Neutrinos, Nuclei and Quantum Computing \& Information

J. Carlson (LANL)

Alessandro Roggero (Trento), Alessandro Baroni (ORNL), Ionel Stetcu (LANL), Duff Neill (LANL), Josh Martin (LANL), Huaiyu Duan (UNM

- Brief Introduction to Quantum Computing
- Linear response: electron and neutrino scattering (algorithm)
- Ground state (or others): state preparation (algorithm)
- Neutrino-Neutrino Scattering: Supernovae and Neutron Star Mergers (physics!)
- Outlook

Why Quantum Computing?

- Very dense information storage:

N qbits store $\mathbf{2}^{\mathrm{N}}$ complex amplitudes
40-50 qbits store more than largest conventional supercomputers

- Parallel operations:

1 and 2 qbit gates are $\mathrm{SU}(2)$ rotations, Pauli operations
Well mapped to physical amplitudes (locality, 2-3 body operators,...)

- Various mappings (eg. Jordan-Wigner)

Hubbard or Heisenberg (lattice spin) models
Lattice Field Theories, Nuclear Many-Body, ..

- Have to think a bit differently:

Bigger Hilbert space is ok
QC Designed for Unitary evolution: $\exp [-i H t]$
Measurements need to be carefully thought out

- Hardware in early stages but rapidly improving

Order 100 qbits (enough)
Error or noise ~ 0.1\% (needs to improve by 3-4 orders of magnitude)

What is a Quantum Computer?
 (Theorist's oversimplified view)

Set of N qbits: $\operatorname{SU(2)}$ spinors in e.g. up-down basis

- Set up a simple initial simple (unentangled) state:
product of SU(2) spinors
- Ordered set of gates operate on 1-2 qbits at at a time (can be parallel)
- Unitary Evolution
- Measurement of some or all qubits

Linear Response on a Quantum Computer

$$
\begin{array}{ll}
\left.S_{O}(\omega)=\sum_{\nu}\left|\left\langle\psi_{\nu}\right| \hat{O}\right| \psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{\nu}-E_{0}-\omega\right) & \text { A. Roggero \& J. Carlson } \\
R_{\alpha}(q, \omega)=\int_{-\infty}^{\infty} \frac{d t}{2 \pi} e^{i\left(\omega+E_{i}\right) t} \overline{\sum_{M}}\left\langle\Psi_{i}\right| O_{\alpha}^{\dagger}(\mathbf{q}) e^{-i H t} O_{\alpha}(\mathbf{q})\left|\Psi_{i}\right\rangle . & \text { Phys. Rev. C 100, } 03461 \text { (201 }
\end{array}
$$

Prepare Initial State: Variational state, ...
Need Initial state: variational or projection (see below)
High Energy \& smooth response -> limited time evolution is sufficient
Unitary operator representing the current on the initial state:
$\hat{U}_{S}^{\gamma}=e^{-i \gamma \hat{O} \otimes \sigma_{y}}=\left(\begin{array}{cc}\cos (\gamma \hat{O}) & -\sin (\gamma \hat{O}) \\ \sin (\gamma \hat{O}) & \cos (\gamma \hat{O})\end{array}\right)$

Need to evolve for time t with controlled evolution and \mathbf{W} auxiliary qbits.
Probability of measurement of auxiliary qbits

$$
\begin{aligned}
P(y) & =\frac{1}{2^{2 W}} \sum_{\nu}\left|\left\langle\psi_{\nu} \mid \Phi_{O}\right\rangle\right|^{\frac{s i n}{}{ }^{2}\left(2^{W} \pi\left(\lambda_{\nu}-\frac{y}{2^{W}}\right)\right)} \\
& \equiv \frac{1}{2^{W}} \sum_{\nu} \left\lvert\,\left\langle\psi_{\nu}\left(\pi\left(\lambda_{O}\right\rangle\right\rangle^{2} F_{2} w\left(2 \pi\left(\lambda_{\nu}-\frac{y}{2^{W}}\right)\right)\right)\right.
\end{aligned}
$$

