Neutrinos, Nuclei and Quantum Computing & Information

J. Carlson (LANL)

Alessandro Roggero (Trento), Alessandro Baroni (ORNL), Ionel Stetcu (LANL), Duff Neill (LANL), Josh Martin (LANL), Huaiyu Duan (UNM

- Brief Introduction to Quantum Computing
- Linear response: electron and neutrino scattering (algorithm)
- Ground state (or others): state preparation (algorithm)
- Neutrino-Neutrino Scattering: Supernovae and Neutron Star Mergers (physics!)
- Outlook

attering (algorithm) (algorithm) and

Why Quantum Computing?

- Very dense information storage: **N** qbits store 2^N complex amplitudes 40-50 qbits store more than largest conventional supercomputers
- Parallel operations:

1 and 2 qbit gates are SU(2) rotations, Pauli operations Well mapped to physical amplitudes (locality, 2-3 body operators,...)

- Various mappings (eg. Jordan-Wigner) Hubbard or Heisenberg (lattice spin) models Lattice Field Theories, Nuclear Many-Body, ...
- Have to think a bit differently: **Bigger Hilbert space is ok QC Designed for Unitary evolution:** exp[-iHt]Measurements need to be carefully thought out
- Hardware in early stages but rapidly improving **Order 100 qbits (enough) Error or noise ~ 0.1% (needs to improve by 3-4 orders of magnitude)**

What is a Quantum Computer? (Theorist's oversimplified view)

Set of N qbits: SU(2) spinors in e.g. up-down basis

- Set up a simple initial simple (unentangled) state: product of SU(2) spinors
- Ordered set of gates operate on 1-2 qbits at at a time (can be parallel)
- Unitary Evolution
- Measurement of some or all qubits

Linear Response on a Quantum Computer $G_0 - \omega$ A. Roggero & J. CarlsonPhys. Rev. C 100, 03461 (2019)

$$S_{O}(\omega) = \sum_{\nu} |\langle \psi_{\nu} | \hat{O} | \psi_{0} \rangle|^{2} \delta(E_{\nu} - E_{0} - \omega)$$
A. Rogge
Phys. Rev. C
$$R_{\alpha}(q, \omega) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{i(\omega + E_{i})t} \sum_{M} \langle \Psi_{i} | O_{\alpha}^{\dagger}(\mathbf{q}) e^{-iHt} O_{\alpha}(\mathbf{q}) | \Psi_{i} \rangle.$$

Prepare Initial State: Variational state, ... Need Initial state: variational or projection (see below)

High Energy & smooth response -> limited time evolution is sufficient

Unitary operator representing the current on the initial state:

$$\hat{U}_{S}^{\gamma} = e^{-i\gamma\hat{O}\otimes\sigma_{y}} = \begin{pmatrix} \cos(\gamma\hat{O}) & -\sin(\gamma\hat{O}) \\ \sin(\gamma\hat{O}) & \cos(\gamma\hat{O}) \end{pmatrix}$$

Need to evolve for time t with controlled evolution and W auxiliary qbits. Probability of measurement of auxiliary qbits

$$P(y) = \frac{1}{2^{2W}} \sum_{\nu} |\langle \psi_{\nu} | \Phi_O \rangle|^2 \frac{\sin^2 \left(2^W \pi \left(\lambda_{\nu} - \frac{y}{2^W} \right) \right)}{\sin^2 \left(\pi \left(\lambda_{\nu} - \frac{y}{2^W} \right) \right)}$$
$$\equiv \frac{1}{2^W} \sum_{\nu} |\langle \psi_{\nu} | \Phi_O \rangle|^2 F_{2W} \left(2\pi \left(\lambda_{\nu} - \frac{y}{2^W} \right) \right)$$

Only a few (~10) extra qubits gives and excellent reproduction of the response Resolution improve exponentially with the number of ancillary qubits

State Preparation on a Quantum Computer Goal: Project an Eigenstate w/ Good <H>,<J>,... From an initial variational state

Algorithm:

1. Project on Quantum Numbers

Known Eigenspectrum, Zeros exponentially growing number of states with each measurement Increases Gap to Lowest Excitation

2. Measure 'Response' of trial state

- 3. Calculate Optimum Times and Phases
- 4. Project to Ground State

Time $\propto \frac{\pi}{\Delta^{\star}}$ (same as adiabatic)

Works for arbitrary Quantum numbers, E

Symmetries and scramblers in dense neutrino enviroments

Many-body quantum mechanics of neutrinos in regimes where $\nu - \nu$ interactions can be important.

