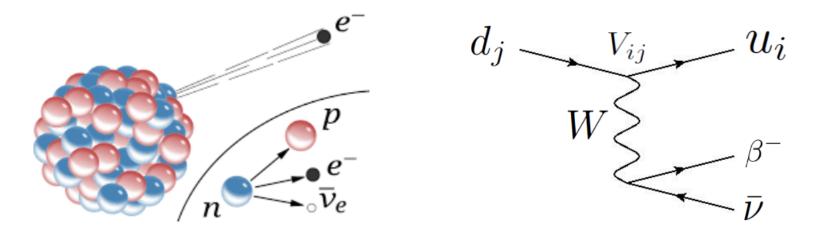


Nuclear physics for the precise extraction of Vud

Chien-Yeah Seng

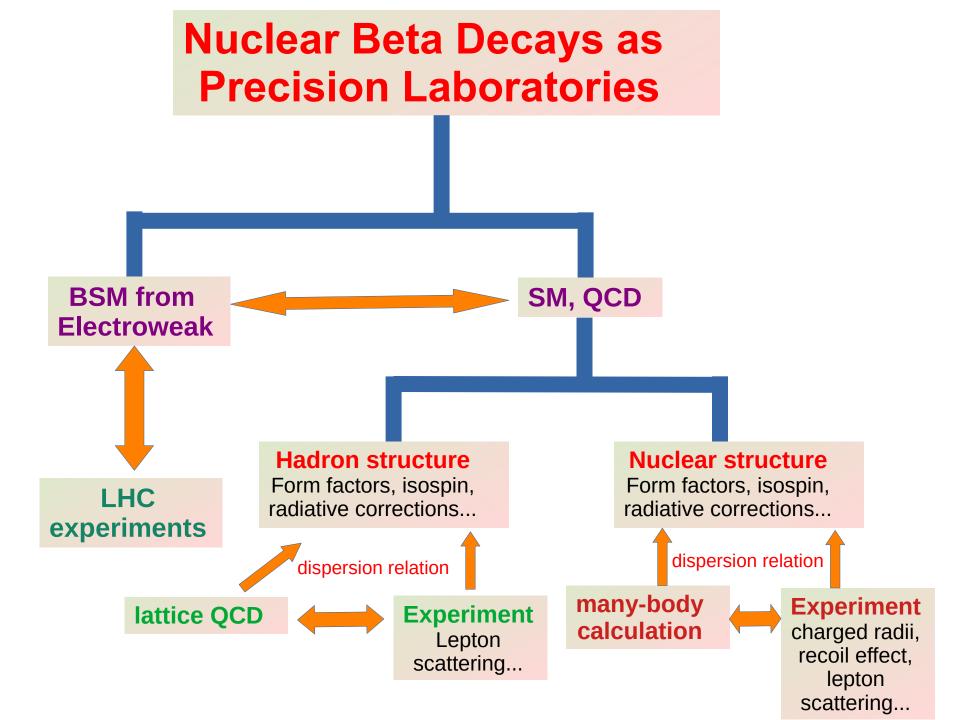

University of Washington and FRIB, Michigan State University

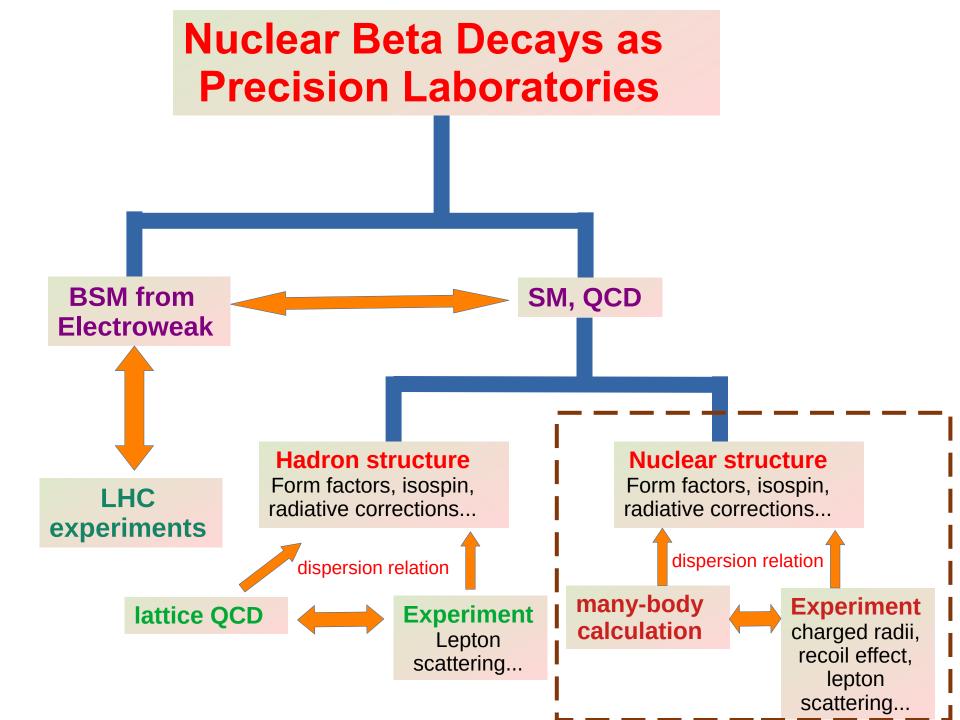
seng@frib.msu.edu

Marciana 2023 - Lepton Interactions with Nucleons and Nuclei

5 September, 2023

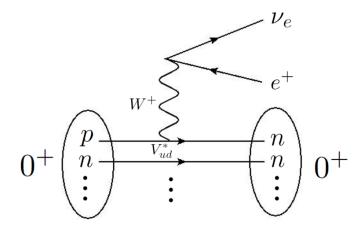