Only a few (~ 10) extra qubits gives and excellent reproduction of the response
Resolution improve exponentially with the number of ancillary qubits

State Preparation on a Quantum Computer Goal: Project an Eigenstate w/ Good <H>,<J>,...
 From an initial variational state

Algorithm:

1. Project on Quantum Numbers

Known Eigenspectrum, Zeros exponentially growing number of states with each measurement Increases Gap to Lowest Excitation
2. Measure 'Response' of trial state
3. Calculate Optimum Times and Phases
4. Project to Ground State

Time $\propto \frac{\pi}{\Delta^{\star}}$ (same as adiabatic)

Works for arbitrary Quantum numbers, E

Projecting $\mathbf{J}^{\mathbf{2}}$ quantum number

Symmetries and scramblers in dense neutrino enviroments

Many-body quantum mechanics of neutrinos in regimes where $\nu-\nu$ interactions can be important.

With huge flux, $\nu-\nu$ interactions can potentially be important! We can derive Hamiltonian describing the system
We have at least a rough idea of some relewantinitial conditions Can we do time evolution of enough neutrinos to be useful? How to approach modeling quantum dynamics?

Many-body quantum mechanics of neutrinos

 (JC, A. Roggero, Duff Neill, Josh Martin)- Simplified Hamiltonian relevant to SN, NS-NS mergers: Integrable vs. non-Integrable Hamiltonians
- Initial States
- Equilibration (thermodynamics) from real-time evolution
- Eigenstate Thermalization Hypothesis (ETH)
- Path Integral Representation of Dynamics
- Analysis of equilibration/time scales for larger \mathbf{N}
- 'Classical' Picture: Neutrinos and Anti-Neutrinos

$$
H_{\nu-\nu}=\frac{\sqrt{2} G_{F} \rho_{\nu}}{N} \sum_{i<j}\left(1-\hat{k}_{i} \cdot \hat{k}_{j}\right) \sigma_{i} \cdot \sigma_{j}
$$

Neutrino Bulb model
(Wikipedia)

> Neutrino fluxes during CCS neutronization burst

Hamiltonian setup for dense neutrino environment

See Panteleone, Sigl, Raffelt, Bell, Fuller, Balantekin, Sawyer, Friedland, Lunardini, McKellar, Cirigliano,...

$H=H_{\text {vacuum }}+H_{M S W}+H_{\nu-\nu}$

Vacuum Oscillations: neutrinos oscillate between flavors in the vacuum : SU(2) example

$$
H_{\text {vacuum }}=-\frac{\delta m^{2}}{2 E_{i}}\left(\begin{array}{cc}
-\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & \cos (2 \theta)
\end{array}\right)
$$

In matter, forward scattering on 'ordinary' matter introduces a potential for electron neutrinos (MSW)

$$
H_{M S W}=\left(\begin{array}{cc}
\sqrt{(} 2) G_{F} \rho_{e} & 0 \\
0 & 0
\end{array}\right)
$$

Neutrino-Neutrino interaction ↔ Quantum Spin (here SU(2)) Hamiltonian

$$
H_{\nu-\nu}=\frac{\sqrt{2} G_{F} \rho_{\nu}}{N} \sum_{i<j}\left(1-\hat{k}_{i} \cdot \hat{k}_{j}\right) \sigma_{i} \cdot \sigma_{j}
$$

- k_{i}, k_{j} represent neutrino directions
- $\quad \rho_{\nu}$ is neutrino density
- $\quad \mathrm{N}$ is total number of neutrinos
- σ_{i}, σ_{j} are Pauli matrices representing neutrino flavor states

Note unusual factor of $\frac{\rho_{\nu}}{N}$ because of 'box' normalization for neutrino single-particle states

Spectra proportional to N like standard Hamiltonian
More neutrinos at fixed density \rightarrow larger volume

Big mismatch between number of neutrinos we can calculate in a quantum many-body approach and real physical system Note this is always true (neutron stars, cold atoms, liquid He,...)

