Marciana 2023 — Lepton Interactions with Nucleons and Nuclei Marciana Marina, September 3-8 2023

Precision beta decays and implications for new physics

Vincenzo Cirigliano University of Washington

INSTITUTE for NUCLEAR THEORY

- Introduction: beta decays in the SM and beyond
- The "Cabibbo angle anomaly"
 - Scrutinize the SM prediction: radiative corrections to neutron decay in EFT
 - Study the implications for new physics: connection to other probes (Z pole, LHC, ...)
- Conclusions and outlook

Outline

- Beta decays have played a central role in the development of the Standard Model

• Nowadays: precision measurements provide a tool to challenge the SM & probe possible new physics

lacksquare

 $\mathbf{G}_{\mathsf{F}}^{(\beta)} \sim \mathbf{G}_{\mathsf{F}}^{(\mu)} \, \mathsf{V}_{ij} \, \sim \mathsf{I} \, / \mathsf{v}^2 \, \mathsf{V}_{ij}$

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Cabibbo-Kobayashi-Maskawa

In the SM, mediated by W exchange \Rightarrow only "V-A"; Cabibbo universality; lepton universality

Cabibbo Universality

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$
$$[G_F]_e / [G_F]_\mu = 1$$

Lepton Flavor Universality (LFU)

 \bullet

 $\mathbf{G}_{\mathsf{F}}^{(\beta)} \sim \mathbf{G}_{\mathsf{F}}^{(\mu)} \, \mathsf{V}_{ij} \, \sim \mathsf{I} \, / \mathsf{v}^2 \, \mathsf{V}_{ij}$

In the SM, mediated by W exchange \Rightarrow only "V-A"; Cabibbo universality; lepton universality

| /∧²

|/**∧**²

lacksquare

 $\mathbf{G}_{\mathsf{F}}^{(\beta)} \sim \mathbf{G}_{\mathsf{F}}^{(\mu)} \mathsf{V}_{ij} \sim \mathsf{I}/\mathsf{v}^2 \mathsf{V}_{ij}$

Ten effective couplings

• Precision of 0.1-0.01% probes $\Lambda > 10$ TeV. Several precision tests are possible....

In the SM, mediated by W exchange \Rightarrow only "V-A"; Cabibbo universality; lepton universality

 $|/\Lambda^2|$

|/**∧**²

 $E << \Lambda$ $\epsilon_{\Gamma} \sim \tilde{\epsilon}_{\Gamma} \sim (v/\Lambda)^{2}$

 $\mathcal{L}_{\rm SM} - \frac{G_F V_{ud}}{\sqrt{2}} \sum_{\Gamma} \left[\epsilon_{\Gamma} \, \bar{\ell} \Gamma \nu_L \cdot \bar{u} \Gamma d + \tilde{\epsilon}_{\Gamma} \, \bar{\ell} \Gamma \nu_R \cdot \bar{u} \Gamma d \right]$

 $\Gamma = L, R, S, P, T$

Searches for 'non V-A' currents

Measure differential decay distributions (mostly sensitive to $\varepsilon_{S,T}$)

$$d\Gamma \propto F(E_e) \left\{ 1 + \frac{b}{E_e} \frac{m_e}{E_e} + \frac{a}{E_e} \frac{\vec{p_e} \cdot \vec{p_{\nu}}}{E_e E_{\nu}} + \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_{\nu}}}{E_{\nu}} + \cdots \right] \right\}$$

Lee-Yang, 1956

b $(g_S \mathcal{E}_S, g_T \mathcal{E}_T)$: distortion of beta spectrum

See talk by G. King

Bounds on $\varepsilon_{S,T}$ at the 0.1% level, $\Lambda \sim 5-10 \text{ TeV}$

Jackson-Treiman-Wyld 1957

a(g_A), A(g_A), B(g_A, g_a ϵ_{a}), ... isolated via suitable experimental asymmetries

Cabibbo universality tests

Cabibbo universality tests

$$|V_{us}|^2 + |V_{ub}|^2 - 1 = 0$$

Paths to V_{ud} and V_{us}

Quark current \longrightarrow V mediating the decay

Input from *many* experiments and *many* theory papers

(Hadronic τ decays)