With huge flux, $\nu - \nu$ interactions can potentially be important! We can derive Hamiltonian describing the system We have at least a rough idea of some relevant initial conditions Can we do time evolution of enough neutrinos to be useful? How to approach modeling quantum dynamics?

Many-body quantum mechanics of neutrinos (JC, A. Roggero, Duff Neill, Josh Martin)

- Simplified Hamiltonian relevant to SN, NS-NS mergers: **Integrable vs. non-Integrable Hamiltonians**
- **Initial States**
- **Equilibration (thermodynamics) from real-time evolution**
 - Eigenstate Thermalization Hypothesis (ETH)
 - Path Integral Representation of Dynamics
- **Analysis of equilibration/time scales for larger N**
- **'Classical' Picture: Neutrinos and Anti-Neutrinos**

$$H_{\nu-\nu} = \frac{\sqrt{2}G_F \rho_{\nu}}{N} \sum_{i < j} (1 - \hat{k}_i \cdot \hat{k}_j) \sigma_i$$

arXiv: 2307.16793

 $\cdot \sigma_i$

Hamiltonian setup for dense neutrino environment

See Panteleone, Sigl, Raffelt, Bell, Fuller, Balantekin, Sawyer, Friedland, Lunardini, McKellar, Cirigliano,...

 $H = H_{vacuum} + H_{MSW} + H_{\nu-\nu}$

Vacuum Oscillations: neutrinos oscillate between flavors in the vacuum : SU(2) example $= -\frac{\delta m^2}{2E_i} \begin{pmatrix} -\cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix}$ H_{vacuum} -

In matter, forward scattering on 'ordinary' matter introduces a potential for electron neutrinos (MSW)

$$H_{MSW} = \begin{pmatrix} \sqrt{(2)}G_F \rho_e & 0\\ 0 & 0 \end{pmatrix}$$

$$H_{\nu-\nu} = \frac{\sqrt{2}G_F \rho_{\nu}}{N} \sum_{i < j} \left(1 - \hat{k}_i \cdot \hat{k}_j\right) \sigma_i \cdot \sigma_j$$

 k_i, k_j represent neutrino directions

- $ho_{
 u}$ is neutrino density
- N is total number of neutrinos
- σ_i, σ_j are Pauli matrices representing neutrino flavor states

Note unusual factor of $\frac{\rho_{\nu}}{N}$ because of 'box' normalization for neutrino single-particle states

Spectra proportional to N like standard Hamiltonian

More neutrinos at fixed density \rightarrow larger volume

Neutrino-Neutrino interaction \leftrightarrow Quantum Spin (here SU(2)) Hamiltonian

Big mismatch between number of neutrinos we can calculate in a quantum many-body approach and real physical system Note this is always true (neutron stars, cold atoms, liquid He,...)

Take luminosity $L \sim 10^{53}$ erg/sec and an average energy E of 10 MeV at a radius of ~ 50 km gives $\rho_{\nu} \approx 6.6 \times 10^{-7} \text{fm}^{-3}$

Number of quantum many-body states = 2^{N} For N= 20 at this density the box length (cubic) is only $L \sim 300$ fm

L	Ν
300 fm	20
3000 fm	2000
3 Angstrom	2x10 ¹⁰

More particles is only a partial answer Density low compared to degeneracy, can treat as distinguishable spins Convert part of dynamics to statistical mechanics (finite T)

Neutrino-Neutrino interaction ↔ Quantum Spin (here SU(2)) Hamiltonian

$$H_{\nu-\nu} = \frac{\mu}{N} \sum_{i < j} (1 - \hat{k}_i \cdot \hat{k}_j)$$

i<*j For c*

Initial Condition (product state): ~A complex amplitudes $\psi(0) = \prod_{i=1}^{N} \chi(i)$ i=1

Dynamics rapidly introduces many complex amplitudes

$$|\Psi(t)\rangle = \exp[-iHt] |\Psi(0)\rangle$$

$$\sigma_i \cdot \sigma_j = 2P_{ij} - 1 P_{ij} \exp[-iHt] |\Psi(0)\rangle$$

mappings to quantum computer SU(2) spin \leftrightarrow qubit

Major difficulty on a QC is all to all coupling :Savage, Roggero, Hall, Illa, ...