Nuclear beta decay




Observables measured at 0.01% level probes new physics at the scale:

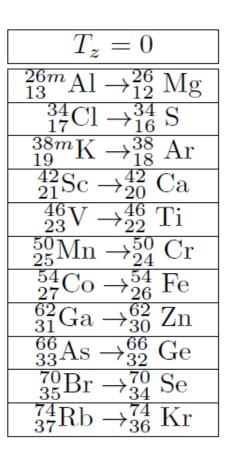
$$\left(\frac{v_{\rm H}}{\Lambda_{\rm BSM}}\right)^2 \sim 0.01\% \implies \Lambda_{\rm BSM} \sim 20 \text{ TeV}$$

Competitive to high-energy experiments at LHC!

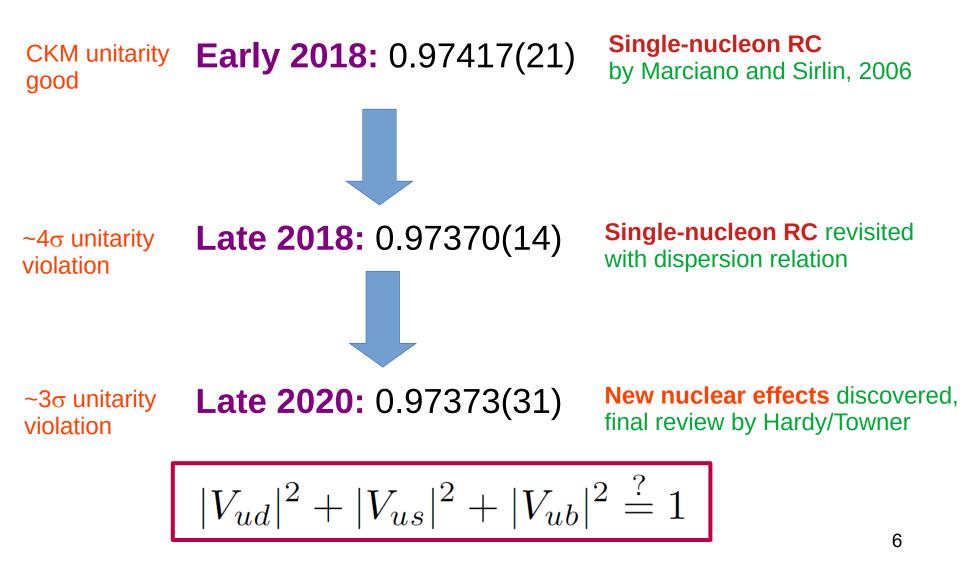

See Vincenzo's talk!

