

Brookhaven National Lab/Stony Brook University SBND, ICARUS, and DUNE collaborations She/her

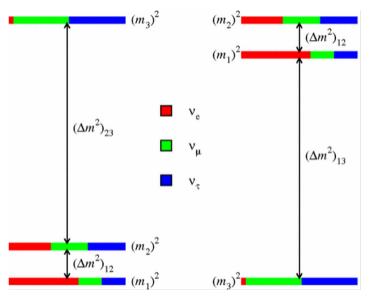
DUNE Status and Science

Importance of neutrino interactions

Elizabeth Worcester, for the DUNE collaboration Marciana 2023 – Lepton Interactions with Nucleons and Nuclei September 7, 2023

Deep Underground Neutrino Experiment (DUNE)

Measure v_e appearance and v_{μ} disappearance in a wideband neutrino beam at 1300 km to measure MO, CPV, and neutrino mixing parameters in a single experiment. Large detector, deep underground provides sensitivity to low energy neutrinos (supernova, solar) and baryon number violating processes.



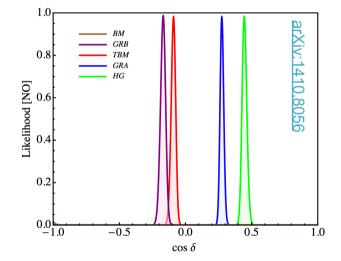
Neutrino Mixing and Oscillation

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \mathsf{PMNS} \\ \mathsf{matrix} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Most parameters currently measured to ~3% Open questions:

- Mass ordering ($\Delta m_{32}^2 > 0$?)
- Octant (sin²θ₂₃ = 0.5?)
- CP violation ($\delta_{CP} \neq 0, \pi$?)
- PMNS unitary?

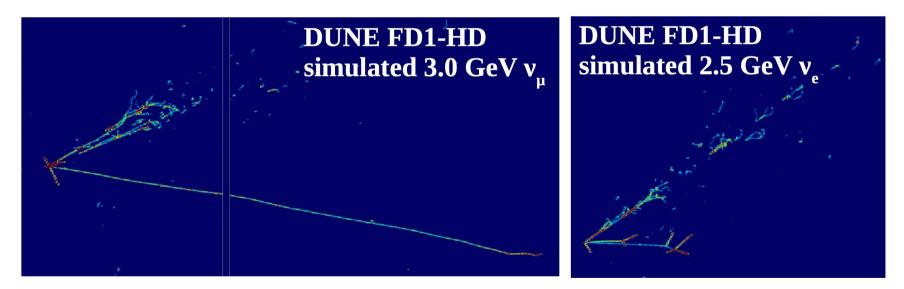
Normal Ordering


Inverted Ordering

What Can We Discover with LBL Oscillations?

- LBL oscillation sensitive to θ_{13} , θ_{23} , Δm^2_{32} , δ_{CP}
- CP Violation
 - Symmetry and symmetry violation has been a major driver of discovery in particle physics
 - Leptogenesis requires CPV in high-energy Lagrangian (incl. right-handed neutrinos)
 - No model-independent connection between lowenergy (PMNS) CPV and high-energy CPV required for leptogenesis
- Flavor structure
 - Why is the structure of the ν mixing matrix different from that of the quark mixing matrix
 - What flavor symmetry can produce this pattern of mixing and how is it broken?
 - Is $\nu_{\mu} \leftrightarrow \nu_{\tau}$ mixing symmetric? If so, why?

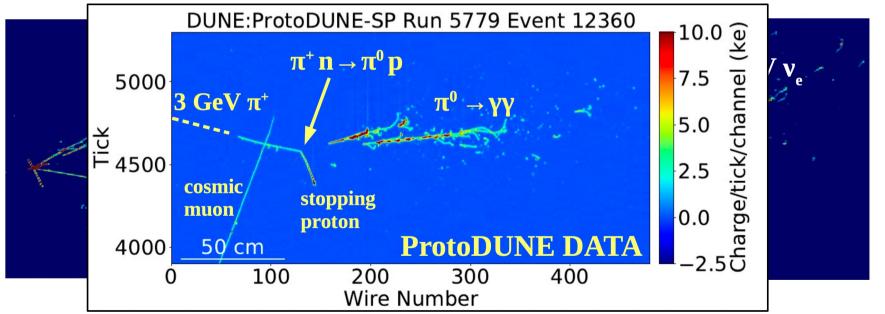
- Model discrimination
 - Many flavor and BSM models make specific predictions for values of oscillation parameters


BSM physics in neutrino oscillation (additional particles or interactions)