V, A

Α

Paths to V_{ud} and V_{us}

Comment I: Modern approaches to rad. corr. build upon Sirlin current algebra formulation from the '60 & '70s New wave of "inner" radiative corrections (n, nuclei) initiated by dispersive analysis of Seng, Gorchtein, Patel, Ramsey-Musolf 2018, all the way to very recent lattice QCD calculation by Ma et al, 2308.16755

$$2984.432(3) s \\ + \Delta_{R}^{V} + \delta_{R}' + \delta_{NS} - \delta_{C})$$

57(11)_{exp}(13) _{Δ_{V}^{R}} (27)_{NS}[32]_{total}
Hardy-Towner, PRC 2020
Seng et al. 1812.03352

Gorchtein 1812.04229

See talk by Chien Yeah Seng for status of other corrections

Paths to V_{ud} and V_{us}

$$V_{ud} \qquad \begin{array}{c} 0^{+} \rightarrow 0^{+} \\ (\pi^{\pm} \rightarrow \pi^{0} e^{-r}) \end{array}$$

$$V_{us} \qquad K \rightarrow \pi \ \end{array}$$

$$V_{ud}^{n, PDG} = 0.97$$

 $V_{ud}^{n, best} = 0.97413(3)$

 $(13)_{\Delta_R}(33)_{\lambda}(20)_{\tau_n}[43]_{\text{total}}$

Most precise measurements

Maerkish et al, 1812.04666

Gonzalez et al, 2106.10375

 $\lambda = {g_{\mathsf{A}}}/{g_{\mathsf{V}}}$

 $\boldsymbol{\tau}_n$

The Cabibbo angle "anomaly"

 $\Gamma = G_F^2 \times |V_{ij}|^2 \times |M_{\text{had}}|^2 \times (1 + \Delta_R) \times F_{\text{kin}}$

- The 'anomalies':
 - ~3 σ effect in global fit (Δ_{CKM} = -1.48(53) × 10⁻³)
 - V_{ud} and V_{us} from different processes \rightarrow different Δ_{CKM}
 - $\sim 3\sigma$ problem in meson sector (KI2 vs KI3)

The Cabibbo angle "anomaly"

 $\Gamma = G_F^2 \times |V_{ij}|^2 \times |M_{\text{had}}|^2 \times (1 + \Delta_R) \times F_{\text{kin}}$

- Expected experimental improvements:
 - neutron decay (will match nominal nuclear uncertainty)
 - pion beta decay (3x to 10x at PIONEER phases II, III)
 - possibly new $K_{\mu3}/K_{\mu2}$ BR measurement at NA62 & HIKE
- Further theoretical scrutiny
 - Lattice gauge theory: $K \rightarrow \pi$ vector f.f., rad. corr. for KI3
 - EFT for neutron and nuclei, with goal $\delta \Delta_R \sim 2 \times 10^{-4}$
 - ...
- Possible BSM explanations: EFT & specific models

The Cabibbo angle "anomaly"

 $\Gamma = G_F^2 \times |V_{ij}|^2 \times |M_{\text{had}}|^2 \times (1 + \Delta_R) \times F_{\text{kin}}$

- Expected experimental improvements:
 - neutron decay (will match nominal nuclear uncertainty)
 - pion beta decay (3x to 10x at PIONEER phases II, III)
 - possibly new $K_{\mu3}/K_{\mu2}$ BR measurement at NA62 & HIKE
- Further theoretical scrutiny
 - Lattice gauge theory: $K \rightarrow \pi$ vector f.f., rad. corr. for KI3
 - EFT for neutron and nuclei, with goal $\delta \Delta_R \sim 2 \times 10^{-4}$

• ...

• Possible BSM explanations: EFT & specific models

Radiative corrections to neutron beta decay in EFT

VC, J. de Vries, L. Hayen, E. Mereghetti, A. Walker-Loud 2202.10439, PRL VC, W. Dekens, E. Mereghetti, O. Tomalak, 2306.03138, PRD

EFT for neutron decay: why?