"Superallowed" beta decays of T=1, J^p=0⁺ nuclei

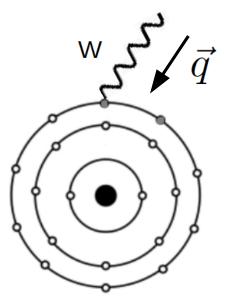
 $i(0^+) \to f(0^+) + e^+ + \nu_e$

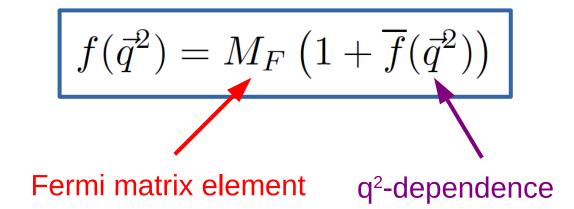


Provides the **best measurement** of V_{ud} :

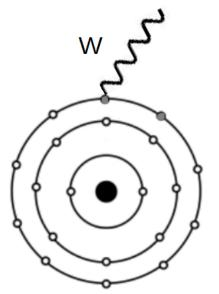

- > 23 measured transitions
- > 15 with lifetime precision better than 0.23%

Hardy and Towner, 2020 PRC


$T_z = -1$
$^{10}_6\mathrm{C} \rightarrow^{10}_5\mathrm{B}$
$^{14}_{8}\mathrm{O} \rightarrow^{14}_{7}\mathrm{N}$
$^{18}_{10}\mathrm{Ne} \rightarrow ^{18}_{9}\mathrm{F}$
$^{22}_{12}\mathrm{Mg} \rightarrow^{22}_{11}\mathrm{Na}$
$^{26}_{14}\mathrm{Si} ightarrow ^{26}_{13}\mathrm{Al}$
$^{30}_{16}{ m S} ightarrow ^{30}_{15}{ m P}$
$^{34}_{18}\mathrm{Ar} \rightarrow^{34}_{17}\mathrm{Cl}$
$^{38}_{20}$ Ca \rightarrow^{38}_{19} K
$^{42}_{22}$ Ti \rightarrow^{42}_{21} Sc
$^{46}_{24}\mathrm{Cr} \rightarrow ^{46}_{23}\mathrm{V}$
$^{50}_{26}$ Fe \rightarrow^{50}_{25} Mn
$^{54}_{28}$ Ni \rightarrow^{54}_{27} Co


"Trajectory of V_{ud} " in the past few years

Superallowed decays at tree level

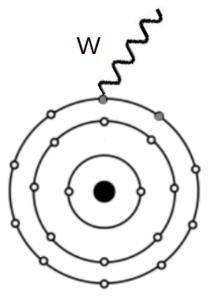


Charged weak decay form factor:

Nuclear (charged) weak distribution

 $\rho_{\rm cw}(r)$: Distribution of "active" nucleons eligible for weak transitions in a nucleus

Old : Impulse approximation in **non-relativistic (NR) nuclear model**s.


$$\langle f|O|i\rangle = \sum_{lphaeta} \langle lpha|O|eta \rangle \langle f|a^{\dagger}_{lpha}a_{eta}|i\rangle$$

 $lpha, eta$: single-nucleon states

Hardy and Towner, 2005 PRC

How reliable is such approximation at 0.01% level?

Nuclear (charged) weak distribution

 $\rho_{\rm cw}(r)$: Distribution of "active" nucleons eligible for weak transitions in a nucleus

New: Utilize CVC to relate (charged) weak distribution to nuclear charge distributions Hostein, 1974 RMP; CYS, 2023 PRL

$$egin{aligned}
ho_{
m cw}(r) &=
ho_{
m ch,1}(r) + Z_0 \left(
ho_{
m ch,0}(r) -
ho_{
m ch,1}(r)
ight) \ &=
ho_{
m ch,1}(r) + rac{Z_{-1}}{2} \left(
ho_{
m ch,-1}(r) -
ho_{
m ch,1}(r)
ight) \end{aligned}$$

Form factor expansion:

$$F(q^2) = 1 + \frac{q^2}{6} \langle r^2 \rangle + \dots$$

M.S. radius

Data + isospin predicts unexpectedly large (charged) weak radii!

E.g.
$$\langle r_{\rm Ch}^2 \rangle_{^{38}{\rm Ar}}^{1/2} = 3.4028(19) \, \text{fm}$$

 $\langle r_{\rm Ch}^2 \rangle_{^{38}{\rm Ca}}^{1/2} = 3.467(1) \, \text{fm}$ \longrightarrow $\langle r_{\rm cw}^2 \rangle^{1/2} = 4.00(4) \, \text{fm}$

Simplified shell model prediction:

$$\langle r_{\rm cw}^2 \rangle^{1/2} \approx 3.62 \, {\rm fm}$$

 $|V_{ud}|^2 \propto \frac{1}{ft}$

(Preliminary) data-driven re-analysis of the "statistical rate function" f:

	-		F F (0.1)
Transition	$f_{ m new}$	$f_{ m HT}$	$rac{f_{ m new} - f_{ m HT}}{f_{ m new}}$ (%)
$^{18}\mathrm{Ne}{ ightarrow}^{18}\mathrm{F}$	$134.62(0)_{\rm rad}(0)_{\rm shape}(17)_{Q_{\rm EC}}$	$134.64(17)_{Q_{\rm EC}}$	$-0.01(0)_{\rm rad}(0)_{\rm shape}$
$^{22}Mg \rightarrow ^{22}Na$	$418.27(1)_{\rm rad}(1)_{\rm shape}(13)_{Q_{\rm EC}}$	$418.35(13)_{Q_{\rm EC}}$	$-0.02(0)_{\rm rad}(0)_{\rm shape}$
$^{34}\mathrm{Ar}{\rightarrow}^{34}\mathrm{Cl}$	$3409.89(16)_{\rm rad}(18)_{\rm shape}(25)_{Q_{\rm EC}}$	$3410.85(25)_{Q_{\rm EC}}$	$-0.03(0)_{\rm rad}(1)_{\rm shape}$
$^{38}\text{Ca} \rightarrow ^{38m}\text{K}$	$5327.49(14)_{\rm rad}(36)_{\rm shape}(31)_{Q_{\rm EC}}$	$5328.88(31)_{Q_{\rm EC}}$	$-0.03(0)_{\mathrm{rad}}(1)_{\mathrm{shape}}$
$^{42}\mathrm{Ti}{\rightarrow}^{42}\mathrm{Sc}$	$7124.3(5.7)_{\rm rad}(0.8)_{\rm shape}(1.4)_{Q_{\rm EC}}$	$7130.1(1.4)_{Q_{\rm EC}}$	$-0.08(8)_{\mathrm{rad}}(1)_{\mathrm{shape}}$
$^{50}\text{Fe} \rightarrow ^{50}\text{Mn}$	$15053(18)_{\rm rad}(3)_{\rm shape}(60)_{Q_{\rm EC}}$	$15060(60)_{Q_{\rm EC}}$	$-0.04(12)_{\rm rad}(2)_{\rm shape}$
$^{54}Ni \rightarrow ^{54}Co$	$21137(3)_{\rm rad}(1)_{\rm shape}(52)_{Q_{\rm EC}}$	$21137(57)_{Q_{\rm EC}}$	$+0.00(2)_{\rm rad}(0)_{\rm shape}$
$^{34}\text{Cl}\rightarrow^{34}\text{S}$	$1995.076(81)_{\rm rad}(103)_{\rm shape}(94)_{Q_{\rm EC}}$	$1996.003(96)_{Q_{\rm EC}}$	$-0.05(0)_{\rm rad}(1)_{\rm shape}$
$^{38m}\mathrm{K} \rightarrow ^{38}\mathrm{Ar}$	$3296.32(8)_{\rm rad}(21)_{\rm shape}(15)_{Q_{\rm EC}}$	$3297.39(15)_{Q_{\rm EC}}$	$-0.03(0)_{\mathrm{rad}}(1)_{\mathrm{shape}}$
$^{42}\text{Sc}{\rightarrow}^{42}\text{Ca}$	$4468.53(3.36)_{\rm rad}(0.52)_{\rm shape}(0.46)_{Q_{\rm EC}}$	$4472.46(46)_{Q_{\rm EC}}$	$-0.09(8)_{\rm rad}(1)_{\rm shape}$
$^{50}Mn \rightarrow ^{50}Cr$	$10737.93(11.50)_{\rm rad}(2.02)_{\rm shape}(0.50)_{Q_{\rm EC}}$	$10745.99(49)_{Q_{\rm EC}}$	$-0.08(11)_{\rm rad}(2)_{\rm shape}$
$^{54}Co \rightarrow ^{54}Fe$	$15769.4(2.3)_{\rm rad}(0.7)_{\rm shape}(2.7)_{Q_{\rm EC}}$	$15766.8(2.7)_{Q_{\rm EC}}$	$+0.02(1)_{\rm rad}(0)_{\rm shape}$
$^{74}\text{Rb}{\rightarrow}^{74}\text{Kr}$	$47326(127)_{\rm rad}(18)_{\rm shape}(94)_{Q_{\rm EC}}$	$47281(93)_{Q_{\rm EC}}$	$+0.10(27)_{\rm rad}(4)_{\rm shape}$

CYS, PRELIMINARY RESULTS

Shifts at 0.01% level are observed!

Upward shift of V_{ud} ?