LArTPC Detectors

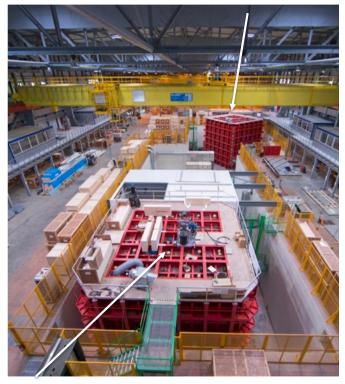
- Detailed images of final state particle trajectories
- Clean separation of ν_{μ} and ν_{e} interactions

- Good energy reconstruction over broad energy range
- Low threshold (few MeV)



LArTPC Detectors

- Detailed images of final state particle trajectories
- Clean separation of ν_{μ} and ν_{e} interactions

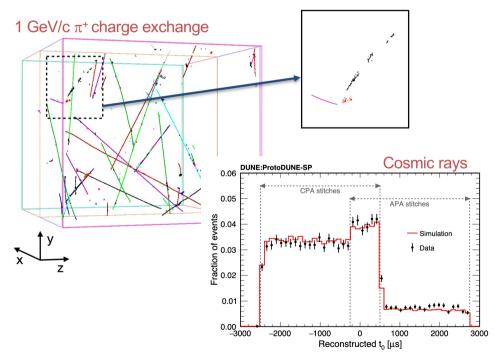

- Good energy reconstruction over broad energy range
- Low threshold (few MeV)

ProtoDUNE

- ProtoDUNE ran from 2018-2020 at CERN
 - Full-scale DUNE components
 - Successful long-term operation
 - Data taken in charged test beam and with cosmic rays analyzed to evaluate detector performance and for physics measurements
- 2nd ProtoDUNE run in 2024 will validate final DUNE detector components for first two far detector modules

protoDUNE-DP

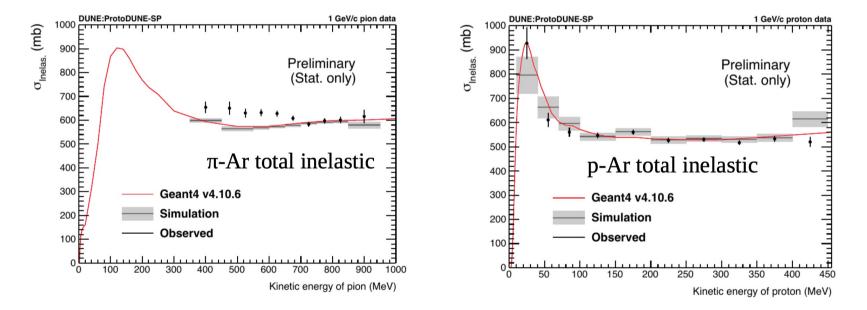
protoDUNE-SP

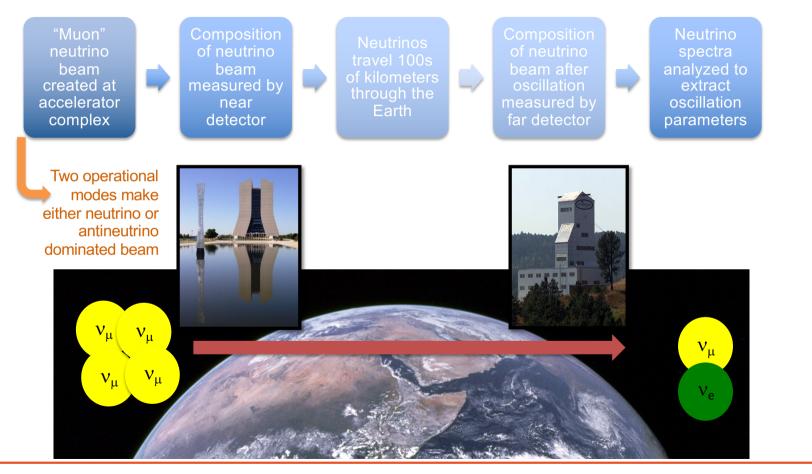


New ProtoDUNE Results!

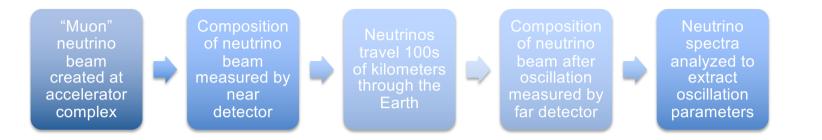
Identification and reconstruction of Michel electrons from stopping muons: Phys. Rev. D 107, 092012 (2023) arXiv:2211.01166