Take luminosity $L \sim 10^{53} \mathrm{erg} / \mathrm{sec}$ and an average energy E of 10 MeV at a radius of $\sim 50 \mathrm{~km}$ gives $\rho_{\nu} \approx 6.6 \times 10^{-7} \mathrm{fm}^{-3}$

Number of quantum many-body states $=2^{\mathrm{N}}$
For $N=20$ at this density the box length (cubic) is only $L \sim 300 \mathrm{fm}$

L	N
300 fm	20
3000 fm	2000
3 Angstrom	2×10^{10}

More particles is only a partial answer
Density low compared to degeneracy, can treat as distinguishable spins Convert part of dynamics to statistical mechanics (finite T)

Neutrino-Neutrino interaction \leftrightarrow Quantum Spin (here SU(2)) Hamiltonian

$$
H_{\nu-\nu}=\frac{\mu}{N} \sum_{i<j \quad}\left(1-\hat{k}_{i} \cdot \hat{k}_{j}\right) \sigma_{i} \cdot \sigma_{j} \quad \text { For conditio }
$$

For conditions described previously $\mu \approx 1 \mathrm{~cm}^{-1}$

Initial Condition (product state): ~A complex amplitudes

$$
\psi(0)=\prod_{i=1}^{N} \chi(i)
$$

In general are determined by sampling from an energy, angle and flavor dependent distributions

Dynamics rapidly introduces many complex amplitudes

$$
\begin{aligned}
& |\Psi(t)\rangle=\exp [-i H t]|\Psi(0)\rangle \\
& \sigma_{i} \cdot \sigma_{j}=2 P_{i j}-1 \quad P_{i j} \text { exchanges spins }
\end{aligned}
$$

$$
\text { mappings to quantum computer } \operatorname{SU(2)} \text { spin } \leftrightarrow \text { qubit }
$$

Major difficulty on a QC is all to all coupling :Savage, Roggero, Hall, Illa, ...

Integrability is a key component of the Hamiltonian determined by choice of directions/couplings k

In all cases considered $\mathrm{J}^{2}, \mathrm{~J}_{\mathrm{x}}, \mathrm{J}_{\mathrm{y}}$ and J_{z} are symmetries as they commute with the Hamiltonian

- Integrable : Many symmetries: eg. all equal couplings

$$
H=\sum_{i<j} \sigma_{i} \cdot \sigma_{j}
$$

cases solved by Bethe Ansatz (see eg. Somma, NPB, 2005)

- Non-Integrable : Almost all cases Very few symmetries, level repulsion, ...

Here we consider random unit vectors in a hemisphere

Histograms of ratios of level spacings

Only total angular momentum and projections are preserved, along with moments of H (time independent Hamiltonian)

Initial states assumed to be product states Indepence of quantum phases from different source directions

$$
\begin{aligned}
|\Psi(t=0)\rangle & =\prod_{i=1, N}|\chi(i)\rangle \\
|\chi(i)\rangle & =\binom{\alpha}{\beta}:|\alpha|^{2}+|\beta|^{2}=1
\end{aligned}
$$

No quantum phase orientation (coherence) between different neutrinos Individual spins may be drawn from same classical distributions in flavor versus energy and angle

Can easily calculate expectation value $\left.\left.\mathrm{s}\langle\mathrm{H}\rangle,\left\langle\mathrm{H}^{2}\right\rangle,\left\langle\mathrm{J}^{2}\right\rangle,\langle\mathrm{Jx}\rangle,<\mathrm{Jy}\right\rangle,<\mathrm{Jz}\right\rangle$
These are all symmetries and hence time independent quantities for a Hamiltonian constant in time

Density of States and Initial State Overlaps with product states
$\mathrm{N}=15$
Non-integrable

Open rectangles: Full density of states
Filled rectangles: including overlap with product state
$\mathrm{N}=3600$ (2 beams) Integrable