Fermi matrix element and isospin-symmetry breaking (ISB)

$$|M_F|^2 = |\langle f | \hat{\tau}_+ | i \rangle|^2 = 2(1 - \delta_C)$$

$$|V_{ud}|^2 \propto \frac{1}{1 - \delta_{\rm C}}$$

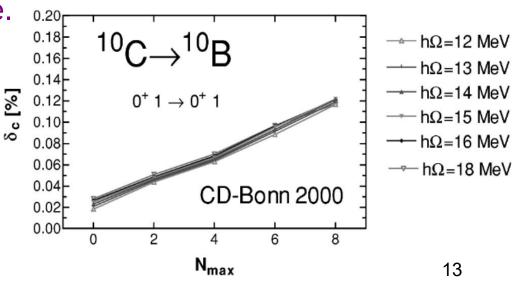
Starts at second order in ISB interaction:

$$H = H_0 + \bigcirc$$
 isb

Behrends and Sirlin, 1960 PRL; Ademollo and Gatto, 1964 PRL

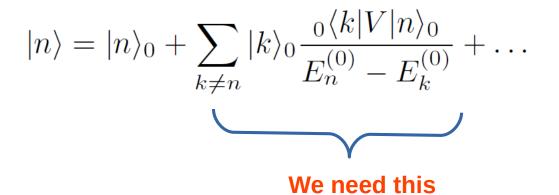
$$\delta_{
m C} = \mathcal{O}(V^2)$$
 0.1%~1%

• Computing δ_c	: Classic problem over
6 decades!	MacDonald, 1958 Phys.Rev


Transitions	$\delta_{ m C}$ (%)				
	WS	DFT	$_{\mathrm{HF}}$	RPA	Micro
$^{26m}\mathrm{Al} \rightarrow ^{26}\mathrm{Mg}$	0.310	0.329	0.30	0.139	0.08
$^{34}\mathrm{Cl} \rightarrow ^{34}\!\mathrm{S}$	0.613	0.75	0.57	0.234	0.13
$^{38m}\mathrm{K}\rightarrow ^{38}\!\mathrm{Ar}$	0.628	1.7	0.59	0.278	0.15
$^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$	0.690	0.77	0.42	0.333	0.18
${\rm ^{46}V} \rightarrow {\rm ^{46}Ti}$	0.620	0.563	0.38	/	0.21
$^{50}\mathrm{Mn} \rightarrow ^{50}\mathrm{Cr}$	0.660	0.476	0.35	/	0.24
$^{54}\mathrm{Co}\rightarrow ^{54}\!\mathrm{Fe}$	0.770	0.586	0.44	0.319	0.28

Caveats:

(Selected results)


- Significant model dependence.
- No direct experimental constraint
- Ab-initio calculations still in preliminary stages

Caurier et al., 2002 PRC

Probing isospin mixing in experiment?

Nuclear mass splitting: $\delta E_n = {}_0 \langle n | V | n \rangle_0$ X

Second-class current: doubly-suppressed (kinematics*ISB), null results so far Minamisono et al., 2011 PRC

$$V_{\mu} = \bar{u}(p_2) \left(g_V \gamma_{\mu} - i \frac{g_M - g_V}{2M} \sigma_{\mu\nu} q^{\nu} + \frac{g_S}{2M} q_{\mu} \right) u(p_1),$$

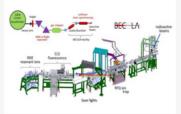
$$A_{\mu} = -\bar{u}(p_2) \gamma_5 \left(g_A \gamma_{\mu} - i \frac{g_T}{2M} \sigma_{\mu\nu} q^{\nu} + \frac{g_P}{2M} q_{\mu} \right) u(p_1).$$

Isospin mixing can be probed through measurements of electroweak nuclear radii

The non-zeroness of

cw radius (directly measured) related to neutron skin $\Delta M_A^{(1)} \equiv -\underline{\langle r_{\rm cw}^2 \rangle} + \underline{(\langle r_{n,1}^2 \rangle - \langle r_{p,1}^2 \rangle)}$ $\Delta M_B^{(1)} \equiv \frac{1}{2} (Z_1 \langle r_{\rm ch,1}^2 \rangle + Z_{-1} \langle r_{\rm ch,-1}^2 \rangle) - Z_0 \langle r_{\rm ch,0}^2 \rangle$ THREE charge radii