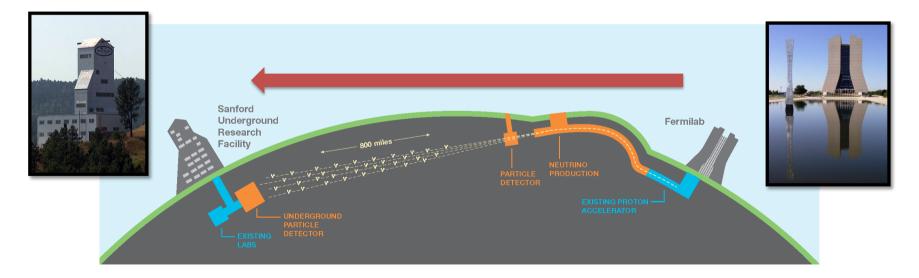
ProtoDUNE-SP Run 5809 Event 69274 @2018-11-07 15:18:37 UTC 2200 2100 0002 (0.2 hz) 0001 μz) Candidate Candidate Michel 1800 lectron 1700 DUNE:ProtoDUNE-SP 1080 110 600 r MC sig+bkg 500 Bkg MC Data 400 Events 300 200 100 ---data/MC Reconstructed Michel electron energy [MeV]


Pandora reconstruction performance for cosmic rays and beam particles: Eur. Phys. J. C 83, 618 (2023) arXiv:2206.14521


Upcoming ProtoDUNE Results

Many hadron-argon cross section analyses in progress




Sketch of Long-Baseline Oscillation Experiment

Sketch of Long-Baseline Oscillation Experiment

LBNF Neutrino Beam

- 120-GeV protons from FNAL accelerator complex
 - Up to 2 MW beam power in Phase I (PIP-II, ACE)
 - Booster replacement (increased power, reliability, protons for other projects) prior to Phase II
- Neutrino beam line designed using genetic algorithm to optimize CP violation sensitivity
 - Broadband beam with large flux between 1st and 2nd oscillation maxima

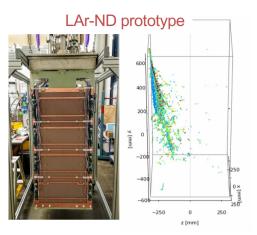
LBNF: Long Baseline Neutrino Facility (beam, underground facilities, infrastructure)

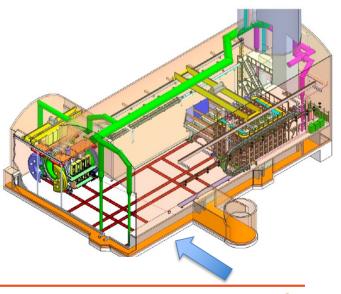
Neutrino Mode Flux:

10¹

8

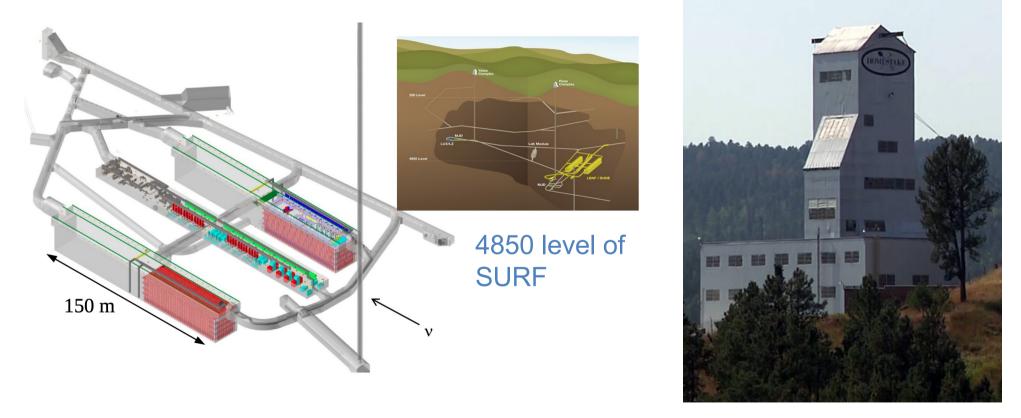
6


10

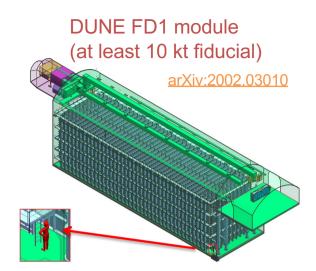

DUNE Simulation

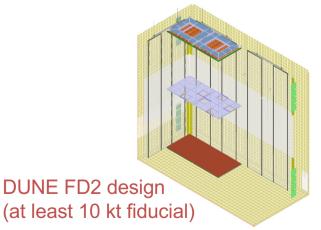
····ν_

DUNE Near Detector arXiv:2103.13910


- Suite of ND components are designed to provide constraint on systematic uncertainty from flux, neutrino interaction modeling, and detector effects
- LArND
 - Same nuclear target and detection technology far and near
 - Differences in ND design required to handle higher rate environment
- The Muon Spectrometer (TMS)
 - Serves as "muon catcher" for LArTPC
 - Upgradable to "more capable ND" (MCND) such as a high-pressure gaseous argon TPC for improved systematics constraints in Phase II
- PRISM
 - LArTPC and TMS move up to 30m off axis to facilitate measurements in different neutrino fluxes
- SAND
 - On-axis magnetized low-density tracker and spectrometer, re-using magnet and ECAL from KLOE