PRD 105, 083020 (2022)
J. Martin et. al

Time dependence of observables and ~statistical observables

$$
\begin{aligned}
|\Psi(t)\rangle & =\exp [-i H t]|\Psi(0)\rangle \\
\langle O(t)\rangle & =\langle\Psi(0)| \exp [i H t]|O| \exp [-i H t]|\Psi(0)\rangle
\end{aligned}
$$

Expanding in eigenstates $\left|\Phi_{i}\right\rangle$

$$
\langle O(t)\rangle=\left\langle\Psi(0) \mid \Phi_{i}\right\rangle\left\langle\Phi_{i}\right| \exp \left[i E_{i} t\right] O \exp \left[-i E_{j} t\right]\left|\Phi_{j}\right\rangle\left\langle\Phi_{j} \mid \Psi(0)\right\rangle
$$

Integrating over long times from t_{1} to $t_{1}+\Delta t$

$$
\bar{O}=\frac{1}{\Delta t} \int_{t 1}^{t 1+\Delta t}\langle O(t)\rangle=\sum_{i}\left|\left\langle\Psi(0) \mid \Phi_{i}\right\rangle\right|^{2}\left\langle\Phi_{i}\right| O\left|\Phi_{i}\right\rangle
$$

Thermal-like property, incoherent sum over eigenstates with positive definite coefficients ETH (eigenstate thermalization hypothesis) replace explicit sum with thermal average

Typically applied with state near micro-canonical ensemble (fixed energy)

$$
\bar{O}=\frac{\sum \exp \left[-\beta\left(E_{i}-\mu\right)\right]\left\langle\Phi_{i}\right| O\left|\Phi_{i}\right\rangle}{\sum \exp \left[-\beta\left(E_{i}-\mu\right)\right]}
$$

ETH: Deutsch PRA, 1991; Srednicki PRE, 1994,

Calculated Time dependence of $\left\langle\sigma_{z}(i)\right\rangle$
16 spins; $9 \uparrow+7 \downarrow$ initially; random directions in hemisphere

'Rapid' Equilibration of all spins
Time scale discussed later, here of order 5-10 μ

Some small memory of initial state energy

Example: 16 spins; $9 \uparrow+7 \downarrow$ initially;

Couplings from random directions within hemisphere

- Initial Conditions
- Red Integration of exact many-body solutions
- Blue Symbols: ETH
- Green Symbols: EMSD
- Dashed line equilibrium value for fixed total J_Z

Time averaged final values well predicted by EMSD and ETH

Equilibration of spins to a high degree

Both EGH and EMSD require many-body simulations (QMC will work for ETH in some cases)

Path Integral description of time evolution:

Write path integral in up/down spin basis describing time evolution:

Expand in terms of matrix elements of off-diagonal (exchange) operators

Basis states Permutation of \mathbf{N} with N_{\uparrow}

\leftarrow Time

Off-diagonal H connects states with exchange of two Anti-parallel spins

$$
\begin{aligned}
\langle n| \exp \left[-\mathrm{i} \hat{H}_{\nu \nu} t\right]\left|\psi_{0}\right\rangle & =\sum_{m} \frac{(-\mathrm{i})^{m}}{m!} \sum_{n_{i} \cdots n_{m}} \int \mathrm{~d} t_{0} \cdots \mathrm{~d} t_{m}\langle n| \exp \left[-\mathrm{i} \hat{H}_{\nu \nu}^{\mathrm{d}} t_{m}\right] \hat{H}_{\nu \nu}^{\mathrm{od}}\left|n_{m}\right\rangle \\
& \left\langle n_{m}\right| \exp \left[-\mathrm{i} \hat{H}_{\nu \nu}^{\mathrm{d}} t_{m-1}\right] \hat{H}_{\nu \nu}^{\mathrm{od}}\left|n_{m-1}\right\rangle \cdots\left\langle n_{1}\right| \exp \left[-\mathrm{i} \hat{H}_{\nu \nu}^{\mathrm{d}} t_{1}\right] \hat{H}_{\nu \nu}^{\mathrm{od}}\left|n_{0}\right\rangle\left\langle n_{0}\right| \exp \left[-\mathrm{i} \hat{H}_{\nu \nu}^{\mathrm{d}} t_{0}\left|\psi_{0}\right\rangle\right.
\end{aligned}
$$

