMC di↵erence in d�peak (%) 15.8 8.0 4.6

TABLE II. Percent increase in d�
dTµd cos ✓µ

at the quasielastic peak between predictions using LQCD Bali et al./Park et al.

z expansion versus D2 Meyer et al. z expansion nucleon axial form factor results.

FIG. 7. The ⌫µ flux-averaged di↵erential cross sections for MiniBooNE. The top panel shows Spectral Function predictions in
three bins of cos ✓µ with the D2 Meyer et al. z expansion FA in blue, as well as the LQCD Bali et al./Park et al. z expansion
FA in green. The dipole parameterization with MA = 1.0 GeV is shown without uncertainties as a black line. The lower
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FIG. 4. Breakdown into one- and two-body current contributions of the ⌫µ flux-averaged di↵erential cross sections for Mini-
BooNE: 1b and 2b denotes one- and two-body current contributions while 12b denotes the total sum of these contributions.
The top panel shows Spectral Function predictions in three bins of cos ✓µ with the one-body contributions in orange, two-body
contributions in red, and the total in blue. The lower panel shows GFMC predictions with the same breakdown between one-
and two-body current contributions, although the two-body results include interference e↵ects only in the GFMC case. The
D2 Meyer et al. z expansion results for FA are used in both cases [65].

122] and pioneering LQCD calculations [118, 123], and
⇤R, which is a parameter that renormalizes the self en-
ergy of the �. These parameters have been chosen be-
cause they a↵ect the � piece of the two-body current,
which we have seen provides the largest contribution, as
well as because they are highly unconstrained.

contributions to neutrino-nucleus cross sections from C6 are sup-
pressed by lepton masses and therefore sub-dominant. A relation
between C6 and C5 analogous to Eq. (8) is also predicted by lead-
ing order chiral perturbation theory. See Refs. [85, 119] for more
details.

Each parameter was varied by ±5, 10% and the e↵ect
on the flux-averaged cross section at the peak of the two-
body contribution was computed. The e↵ect can be seen
in Fig. 6 where we have plotted the percent change in
the MiniBooNE cross section versus the percent change
in each parameter for 0.5 < cos ✓µ < 0.6, Tµ = 325 MeV.
This was fit to a line so that as in Sec. IIIA the ex-
tracted slope is an estimate of the derivative of the cross
section with respect to each parameter. The derivative
with respect to C

A

5 (0) is estimated to be 0.31, mean-
ing that achieving a given cross-section uncertainty re-
quires C

A

5 (0) to be known with . 3 times that uncer-
tainty. A similar though slightly smaller slope of 0.29 is
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FIG. 8. The ⌫µ flux-averaged di↵erential cross sections for T2K. Details are as in Fig. 7.

FIG. 9. Percent change in peak value of MiniBooNE flux-averaged cross section for 0.5 < cos ✓µ < 0.6 vs. percent change in
the z expansion parameters ak. Results are shown for predictions using SF (black) and GFMC (blue) methods, including the
slopes extracted from linear fits.

shows the percent di↵erences in flux-averaged cross sec-
tions evaluated at the quasielastic peak that have been
computed using both GFMC and SF methods after in-
dependently varying each ak by ±5, 10%. The slopes of
the resulting linear fits provide model-independent deter-
minations of the sensitivity of the peak cross section to
variations in FA. It is clear that the impact of varying

each ak decreases as k increases, as expected since the
contribution of each ak is suppressed by the k-th power
of z(Q2) < 1. In particular, a 10% change in a0 results
in a 10% change to the peak cross section, while a 10%
change in a1 results in a 1% change in the peak cross
section, and 10% variation of ak with k � 2 leads to
sub-percent changes in the peak cross section. It is note-
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FIG. 7. The ⌫µ flux-averaged di↵erential cross sections for MiniBooNE. The top panel shows Spectral Function predictions in
three bins of cos ✓µ with the D2 Meyer et al. z expansion FA in blue, as well as the LQCD Bali et al./Park et al. z expansion
FA in green. The dipole parameterization with MA = 1.0 GeV is shown without uncertainties as a black line. The lower
panel shows GFMC predictions using the same set of axial form factors, although in the GFMC case systematic uncertainties
including those arising from inversion of the Euclidean response functions are included in all results and the MA = 1.0 GeV
dipole form factor results are therefore shown as a black band.

dipole parameterization of FA as well as modified dipole
parameterizations of C

A

5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
15% variation in either C

A

5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.