DUNE Far Detector at SURF


SURF: Sanford Underground Research Facility (Lead, SD)



Far Detector Modules

- Excavation includes space for four 17-kt LArTPC modules: 70 kt total (>40 kt fiducial), integrated photon detection
- First two modules will be installed before Phase I operations:
 - FD1: Horizontal drift LArTPC
 - 3.2 m drift distance
 - Wire plane readout (150 APAs, 6 x 2.3 m)
 - FD2: Vertical drift LArTPC
 - 6.5 m drift distance
 - PCB plane readout (160 CRPs, 3 x 3.4 m)
- Far detector will be completed for Phase II with installation of FD 3&4
 - Details TBD
 - Potential opportunity for expanded physics scope

DUNE is under construction <u>now</u>

Excavation is 75% complete by rock volume! 10 APAs already complete, production will ramp to 40/year by 2026

North cavern

Central utility cavern

FD1 APA Production

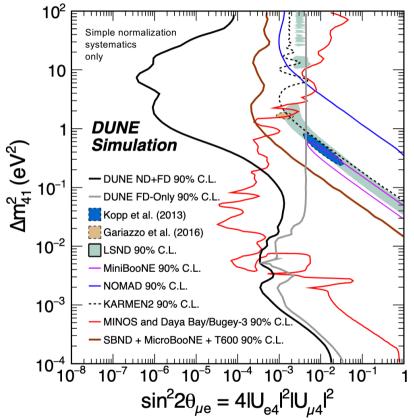
Phased Construction

Phase I

- Includes full near & far site facilities and infrastructure (incl. caverns for 70 kt FD)
 - Excavation complete: 2024
- Upgraded proton beam and new neutrino beamline: 2031
- Two 17 kt LArTPC modules
 - FD1 installation begins: 2026
 - Commissioning, begin physics: 2028
 - FD2 installation: 2029
- Moveable LArND w/ TMS: 2031
- On-axis near detector: 2031

Phase II

- Two additional far detector modules
 - Full required fiducial mass
 - Potential opportunity for expanded physics scope!
- Beam upgrade
 - Improved reliability and increased statistics
 - More protons for broader FNAL program
- More capable near detector
 - Improved control of systematic uncertainty from neutrino interaction modeling


DUNE Physics

- Primary physics goals
 - make precise measurements of the parameters governing $v_1 v_3$ and $v_2 v_3$ mixing in a single experiment, including the neutrino mass ordering and the CP-violating phase δ_{CP} , and test the three-flavor paradigm
 - make astrophysics and particle physics measurements with supernova burst neutrinos and other lowenergy neutrinos
 - search for physics beyond the Standard Model, including baryon number violating processes

Sensitivity to many new physics scenarios being investigated both by the collaboration and phenomenologists 10² simple normalization systematics only

Physics Beyond the Standard Model arXiv:2008.12769

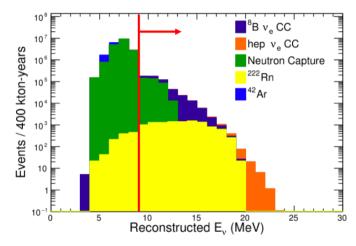
- Deviations from 3-flavor oscillation (sterile v, NSI, PMNS non-unitarity, CPT violation, etc)
- Complementary measurements at both DUNE and HK may help disentangle degeneracy between BSM signatures and 3-flavor oscillation parameters.
- Other (non-neutrino) new physics signatures (neutrino trident rate, dark matter, baryon number violation, etc – both ND and FD)

20 Sept. 7, 2023 Elizabeth Worcester I Marciana Marina 2023

Astrophysical Neutrino Sources arXiv:2008.06647

- Thousands of neutrinos will be observed by DUNE for a typical galactic supernova burst
 - Probe core collapse mechanism, supernova evolution, etc.
- Flux complementary to other detectors: CC absorption (ν_{e}) dominates

Core-collapse


supernova -

burst

• Pointing capability (multi-messenger astrophysics)

- Large background at low energies due to neutron capture
- DUNE can observe hep solar flux at >5 σ (first time!)
- Measurements of solar oscillation parameters can be compared with JUNO (<u>arXiv:1808.08232</u>)

21 Sept. 7, 2023 Elizabeth Worcester I Marciana Marina 2023

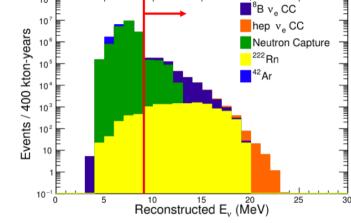
Astrophysical Neutrino Sources arXiv:2008.06647

Cross-section uncertainty matters here also: Phys. Rev. D 107, 112012 (2023) arXiv: 2303.17007