Propagation is product of phases (solid lines) with insertion of swaps (dashed lines)
Can approximate resulting state as an incoherent sum over all up-down product states
Random phase approximation for each line gives incoherent sum
Magnitudes can be defined to reproduce symmetries

Exact time integrated complex amplitudes

Histogram of real and imaginary parts of time-averaged amplitudes, state $=2$

Amplitude in up/down state I at time $\mathbf{t}+\delta t$
$a_{i}(t+\delta t)=\exp \left[-i H_{d}(i) t\right] a_{i}(t)+(-i) \sum_{j \neq i} a_{j}(t) H_{o d}(i, j) \delta t$
Rotation from diagonal Hamiltonian plus
Displacement from off-diagonal transitions
$\mathrm{N}(\mathrm{N}-1) / 2$ terms in sum, each of same magnitude as 1st term Rapidly leads to random phases

Assuming $a_{j}(t)$ from random gaussian distribution
Yields gaussian distribution

Snapshot of phases, instantaneous and time-dependence

Phases from snapshot at 10 separated times

Time-dependent phases

Selected phases versus time: state $=0$

Time-Averaged magnitudes

$10 \mu^{-1}$

Time Scales
Note this is for a system initially spatially homogeneous, We are looking at time scales for spin exchange Not yet any spacial information
Starting with an up-down product spin state
Loschmidt Amplitudes: $\langle\Psi(t) \mid \Psi(0)\rangle$
Any antiparallel spin exchange gives zero zero

$$
\begin{aligned}
1 & \sim \operatorname{ct} t\left\langle H_{o d}\right\rangle=\operatorname{ct} N(N-1) \frac{\mu}{N} \\
t & =\mu^{-1} / N
\end{aligned}
$$

Two-point Correlation function

$$
\begin{aligned}
&<\psi(0)\left|\exp [i H t] \sigma_{z}(i) \exp [-i H t] \sigma_{z}(i) \psi(0)\right\rangle=1-\beta t^{2} \approx \sigma_{z, e q}(i) \\
& t \propto \mu^{-1} \sqrt{N}
\end{aligned}
$$

(For spin problem)

Larger time scales for bigger systems

Symmetries and Conserved Quantities

- Path integral representation only allows permutations of original spins with arbitrary complex amplitudes
- Any arbitrary sum of permutations of the original state gives correct <J2>, <Jx>, <Jy>, <Jz>
- Numerical evidence suggests that for non-integrable H phases are random giving an incoherent sum
-Time averages indicate that the time averaged |amplitudes| are smooth function $\mathrm{F}(\mathrm{E})$ of $<\mathrm{H}_{\mathrm{d}}>$ Initial expectation values of $\left\langle\mathrm{H}^{n}\right\rangle$ can be calculated from initial state, to get $\mathrm{F}(\mathrm{E})$

Classical swap network swapping spins can easily be implemented to reach large number of spins

Equilibration of

Neutrinos and anti-neutrinos with multiple flavors

Sample Initial/Final Distributions

Total \# of neutrinos conserved (1 constraint) Lepton \# conservation for 3 flavors (3 constraints) Need 6 total
$\nu_{e} \bar{\nu}_{e} \leftrightarrow \nu_{\mu} \bar{\nu}_{\mu}$ leads to conservation of product of neutrino and anti-neutrino densities

$$
\rho_{e} \rho_{\bar{e}}=\rho_{\mu} \rho_{\bar{\mu}}=\rho_{\tau} \rho_{\bar{\tau}}(2 \text { constraints })
$$

Future Directions:

- Real-Time dynamics on simulators
- Inclusive
- 'Detectors' on QC
- Time-dependent H for $\nu-\nu$: MSW + vacuum
- Beyond Forward Scattering

Time-dependent H: MF vs Many-Body