Focusing now on FA, Figs. 7 and 8 compare flux-
averaged cross sections with di↵erent axial form factor
determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
Bali et al./Park et al. z expansion. One can see that

the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ

corresponding to backward angles and higher Q
2. This

is quantified in Table II, which shows the percentage dif-
ference in the peak values of d�

dTµd cos ✓µ
for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
ak are computed as described in Sec. III A. Figure 9
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FIG. 5. Breakdown into one- and two-body current contributions of the ⌫µ flux-averaged di↵erential cross sections for T2K.
The color code is as in Fig. 4.

FIG. 6. Percent change in the value of the MiniBooNE flux-averaged cross section for 0.5 < cos ✓µ < 0.6 vs. percent change in
two parameters describing � resonance production and decay entering calculations of two-body current (MEC) e↵ects: CA

5 (Q2)
is the dominant N ! � transition form factor, and ⇤R renormalizes the self energy of the � as described in Sec. II B.

found for ⇤R. Current extractions of C5(0) rely on single
pion production data from deuterium bubble chamber
experiments [10–12], and due to limited statistics model
assumptions on the relations between N ! � transition
form factors are typically included to reduce the number

of fit parameters. Depending on the model assumptions
used, the resulting uncertainty on C5(0) is estimated
to be 10-15% in the analysis of Ref. [122], with similar
though slightly less conservative uncertainties estimated
in Refs. [85, 121]. Note that all of these analysis assume a
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MiniBooNE 0.2 < cos ✓µ < 0.3 0.5 < cos ✓µ < 0.6 0.8 < cos ✓µ < 0.9
GFMC/SF di↵erence in d�peak (%) 22.8 20.3 5.6

T2K 0.0 < cos ✓µ < 0.6 0.80 < cos ✓µ < 0.85 0.94 < cos ✓µ < 0.98
GFMC/SF di↵erence in d�peak (%) 13.4 7.3 10.0

TABLE I. Di↵erence in value of d�(E⌫)
dTµd cos ✓µ

at the quasielastic peak computed using GFMC and SF methods for MiniBooNE

and T2K flux-averaged double-di↵erential cross sections.

FIG. 4. Breakdown into one- and two-body current contributions of the ⌫µ flux-averaged di↵erential cross sections for Mini-
BooNE: 1b and 2b denotes one- and two-body current contributions while 12b denotes the total sum of these contributions.
The top panel shows Spectral Function predictions in three bins of cos ✓µ with the one-body contributions in orange, two-body
contributions in red, and the total in blue. The lower panel shows GFMC predictions with the same breakdown between one-
and two-body current contributions, although the two-body results include interference e↵ects only in the GFMC case. The
D2 Meyer et al. z expansion results for FA are used in both cases [65].

122] and pioneering LQCD calculations [118, 123], and
⇤R, which is a parameter that renormalizes the self en-
ergy of the �. These parameters have been chosen be-
cause they a↵ect the � piece of the two-body current,
which we have seen provides the largest contribution, as
well as because they are highly unconstrained.

contributions to neutrino-nucleus cross sections from C6 are sup-
pressed by lepton masses and therefore sub-dominant. A relation
between C6 and C5 analogous to Eq. (8) is also predicted by lead-
ing order chiral perturbation theory. See Refs. [85, 119] for more
details.