Core-collapse

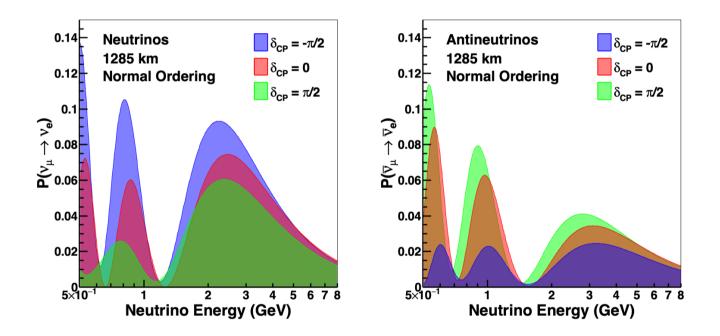
supernova -

burst


Thousands of neutrinos will be observed by DUNE for a typical galactic supernova burst

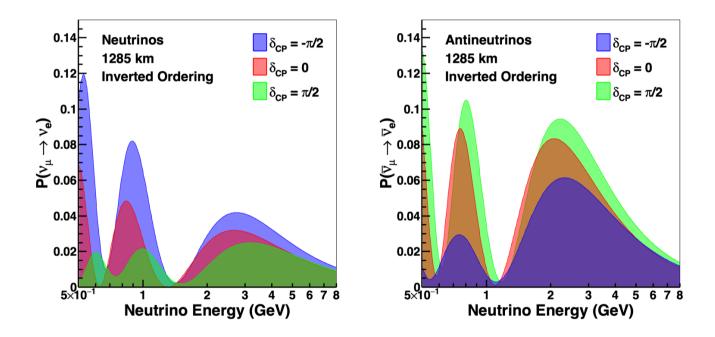
- Probe core collapse mechanism, supernova evolution, etc.
- Flux complementary to other detectors: CC absorption (ν_{e}) dominates
- Pointing capability (multi-messenger astrophysics)

- Large background at low energies due to neutron capture
- DUNE can observe hep solar flux at >5 σ (first time!)
- Measurements of solar oscillation parameters can be compared with JUNO (arXiv:1808.08232)



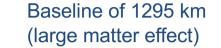
10

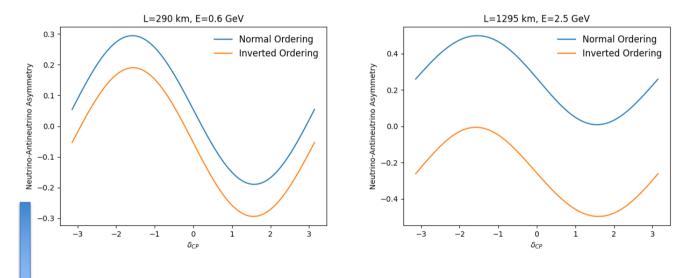
٠


3-Flavor Neutrino Oscillation at DUNE

- Value of δ_{CP} affects both rate and shape of appearance probability, with asymmetric impact on neutrinos and antineutrinos
- Matter effect enhances appearance probability for neutrinos and reduces it for antineutrinos if ordering is <u>normal</u>

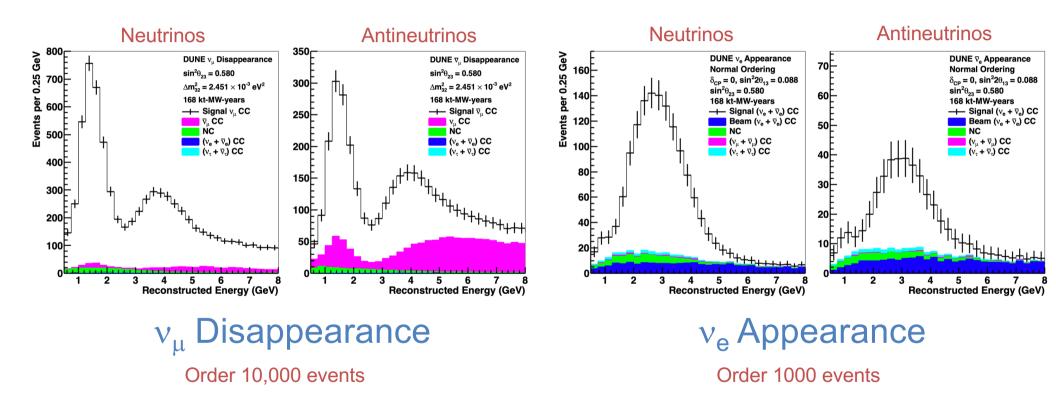
3-Flavor Neutrino Oscillation at DUNE


- Value of δ_{CP} affects both rate and shape of appearance probability, with asymmetric impact on neutrinos and antineutrinos
- Matter effect reduces appearance probability for neutrinos and enhances it for antineutrinos if ordering is <u>inverted</u>


Both matter effect and δ_{CP} induce matterantimatter asymmetry!