signify ISB. No double suppression! Seng and Gorchtein, 2023 PLB


A	$R_{\rm Ch,-1}$ (fm)	$R_{\rm Ch,0}~({\rm fm})$	$R_{\rm Ch,1}$ (fm)
10	$^{10}_{6}C$	$^{10}_{5}B(ex)$	¹⁰ ₄ Be: 2.3550(170) ^a
14	¹⁴ ₈ O	$^{14}_{7}N(ex)$	${}_{6}^{14}\text{C:}\ 2.50\ 25(87)^{a}$
18	¹⁸ ₁₀ Ne: 2.9714(76) ^a	$^{18}_{9}$ F(ex)	¹⁸ ₈ O: 2.77 26(56) ^a
22	$^{22}_{12}$ Mg: 3.0691(89) ^b	$^{22}_{11}$ Na(ex)	$^{22}_{10}$ Ne: 2.9525(40) ^a
26	²⁶ ₁₄ Si	$^{26m}_{13}$ Al	²⁶ ₁₂ Mg: 3.0337(18) ^a
30	³⁰ ₁₆ S	$^{30}_{15}P(ex)$	³⁰ ₁₄ Si: 3.1336(40) ^a
34	³⁴ ₁₈ Ar: 3.3654(40) ^a	³⁴ ₁₇ Cl	³⁴ ₁₆ S: 3.2847(21) ^a
38	$^{38}_{20}$ Ca: 3.467(1) ^c	$^{38m}_{19}$ K: 3.437(4) ^d	$^{38}_{18}$ Ar: 3.4028(19) ^a
42	$^{42}_{22}$ Ti	⁴² ₂₁ Sc: 3.5702(238) ^a	⁴² ₂₀ Ca: 3.5081(21) ^a
46	⁴⁶ ₂₄ Cr	$^{46}_{23}$ V	⁴⁶ ₂₂ Ti: 3.6070(22) ^a
50	⁵⁰ ₂₆ Fe	⁵⁰ ₂₅ Mn: 3.7120(196) ^a	⁵⁰ ₂₄ Cr: 3.6588(65) ^a
54	$^{54}_{28}$ Ni: 3.738(4) ^e	⁵⁴ 27Co	$^{54}_{26}$ Fe: 3.6933(19) ^a
62	⁶² ₃₂ Ge	⁶² ₃₁ Ga	$^{62}_{30}$ Zn: 3.9031(69) ^b
66	⁶⁶ ₃₄ Se	66 33 As	⁶⁶ ₃₂ Ge
70	⁷⁰ ₃₆ Kr	$^{70}_{35}{ m Br}$	⁷⁰ ₃₄ Se
74	⁷⁴ ₃₈ Sr	$^{74}_{37}$ Rb: 4.1935(172) ^b	$^{74}_{36}$ Kr: 4.1870(41) ^a

DOE highlight:

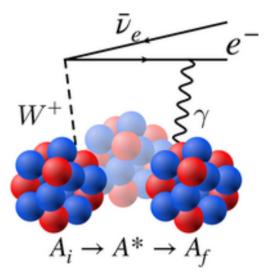
July 7, 2023

Nuclear Charge Distribution Measurements May Solve Outstanding Puzzle In Particle Physics

By reanalyzing the distribution of active protons in nuclei, researchers found a possible solution to a particle physics puzzle involving quarks.

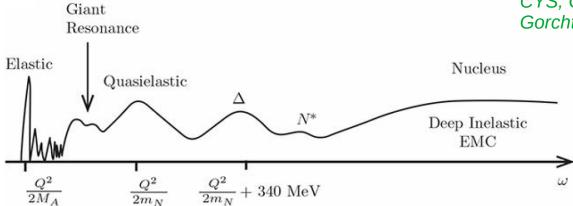
Experimental opportunities:

- > Nuclear charge radii measurements: FRIB, TRIUMF, PSI (muX) ...
- Recoil effects in nuclear beta decay: FRIB (SALER)...
- Neutron skin: JLab, Mainz (P2)...