 $\sigma_i \cdot \sigma_j$

conditions described previously $\mu \approx 1 cm^{-1}$

In general are determined by sampling from an energy, angle and flavor dependent distributions

changes spins

Integrability is a key component of the Hamiltonian determined by choice of directions/couplings k

In all cases considered J^2 , J_x , J_y and J_z are symmetries as they commute with the Hamiltonian

• Integrable : Many symmetries: eg. all equal couplings $H = \sum_{i < j} \sigma_i \cdot \sigma_j$ cases solved by Bethe Ansatz

(see eg. Somma, NPB, 2005)

• Non-Integrable : Almost all cases Very few symmetries, level repulsion, ...

Here we consider random unit vectors in a hemisphere

Only total angular momentum and projections are preserved, along with moments of H (time independent Hamiltonian)

Initial states assumed to be product states Indepence of quantum phases from different source directions

$|\Psi(t=0)\rangle =$

$|\chi(i)\rangle =$

No quantum phase orientation (coherence) between different neutrinos Individual spins may be drawn from same classical distributions in flavor versus energy and angle

Can easily calculate expectation value s <H>, <H²>, <J²>, <Jx>, <Jy>, <Jz> These are all symmetries and hence time independent quantities for a Hamiltonian constant in time

$$= \prod_{i=1,N} |\chi(i)\rangle$$
$$= \binom{\alpha}{\beta} : |\alpha|^2 + |\beta|^2 = 1$$

Open rectangles: Full density of states Filled rectangles: including overlap with product state

Density of States and Initial State Overlaps with product states

N=3600 (2 beams) Integrable

Time dependence of observables and ~statistical observables

 $|\Psi(t)\rangle = \exp[-iHt]|\Psi(0)\rangle$

 $\langle O(t) \rangle = \langle \Psi(0) | \exp[iHt] | O | \exp[-iHt] | \Psi(0) \rangle$

Expanding in eigenstates $|\Phi_i\rangle$

Integrating over long times from t_1 to $t_1 + \Delta t$ $\bar{O} = \frac{1}{\Delta t} \int_{t_1}^{t_1 + \Delta t} \langle O(t) \rangle = \sum_{i} |\langle \Psi(0) | \Phi_i \rangle|^2 \langle \Phi_i | O | \Phi_i \rangle$

Thermal-like property, incoherent sum over eigenstates with positive definite coefficients ETH (eigenstate thermalization hypothesis) replace explicit sum with thermal average **Typically applied with state near micro-canonical ensemble (fixed energy)**

$$\bar{O} = \frac{\sum \exp[-\beta(E_i - \mu)] \langle \Phi_i | O | \Phi_i \rangle}{\sum \exp[-\beta(E_i - \mu)]}$$

ETH: Deutsch PRA, 1991; Srednicki PRE, 1994,

- $\langle O(t) \rangle = \langle \Psi(0) | \Phi_i \rangle \langle \Phi_i | \exp[iE_it] O \exp[-iE_it] | \Phi_i \rangle \langle \Phi_i | \Psi(0) \rangle$

Calculated Time dependence of $\langle \sigma_{7}(i) \rangle$ **16 spins; 9** \uparrow + 7 \downarrow **initially;** random directions in hemisphere

'Rapid' Equilibration of all spins

Time scale discussed later, here of order 5-10 μ

Some small memory of initial state energy

Example: 16 spins; 9 \uparrow + 7 \downarrow initially; **Couplings from random directions within hemisphere**

- Initial Conditions
- Red Integration of exact many-body solutions
- Blue Symbols: ETH
- Green Symbols: EMSD
- Dashed line equilibrium value for fixed total J_Z

Time averaged final values well predicted by EMSD and ETH

Equilibration of spins to a high degree

Both EGH and EMSD require many-body simulations (QMC will work for ETH in some cases)

Path Integral description of time evolution:

Write path integral in up/down spin basis describing time evolution: Expand in terms of matrix elements of off-diagonal (exchange) operators