3-Flavor Neutrino Oscillation at DUNE

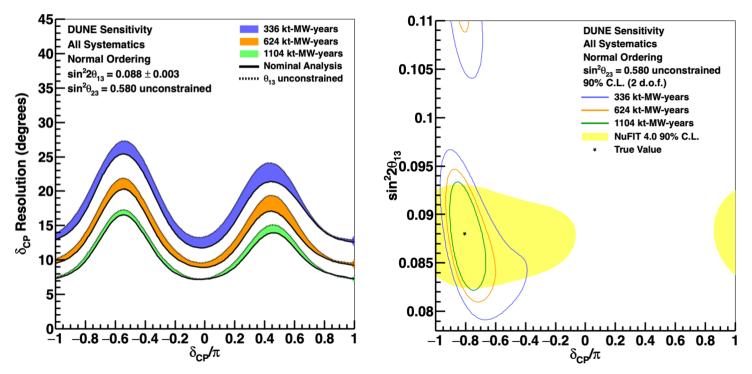
Baseline of 290 km (very little matter effect)



Degeneracy between δ_{CP} and matter effects is lifted for baselines greater than ~1000 km because matter effect produces larger asymmetry: DUNE can measure mass ordering unambiguously

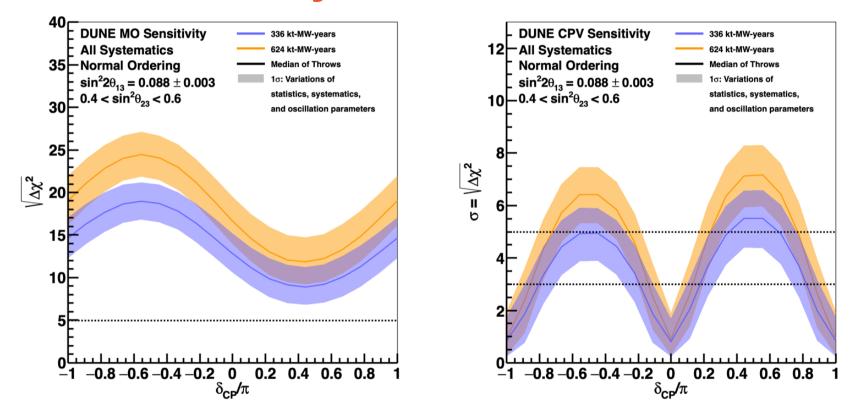
Matter-antimatter asymmetry

DUNE Spectra (~7 years)



DUNE Sensitivity

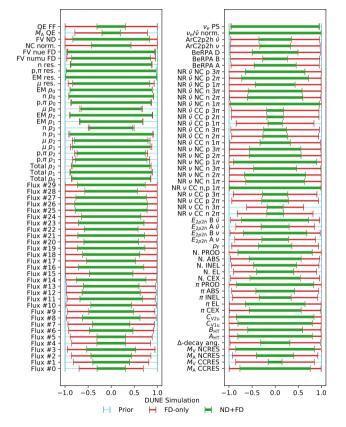
arXiv:2006.16043 arXiv:2109.01304


Precision Measurements:

Width of band represents difference between sensitivity with and without external constraint on θ_{13} θ_{13} precision comparable to that of reactor experiments for large exposures

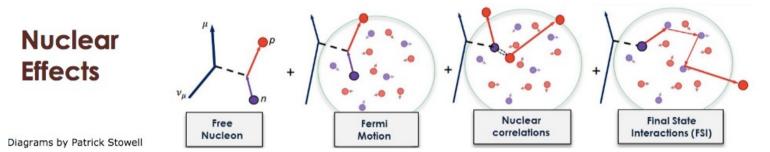
arXiv:2006.16043 arXiv:2109.01304

Width of band shows 1σ variations of statistics, systematic parameters, and oscillation parameters. Unambiguous determination of neutrino mass ordering and 5σ sensitivity to δ_{CP} for a large range of parameter space.

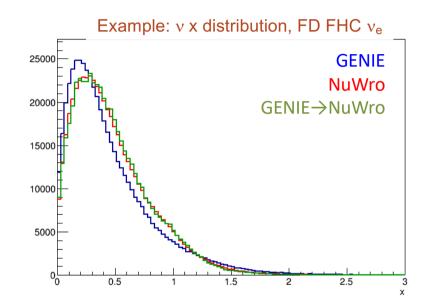

DUNE Sensitivity

Systematic Uncertainty

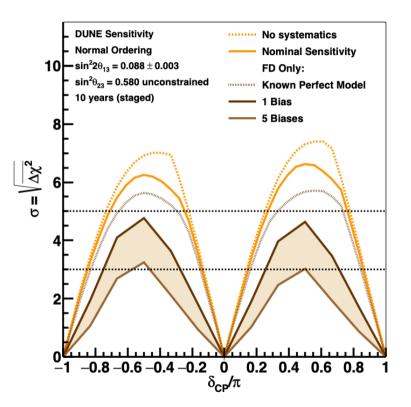
- Order few percent uncertainty required for precision measurements
- Sources of uncertainty:
 - Neutrino flux
 - Neutrino interaction model
 - Detector effects
- Sensitivity projections include detailed analysis of impact from individual source of systematics
- Impact of biases due to shortcomings in the interaction model is large
- Near detectors are critical to achieve precision measurement goals!