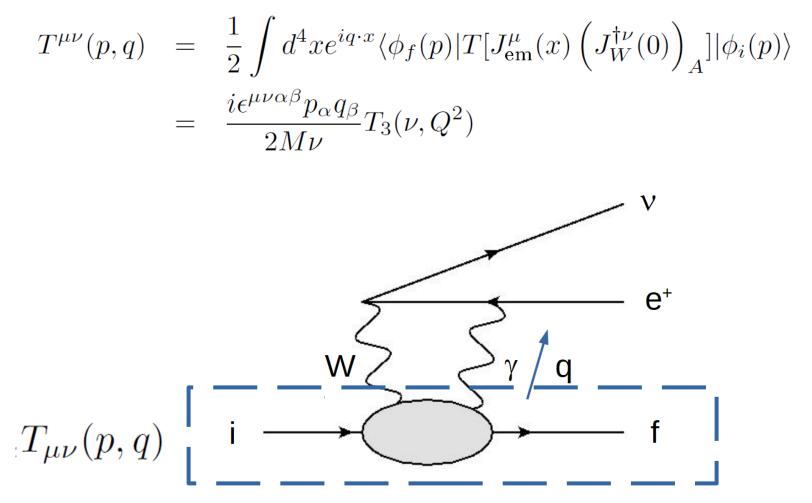

Superallowed decays at loop level

One-loop **radiative corrections** probe QCD at all scales:

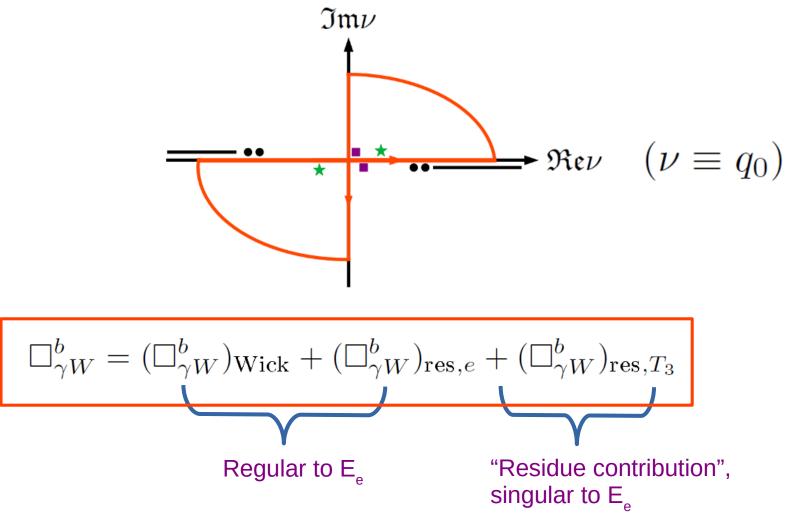
 Parton scale (>> 1GeV) : Theoretically calculable


Hadron scale (~ 1GeV) : Data from lepton-

) : Data from leptonnucleon scattering + lattice QCD

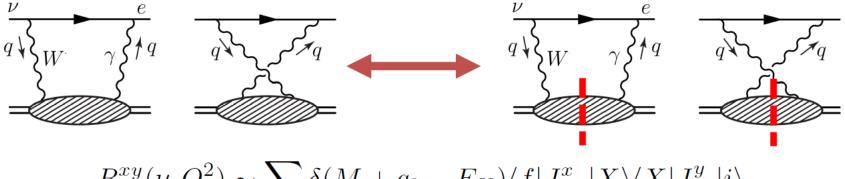

 Nuclear scale (~100 MeV) : Most uncertain, requires manybody calculations

Previous shell-model-based calculations had missed important nuclear effects


CYS, Gorchtein and Ramsey-Musolf, 2019 PRD; Gorchtein, 2019 PRL

"Generalized forward Compton tensor":

The loop diagram depends on the invariant function T_3


Performing the q₀-integral using Wick rotation

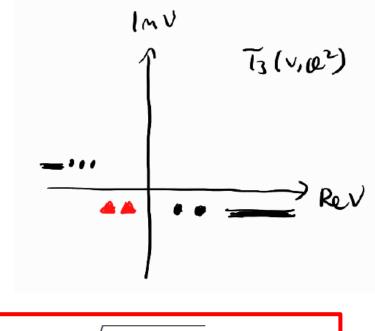
Expansion of the "regular" terms in powers of electron energy:

$$(\Box^b_{\gamma W})_{\text{Wick}} + (\Box^b_{\gamma W})_{\text{res},e} = \Box_0 + \Box_1 E_e + \mathcal{O}(E_e^2)$$

The coefficients can be related to **nuclear response functions** through **dispersion relation** Seng and Gorchtein, 2023 PRC

$$R^{xy}(\nu, Q^2) \sim \sum_X \delta(M + q_0 - E_X) \langle f | J_{\text{em}}^x | X \rangle \langle X | J_W^y | i \rangle$$

which serves as starting point for ab-initio nuclear theory calculation


- Light nuclei: NCSM, QMC...
- Medium nuclei: IMSRG, Coupled-Cluster, NLEFT...