Propagation is product of phases (solid lines) with insertion of swaps (dashed lines) Can approximate resulting state as an incoherent sum over all up-down product states Random phase approximation for each line gives incoherent sum Magnitudes can be defined to reproduce symmetries

Off-diagonal H connects states with exchange of two **Anti-parallel spins**

$$\cdots dt_m \langle n | \exp[-i\hat{H}^{d}_{\nu\nu}t_m] \hat{H}^{od}_{\nu\nu} | n_m \rangle$$

 $\langle n_m | \exp[-i\hat{H}_{\nu\nu}^{d}t_{m-1}]\hat{H}_{\nu\nu}^{od}|n_{m-1}\rangle \cdots \langle n_1 | \exp[-i\hat{H}_{\nu\nu}^{d}t_1]\hat{H}_{\nu\nu}^{od}|n_0\rangle \langle n_0 | \exp[-i\hat{H}_{\nu\nu}^{d}t_0|\psi_0\rangle.$

Exact time integrated complex amplitudes

Histogram of real and imaginary parts of time-averaged amplitudes, state=2

Amplitude in up/down state I at time t + δt

$$a_i(t+\delta t) = \exp[-iH_d(i)t]a_i(t) + (-i)\sum_{j\neq i}a_j(t)H_{od}(i,j)\delta t$$

Rotation from diagonal Hamiltonian plus Displacement from off-diagonal transitions N(N-1)/2 terms in sum, each of same magnitude as 1st term Rapidly leads to random phases

Assuming $a_j(t)$ from random gaussian distribution Yields gaussian distribution

Snapshot of phases, instantaneous and time-dependence

Phases from snapshot at 10 separated times

Time-dependent phases

Selected phases versus time: state = 0

Time-Averaged magnitudes

10 μ ⁻¹

Magnitudes vs. state index

100 μ -1

Magnitudes vs. H_d

Note this is for a system initially spatially homogeneous, We are looking at time scales for spin exchange Not yet any spacial information Starting with an up-down product spin state

Loschmidt Amplitudes: $\langle \Psi(t) | \Psi(0) \rangle$ Any antiparallel spin exchange gives zero zero

$$1 \sim c t \langle H_{od} \rangle = c t N(N-1) \frac{\mu}{N}$$
$$t = \mu^{-1}/N$$

Two-point Correlation function

 $\langle \psi(0) | \exp[iHt] \sigma_z(i) \exp[-iHt] \sigma_z(i) \psi(0) \rangle = 1 - \beta t^2 \approx \sigma_{z,eq}(i)$

$$t \propto \mu^{-1} \sqrt{N}$$

Larger time scales for bigger systems

Time Scales (For spin problem)

Symmetries and Conserved Quantities

- Path integral representation only allows permutations of original spins with arbitrary complex amplitudes
- Any arbitrary sum of permutations of the original state gives correct <J2>, <Jx>, <Jy>, <Jz>
- •Numerical evidence suggests that for non-integrable H phases are random giving an incoherent sum
- Time averages indicate that the time averaged amplitudes are smooth function F(E) of $\langle H_d \rangle$ Initial expectation values of $\langle H^n \rangle$ can be calculated from initial state, to get F(E)

Classical swap network swapping spins can easily be implemented to reach large number of spins

Equilibration of Neutrinos and anti-neutrinos with multiple flavors

Total # of neutrinos conserved (1 constraint) Lepton # conservation for 3 flavors (3 constraints) Need 6 total

 $\nu_e \bar{\nu_e} \leftrightarrow \nu_\mu \bar{\nu_\mu}$ leads to conservation of product of neutrino and anti-neutrino densities

 $\rho_e \rho_{\bar{e}} = \rho_\mu \rho_{\bar{\mu}} = \rho_\tau \rho_{\bar{\tau}}$ (2 constraints)

Future Directions:

- Real-Time dynamics on simulators
 - Inclusive
 - Detectors' on QC
- Time-dependent H for $\nu \nu$: MSW + vacuum
- Beyond Forward Scattering

Uniform Coupling

Random coupling

 $0.0^{-\ddagger}$

400 500

 $t \; (\omega_0^{-1})$

600

700

800 900

0.6

0.4

0.2

100

()

200 300

 \triangleleft