Systematics included in sensitivity projections (arXiv:2006.16043):

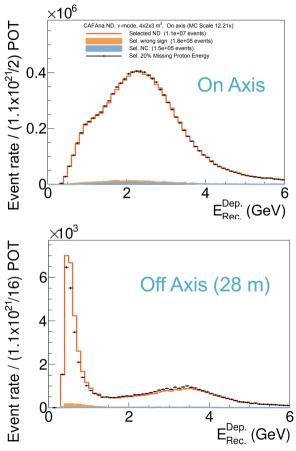
Neutrino Interaction Modeling

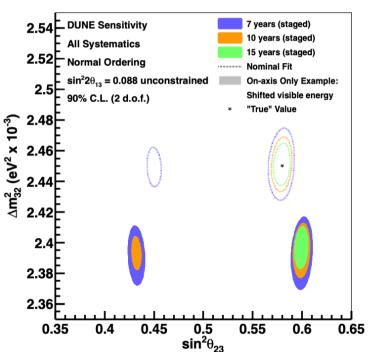

Neutrinos in DUNE are not interacting with bare nucleons...structure of the nucleus matters!

- Modeling neutrino interactions requires detailed modeling of complex nuclei!
- Interaction model affects energy reconstruction mis-reconstructed energy can significantly bias results
- Neutrino-nucleus interaction model does not currently describe world neutrino interaction data → program of neutrino
 interaction experiments, model-building, and event generator development very important for precision measurements in
 neutrino physics
- Long-baseline experiments are being designed to provide experimental solutions to imperfect interaction model
 - Improve model constraints by making precise measurements of final states
 - Reduce sensitivity to details of model by making data-driven predictions

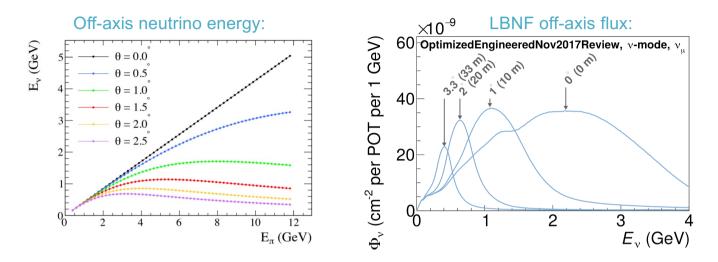

- Use BDT to reweight GENIE→NuWro in a space of 18 kinematic variables
- FD fit χ^2 /d.o.f. < 1, but produces bias in fit for δ_{CP}
- ND-FD fit has $\chi^2/d.o.f. > 30$
- Without ND to validate interaction model, would have to include possibility of this kind of bias as systematic uncertainty
- Exclusive final state samples in MCND may be used to reduce this bias

More on multivariate reweighting: <u>C. Vilela at NPML 2020</u>

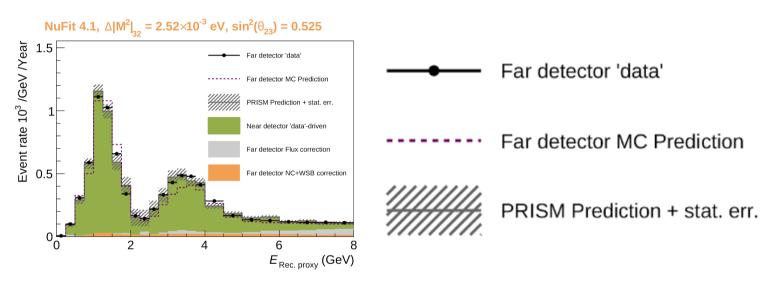

- Use BDT to reweight GENIE→NuWro in a space of 18 kinematic variables
- FD fit χ^2 /d.o.f. < 1, but produces bias in fit for d_{CP}
- ND-FD fit has χ²/d.o.f. > 30
- Without ND to validate interaction model, would have to include possibility of this kind of bias as systematic uncertainty
- Exclusive final state samples in MCND may be used to reduce this bias



- 20% of proton energy is removed and added to (largely invisible) neutrons
 - Significant modification to relationship between reconstructed and true energy
 - An artificial but plausible example of a way in which the interaction model could be off
- Use BDT to adjust model parameters such that on-axis ND reconstructed distributions agree with the nominal sample


