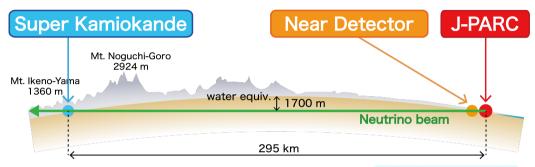
T2K: Current and Future Neutrino Cross Section Measurements

Liam O'Sullivan, for the T2K collaboration $$_{\rm he/him}$$


Lepton Interactions with Nucleons and Nuclei '23, Elba

7th Sep. 2023

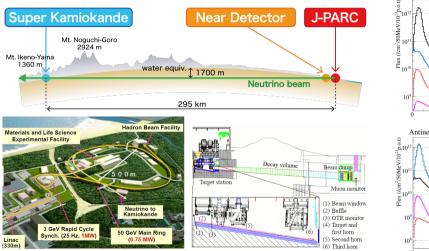
JOHANNES GUTENBERG

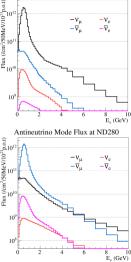
The T2K Experiment

- ν oscillation experiment
- Generate ν_{μ} beam, measure ν_{e} component
 - Directly after ν production
 - After 295 km
- Beam 2.5° off-axis

images: t2k-experiment.org

The T2K Experiment





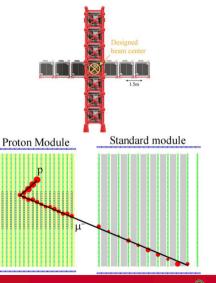
2 Cross-Sections @ T2K

The T2K Experiment

Neutrino Mode Flux at ND280

3 Cross-Sections @ T2K

INGRID: On-Axis Detector


Standard Modules($\times 16$)

- Alternative iron plates and scintillator bars
- Muon range detector

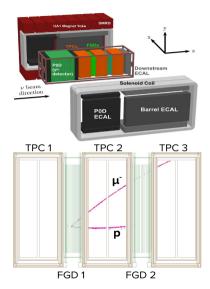
Proton Module ($\times 1$)

- Fully active scintillator
- Lower target mass, better tracking

Monitors beam centre, profile, overall CC rate

The ND280 Detector

Fine Grained Detectors (FGDs)

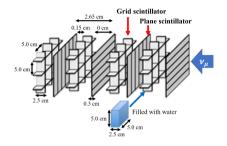

- Active plastic scintillator detector
- Bar direction alternates by layer
- FGD2 contains inactive water layers

Time Projection Chambers (TPCs)

- Low pressure Argon
- Accurate momentum, dE/dx measurement

Also

- Enclosed by Elec. Calorimeters
- Magnetised detector
- P \emptyset D Dedicated π^0 detector



5 Cross-Sections @ T2K

The WAGASCI and BabyMIND Detectors

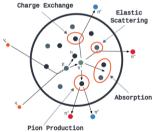
 1.5° Off-Axis

WAGASCI:

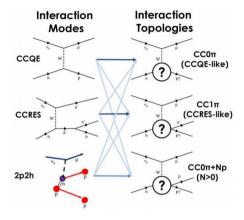
6

Cross-Sections @ T2K

- Active plastic scintillator detector
- Substantial water target (\sim 80%)


BabyMIND:

- Magnetised iron and scintillator
- Reconstruct μ charge and range



Measuring Neutrino Interactions

- Define signal by 'topology' (final state)
- Generally split by
 - ν flavour
 - interaction mode (W^{\pm}/Z^{0})
 - π , proton multiplicity

T. Golan, What is inside MC generators and why it is wrong. NuSTEC 2015

Cross-Sections @ T2K

7

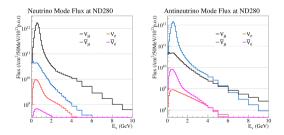
Cross-Section Measurement Strategy

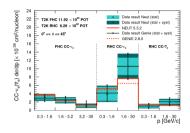
What we measure

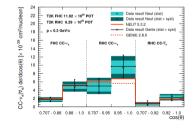
• Select a number of events in a reconstructed quantity (e.g. momentum) What we want

• True number of signal events in a true quantity

Techniques we use


- Efficiency correction: account for the events missed by our detector
- Background estimation: account for the background rate and distribution
- Unfolding: Transform from reconstructed to true quantities