Each parameter was varied by ±5, 10% and the e↵ect
on the flux-averaged cross section at the peak of the two-
body contribution was computed. The e↵ect can be seen
in Fig. 6 where we have plotted the percent change in
the MiniBooNE cross section versus the percent change
in each parameter for 0.5 < cos ✓µ < 0.6, Tµ = 325 MeV.
This was fit to a line so that as in Sec. IIIA the ex-
tracted slope is an estimate of the derivative of the cross
section with respect to each parameter. The derivative
with respect to C

A

5 (0) is estimated to be 0.31, mean-
ing that achieving a given cross-section uncertainty re-
quires C

A

5 (0) to be known with . 3 times that uncer-
tainty. A similar though slightly smaller slope of 0.29 is

D.Simons, N. Steinberg et al, 2210.02455
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Two-body currents - Delta contribution
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FIG. 1. Feynman diagrams describing of the first two contri-
butions to the two-body currents associated with�-excitation
processes. Solid, thick green, and dashed lines correspond to
nucleons, deltas, pions, respectively. The wavy line represents
the vector boson.
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where k
0 and p

0 are the initial and final momentum of
the second nucleon, respectively, while k

0
⇡

= p
0
� k

0 is
the momentum of the ⇡ exchanged in the two depicted
diagrams of Fig. 1, f

⇤=2.14, and
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with ⇤⇡N� = 1150 MeV and ⇤⇡ = 1300 MeV. The term
⌧± = (⌧x±i⌧y)/2 is the isospin raising/lowering operator.
In Eq. (16), j

µ

a
and j
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b
denote the N ! � transition

vertices of diagram (a) and (b) of Fig. 1, respectively.
The expression of j
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is given by
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where k is the momentum of the initial nucleon which ab-
sorbs the incoming momentum q̃ and p� = q̃+k, yielding
p
0
� = e(k) + !̃. We introduced q̃ = (!̃,q) to account for

the fact that the initial nucleons are o↵-shell. A similar
definition can be written down for j

µ

b
; more details are

reported in Ref. [23, 24]. For C
V

3 we adopted the model
of Ref. [87], yielding

C
V

3 =
2.13

(1 � q2/M2
V

)2
1

1 � q2/(4M
2
V

)
, (21)

with MV = 0.84 GeV. Following the discussion of
Ref. [86], we neglected the terms C

V

4 and C
V

5 which are
expected to be suppressed by O(k/mN ), while C

V

6 = 0 by
conservation of the vector current. However, it is worth
mentioning that including these terms in the current op-
erator would not pose any conceptual di�culty. To be
consistent, in the axial part we only retain the leading
contribution of Eq. (20), which is the term proportional
to C

A

5 defined as [88]

C
A

5 =
1.2

(1 � q2/MA�)2
⇥

1

1 � q2/(3MA�)2)
, (22)

with MA� = 1.05 GeV.
The Rarita-Schwinger propagator

G
↵�(p�) =

P
↵�(p�)

p
2
� � M

2
�

, (23)

is proportional to the spin 3/2 projection operator
P

↵�(p�). In order to account for the possible decay
of the � into a physical ⇡N , we replace M� ! M� �

i�(p�)/2 [89, 90] where the last term is the energy de-
pendent decay width given by

�(p�) =
(4f⇡N�)2

12⇡m2
⇡

|d|3
p

s
(mN + Ed)R(r2) . (24)

In the above equation, (4f⇡N�)2/(4⇡) = 0.38, s = p
2
�

is the invariant mass, d is the decay three-momentum in
the ⇡N center of mass frame, such that

|d|2 =
1

4s
[s � (mN + m⇡)2][s � (mN � m⇡)2] (25)

and Ed =
p

m
2
N

+ d2 is the associated energy. The ad-
ditional factor

R(r2) =

✓
⇤2

R

⇤2
R
� r2

◆
, (26)

depending on the ⇡N three-momentum r, with r2 =
(Ed �

p
m2

⇡
+ d2)2 � 4d2 and ⇤2

R
= 0.95 m

2
N

, is in-
troduced to improve the description of the experimental
phase-shift �33 [89]. The medium e↵ects on the � prop-
agator are accounted for by modifying the decay width
as

��(p�) ! ��(p�) � 2Im[U�(p�, ⇢ = ⇢0)], (27)

The largest contributions to two-body currents arise from 
resonant  transitions yielding pion productionN ! �
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is the dominant N ! � transition form factor, and ⇤R renormalizes the self energy of the � as described in Sec. II B.