- 20% of proton energy is removed and added to (largely invisible) neutrons
 - Significant modification to relationship between reconstructed and true energy
 - An artificial but plausible example of a way in which the interaction model could be off
- Use BDT to adjust model parameters such that on-axis ND reconstructed distributions agree with the nominal sample
- Mismodeling leads to significant bias in measured oscillation parameters

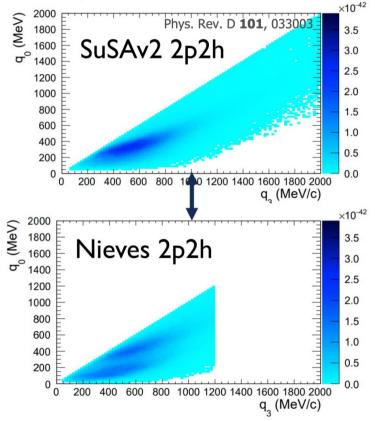
DUNE PRISM



PRISM (Precision Reaction-Independent Spectrum Measurement) concept is to use linear combinations of off-axis fluxes to construct any flux: can ~reproduce FD flux prediction or Gaussian flux at a given energy. Same weights can then be applied to ND data to construct a "data driven" predicted event rate for a given flux.

DUNE PRISM Example

Energy bias study with PRISM:


- With nominal MC, prediction badly mismatched to data, leading to biased measurement of oscillation parameters
- PRISM prediction is well-matched to data and no bias in parameter measurement is observed!

Interactions Baseline Model

- GENIE version 3.4.0, release Ar23_20i (2023)
- Common among DUNE and SBN (ICARUS and SBND)
 - Facilitates collaboration on development of systematics variations and any future constraints from SBN program measurements
- Guiding principle in model choice is flexibility for future studies: covers large phase space to allow for reweighting
- Updates include:
 - Updated nuclear ground state model
 - Z-expansion for CCQE axial form factor
 - SuSAv2 2p2h
 - Simulation of de-excitation photons for Argon

DUNE

Interaction Measurements Program

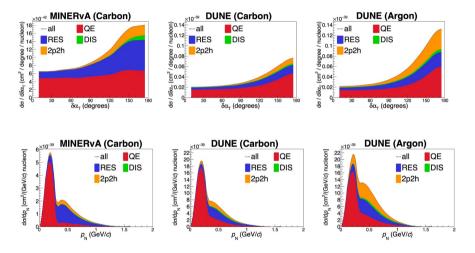

DUNE ND CDR (arXiv:2103.13910):

Table 6.2: Events per year $(1.1 \times 10^{21} \text{ POT})$ in the forward horn-current (ν_{μ} -favoring) mode. The rates were computed with GENIE 2.12.10. The rates assume a 50 t fiducial volume of liquid argon and a 1 t fiducial volume of argon gas.

	Interaction Channel			Event Rate	
				ND-LAr	ND-GAr
CC	ν_{μ}			$8.2 imes 10^7$	1.64×10^6
		0π		$2.9 imes 10^7$	5.8×10^5
		$1\pi^{\pm}$		$2.0 imes 10^7$	4.1×10^5
		$1\pi^0$		$8.1 imes 10^6$	1.6×10^5
		2π		$1.1 imes 10^7$	2.1×10^5
		3π		$4.6 imes 10^6$	$9.3 imes 10^4$
		other		$9.2 imes 10^6$	$1.8 imes 10^5$
	$\bar{\nu}_{\mu}$			$3.6 imes10^6$	7.1×10^4
	ν_e			1.45×10^6	$2.8 imes 10^4$
NC				$5.3 imes10^5$	$5.5 imes 10^5$
$\nu + e$				$8.3 imes 10^3$	$1.7 imes 10^2$

Massive rate of neutrino interactions at ND!

Example TKI measurements:

DUNE phase space and momentum acceptance, combined with heavy target nucleus with isospin T=2 allows access to different regions of parameter space, in some cases with added sensitivity to FSI

Summary

- DUNE represents a major experimental advance for long-baseline oscillation experiments: thousands of events, unambiguous determination of the mass ordering, 5σ -level sensitivity to CPV, precision measurements of oscillation parameters, including δ_{CP} , significant sensitivity to physics beyond the Standard Model
- [Interaction] Systematics are critical for precision measurements!
- DUNE has a broad physics program beyond 3-flavor oscillation physics
 - Supernova v physics, solar v physics, baryon number non-conservation, BSM searches...
 - Neutrino interactions measurements program
 - Opportunities to expand the physics reach with new detector ideas in Phase II
 - DUNE and HyperK design strategies complement each other and will help disentangle any observed BSM effects from 3-flavor oscillation
- DUNE is being built now the next decade will be very busy and exciting!