Detailed talk on this analysis method in $\mathsf{T}\mathsf{2}\mathsf{K}$



ν_e and $\bar{\nu}_e$ CC

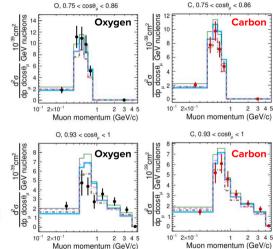
- u_{μ} and $alpha_{\mu}$ beams have irreducible u_{e} component
- Large uncertainty in oscillation measurements
- Challenging, high-background analysis

rticle in JHEP 10 (2020) 114

9 Cross-Sections @ T2K

$u_{\mu} \text{ CC } 0\pi \text{ on C and O}$

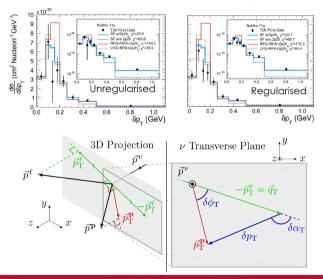
Signal sample	I – μTPC ECAL+SMRD FGD TPC μ ECAL+SMRD	II – µTPC+pTPC ECAL+SMRD FGD TPC ECAL+SMRD	III – µTPC+pFGD ECAL+SMRD FGD P ECAL+SMRD	IV – μFGD+pTPC ECAL SMRD FGD μ P ECAL+SMRD	V – µFGD ECAL SMRD FGF µ ECAL+SMRD
Description	Single µ candidate tracked in TPC	Both µ and p candiates are tracked in the TPC	 μ tracked in the TPC and : 1p tracked in the FGD or multi p 	 μ tracked in FGD/Ecal and: 1 p tracked in the TPC or 1 p tracked in the TPC + multi p or multi p 	µ _{FGD} only reconstructed in the FGD/ Ecal


- Expanded acceptance (high θ_{μ} , low p_{μ})
- Selection applied to both FGDs; H₂O component
- Double differential; measure p_{μ} and $\cos \theta_{\mu}$ Article in PTEP Vol. (2021) 4

- Update to previous result
 - improved models and techniques
 - $\sim 2 \times$ POT with Run 8
 - O/C cross-section ratio

 $u_{\mu} \text{ CC } 0\pi \text{ on C and O}$

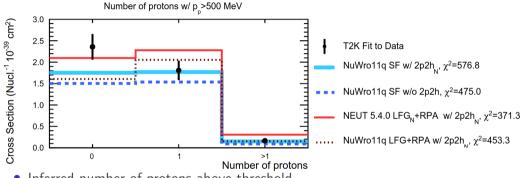
- Double differential $(p_{\mu}, \cos \theta_{\mu})$ measurement
 - Good granularity in phase-space
- O/C cross-section ratio is useful
 - Flux errors cancel
- Preference for simpler Fermi gas nuclear state models



GENIE v3 SuSa v2 (103.5) ---- NuWro SF (114.5) ---- NEUT LFG (44.8) GiBUU (112.7)

11 Cross-Sections @ T2K

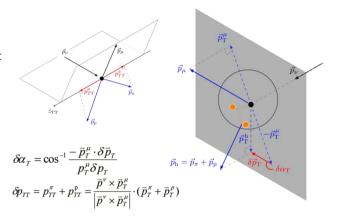
ν_{μ} CC 0 π Transverse Kinematic Imbalance



- Older result
 - Phys. Rev. Lett. (2018) 022504
- Different variables to previous
 - Chosen to challenge theory
- Sensitive to
 - initial nuclear state
 - final-state interactions

12 Cross-Sections @ T2K

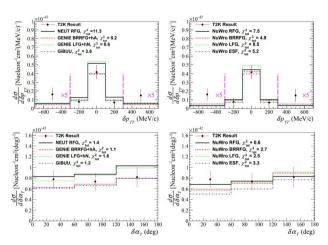
ν_{μ} CC 0 π Transverse Kinematic Imbalance



- Inferred number of protons above threshold
- Helps disentangle FSI and 2p2h
- Motivates improvement to proton kinematic prediction in models

ν_{μ} CC $1\pi^{+}$ Transverse Kinematic Imbalance

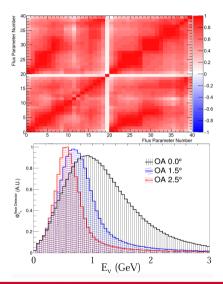
- Signal: $\mu^- + \pi^+ + p$
- Variables measure kinematic imbalances between final state μ, π, and p
- As before, sensitive to
 - initial nuclear state
 - final-state interactions



Article in PRD

ν_{μ} CC $1\pi^{+}$ Transverse Kinematic Imbalance

- Simpler Fermi-gas models show tension
- δp_{TT} quite sensitive to FSI
- No model fit everything well
 - Partially by design
 - Models not constructed for this
- Result is statistically limited