found for ⇤R. Current extractions of C5(0) rely on single
pion production data from deuterium bubble chamber
experiments [10–12], and due to limited statistics model
assumptions on the relations between N ! � transition
form factors are typically included to reduce the number

of fit parameters. Depending on the model assumptions
used, the resulting uncertainty on C5(0) is estimated
to be 10-15% in the analysis of Ref. [122], with similar
though slightly less conservative uncertainties estimated
in Refs. [85, 121]. Note that all of these analysis assume a

The normalization of the dominant  transition 
form factor needs be known to 3% precision to achieve 
1% cross-section precision for MiniBooNE kinematics 

N ! �

State-of-the-art determinations of this form factor from 
experimental data on pion electroproduction achieve 
10-15% precision (under some assumptions) 

Hernandez et al, PRD 81 (2010) 

Further constraints on  transition relevant for 
two-body currents and π production will be necessary to 
achieve few-percent cross-section precision 

N ! �
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We recently included interference effects between one- 
and two-body currents yielding single nucleon knock-out

Including the one- and two-body interference

Observe a small quenching in the longitudinal channel and 
an enhancement in the q.e. peak in the transverse → 
agreement with the GFMC 

N. Steinberg, NR, A. Lovato, in preparation
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Comparing different many-body methods

—MINERvA M.E. Double Differential Cross Section in pT, p||. CCQE-like data on CH
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Refs. [126,127] also find that the transverse enhancement observed in electron scattering is 411

primarily due to the constructive interference between one- and two-body currents, leading 412

to single-nucleon knockout final states. 413

Recently [34], relativistic corrections to GFMC calculations for flux-averaged neutrino 414

cross sections has been determined using the method described in Sec. 3.1.1. The influence 415

on T2K results shown in Fig. 7, is small and generally falls within the uncertainty bands due 416

to the axial form factor. For MiniBooNE kinematics, relativistic effects are non-negligible, 417

they tend to bring the GFMC results in closer agreement with the spectral function results 418

of Ref. [37]. For MINERnA data [38] taken with the medium-energy NuMI beam, which 419

peaks at around 6 GeV [128], relativistic corrections are crucial. The GFMC one-body results 420

for MINERnA kinematics are found to compare favourably to other approaches that are 421

either manifestly relativistic [129] or include relativistic corrections [13,130–132], as shown 422

in Ref. [34]. We compare the GFMC results to the SF calculations including both the one- 423

and two-body contributions in Fig. 8. 424

The charged-current flux-averaged cross section is presented in terms of muon mo- 425

mentum parallel and perpendicular to the beam direction 426

pk = |pµ| cos qµ, (54)

and 427

p? = |pµ| sin qµ =
q

p2
µ � p2

k
, (55)

respectively. 428

Relativistic corrections are included in the GFMC results by performing the calculation 429

in the active-nucleon Breit frame (ANB) as discussed in Sec. 3.1.1 The agreement between 430

the one-body contribution in the GFMC and SF approaches is evident when the former are 431

computed in the ANB. 432

The total increase of the cross section due to two-body contributions is twice as large 433

in the SF calculations compared to the GFMC. This difference can be attributed to the same 434

motivations discussed above. 435

Figure 8. Comparison with MINERvA Medium Energy CCQE-like data on CH. Cross section per
nucleon is measured double differential against pT (momentum transervse to beam direction) in
bins of p|| (momentum parallel to beam direction). Top panels show QMC SF prediction broken
down into one-body (red) and one+two-body (blue) in different bins of p||. Bottom panels show
GFMC predictions again broken down into one- and one+two-body results, with response functions
computer in the LAB frame (dashed lines) and ANB frame (solid lines).

N. Steinberg, A. Nikolakopoulos, A. Lovato, NR, submitted to Universe
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Conclusions
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Nuclear Hamiltonians: different efforts in place to provide UQ in chiral EFT

✴  Assessing the overall uncertainty of theory calculations requires evaluating uncertainties:

Form factors: one- and two-body currents, resonance/π production

Error of factorizing the hard interaction vertex / using a non relativistic approach

✴  Address neutrino precision goals requires studying relations between cross section 
uncertainties and input parameter uncertainties 

✴  Additional constraints on few-nucleon inputs from experiment and lattice QCD will be crucial 

✴Factorized approaches ideally suited to incorporate elementary amplitudes - nucleon hadron tensor
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