Residue contribution (First pointed out by Michael Gennari, TRIUMF)

For A=10,14,18,22,26,30 and 38, the $T_2=0$, $J^p=0^+$ state is an excited state.

 $T_{z}=0$ initial nucleus \rightarrow extra poles of T_{3} in the first quadrant; $T_{2}=0$ final nucleus \rightarrow extra poles of T_{3} in the third quadrant

For ${}^{10}C \rightarrow {}^{10}B$:

$$\nu_k = \sqrt{M_k^2 + \mathbf{q}^2 - M - i\varepsilon}$$

In third quadrant if $\mathbf{q}^2 < M^2 - M_{k}^2$

Excited Nuclear States for B-10 (Boron)

Energy levels

E^*	J^{π}	T	$\ell_{\rm p}$
-------	-----------	---	----------------

[nc v]

J^{π}	T	$\ell_{\rm p}$
	-	ър

J^{π}	T	$\ell_{ m p}$

0.0	3^{+}	0	1
718.35(4)	1^{+}	0	1
1740.2(2)	0^{+}	1	1
2154.3(5)	1^{+}	0	1
3587.1(5)	2^{+}	0	1
4774.0(5)	3^{+}	0	1
			22

Residue of T₃ due to a low-lying $J^P = 1^+$ state:

$$\mathfrak{Res}T_3 \propto \langle f(0^+) | J_{\mathrm{em}}^x(\vec{q}) | f(1^+) \rangle \langle f(1^+) | J_W^y(-\vec{q}) | i(0^+) \rangle$$
M1-transition GT-transition

Matrix elements can be inferred from M1 and GT-transition rates!

	GT, $\log_{10} ft$ (s)	M1, $t_{1/2}$
$^{10}C \rightarrow ^{10}B$	3.0426(7)	4.9(2.1) fs
$^{14}\text{O}{ ightarrow}^{14}\text{N}$	7.279(8)	68(3) fs
$^{18}\mathrm{Ne}{ ightarrow}^{18}\mathrm{F}$	3.091(4)	1.77(31) fs
$^{22}Mg \rightarrow ^{22}Na$	3.64	19.6(7) ps
$^{30}S \rightarrow ^{30}P$	4.322(11)	96(10) fs

From IAEA / NNDC website

Future experimental opportunities??

Ab-initio study of ${}^{10}C \rightarrow {}^{10}B$ radiative corrections with no-core shell model

Collaboration: Michael Gennari, Petr Navratil (TRIUMF)

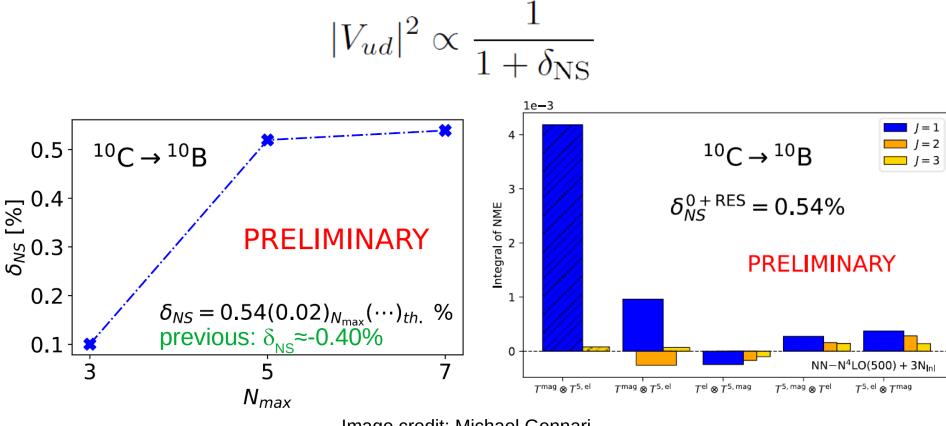


Image credit: Michael Gennari

Dominated by the **"residue contribution"**, which agrees with 24 experiment, but was **completely absent in earlier studies!**

Summary

- Nuclear beta decays offer precision tests of SM
 - Various anomalies hint at the existence of BSM physics
 - > High-precision calculations test our understanding of QCD
- Theory foundations are developed to relate the nuclear decay form factor (Fermi matrix element and q²-dependence) to measurable electroweak nuclear radii
- Rigorous dispersive formalism is constructed to enable ab-initio studies of nucleus-dependent radiative corrections; M1 and GT rates for light nuclei are useful experimental inputs
- Research may foster new theory-experiment interplay, and could significantly alter the landscape of precision physics in the charged weak sector

Thanks for your attention!