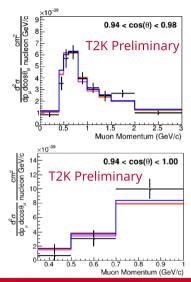


15 Cross-Sections @ T2K

 u_{μ} CC 0 π Joint On/Off-Axis

- Simultaneous measurement with two fluxes
 - Fluxes differ significantly
 - Errors correlate strongly
 - Constraints affect both detectors
- Resulting cross-sections correlated
- First such analysis on T2K
- Potential to extend joints analysis to
 - Multiple channels/signals
 - More detectors
 - More correlated parameters

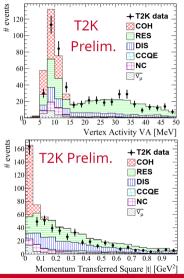
Preprint on arXiv: 2303.14228



16 Cross-Sections @ T2K

 u_{μ} CC 0 π Joint On/Off-Axis

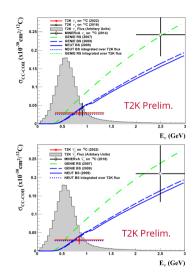
- Can now present two results together
 - Flux errors reduced
 - All bins correlated
 - Data is more powerful
- Not all smooth sailing
 - Conceptually very straightforward
 - Much more work
 - Fit validation much more involved



17 Cross-Sections @ T2K

ν_{μ} and $\bar{\nu}_{\mu}$ CC Coherent

- Specific channel measurement
 - Scattering off entire nucleus
 - Final state particles: μ^{\pm} , π^{\mp}
 - Nucleus remains in ground state
- Measured for both u_{μ} and $ar{
 u}_{\mu}$
- 'Vertex Activity' cut
 - No additional hadrionc activity around the vtx.


JZR JGU

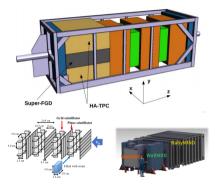
Posted to the arXiv last week! 2308.16606

18 Cross-Sections @ T2K

$u_{\mu} \text{ and } \bar{\nu}_{\mu} \text{ CC Coherent}$

- Specific channel measurement
 - Scattering off entire nucleus
 - Final state particles: μ^{\pm} , π^{\mp}
 - Nucleus remains in ground state
- Analysis has some assumptions baked in
 - Much work to validate sensitivity
 - Many models tested throughout the chain
 - Discussed in detail in paper
- Current data does not exclude models
 - ν_{μ} and $\bar{\nu}_{\mu}$ consistent

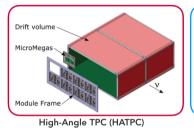
19 Cross-Sections @ T2K

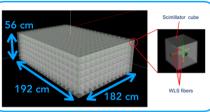

Looking to the Future!

WAGASCI/BabyMIND

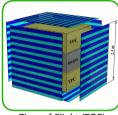
- Intermediate flux (\sim 800 MeV peak)
- Water target with good 4π reconstruction
- Muon charge ID and momentum from BabyMIND
- Selections and analyses are in progress!

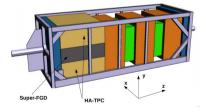
• ND280 Upgrade:


- Substantially improved detector
- Retains much of the original
- Joint Analyses:
 - Using T2K data to better constrain T2K data
 - More detectors and neutrinos than ever!



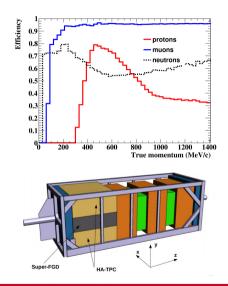
20 Cross-Sections @ T2K


ND280 Upgrade


- Super-FGD:
 - Fully active scintillator
- High-Angle TPCs:
 - High resolution Argon TPCs
- Time-of-Flight:
 - Scintillator strips for timing info

Super Fine-Grained Detector (SuperFGD)

Time-of-Flight (TOF)


ND280 Upgrade

• Super-FGD:

- Greatly improved 3D tracking
- Much better timing
- Much lower noise
- Lower thresholds
- Neutron mom. resolution $\sim 25\%$

• High-Angle TPCs:

- Adds coverage at higher angles
- Better constraints for SK
- Time-of-Flight:
 - Improves direction and timing
 - Recudes external backgrounds

22 Cross-Sections @ T2K

Conclusion

Many analyses and papers coming soon!

- ND280
 - CC ν_{μ} and $\bar{\nu}_{\mu}$ 1π analyses
 - Joint CC u_{μ} 0, $1\pi^+$
 - CC $\nu_{\mu} \ 1K^{+}$
 - NC quasi-elastic
- ND280 Upgrade:
 - Almost ready to take data
 - First events this year*
- WAGASCI/BabyMIND:
 - Analyses under very active development

*fingers crossed