Small ratios appear as expansion parameters and arguments of logarithms

$$\epsilon_W = \Lambda_{\chi}/M_W \sim 10^{-2} \quad \epsilon_{\chi} = m_{\pi}/\Lambda_{\chi} \sim 0.1 \quad \epsilon_{\text{recoil}} = q_{\text{ext}}/\Lambda_{\chi} \sim 10^{-3} \sim \alpha/\pi \quad \epsilon_{\pi} = q_{\text{ext}}/m_{\pi} \sim 10^{-3}$$

At the required precision (~10⁻⁴), need to keep terms of $O(G_F\alpha)$, $O(G_F\alpha \epsilon_{\chi})$, along with

• Widely separated mass scales play a role in neutron decay & EFT approach not fully embraced in the literature

$$_{\rm V} \sim 4\pi F_{\pi} \sim 1 \,\,{\rm GeV}$$

 $q_{\rm ext} \sim m_n - m_p \sim m_e \sim 1 \ {\rm MeV}$

Weak scale

χSB & nucleon mass scale

Pion mass / hadronic structure

Q value

leading logarithms (LL~ ($\alpha \ln(\epsilon)$)ⁿ) and next-to-leading logarithms (NLL ~ $\alpha (\alpha \ln(\epsilon))^n$), $\alpha (\alpha \ln(\epsilon))^n$)

Matching and running in a tower of EFTs: SM \rightarrow LEFT \rightarrow HBChPT $\rightarrow \frac{1}{2}$ EFT

 $\mathcal{L}_{\pi} = -\sqrt{2}G_F V_{ud} \ \bar{e}\gamma_{\mu} P_L \nu_e \ \bar{N} \left(g_V v_{\mu} - 2g_A S_{\mu}\right) \tau^+ N \ + \ \dots$

Corrections to neutron decay

Convenient starting point for decay rate calculation is an effective theory with nucleons, leptons and photons

 g_V and g_A themselves depend on α , ε_W , ε_χ , \mathcal{E}_{π} (consistently with the decoupling theorem)

Corrections to neutron decay

•

$$\mathcal{L}_{\overrightarrow{\tau}} = -\sqrt{2}G_{F}V_{ud} \ \overline{e}\gamma_{\mu}P_{L}\nu_{e} \ \overline{N} \left(g_{V}v_{\mu} - 2g_{A}S_{\mu}\right)\tau^{+}N + \dots$$

$$g_{V}(\mu_{e}) = U(\mu_{e}, \Lambda_{\chi}) \left[1 + \overline{\Box}_{Had}^{V} + \frac{\alpha(\Lambda_{\chi})}{\pi}\kappa\right] U(\Lambda_{\chi}, \mu_{W}) C_{\beta}(\mu_{W})$$

$$Mon-perturbative contribution proportional to the \gamma-W box' [Seng et al. 1807.10197]$$

$$NLL RGE in LEFT$$

$$Wilson Coefficient at \mu_{W} \sim m_{W}$$

Convenient starting point for decay rate calculation is an effective theory with nucleons, leptons and photons

lves $\wedge, \epsilon_{\chi},$ vith the rem)

nt

Corrections to neutron decay

lacksquare

$$\mathcal{L}_{\pi} = -\sqrt{2}G_F V_{ud} \ \bar{e}\gamma_{\mu} P_L \nu_e \ \bar{N} \left(g_V v_{\mu} - 2g_A S_{\mu}\right) \tau^+ N \ + \ \dots$$

$$\lambda = g_{\text{A}}/g_{\text{V}} \qquad \Gamma_n = \frac{G_F^2 |V_{ud}|^2 m_e^5}{2\pi^3} \left(1 + 3\lambda^2\right) \cdot f_0 \cdot \left(1 + \Delta_f\right) \cdot \left(1 + \Delta_R\right),$$

Includes electromagnetic shift to g_V and g_A from $E > m_{\pi}$

Convenient starting point for decay rate calculation is an effective theory with nucleons, leptons and photons

 g_V and g_A themselves depend on α , ϵ_W , ϵ_χ , \mathcal{E}_{π} (consistently with the decoupling theorem)

 $\Delta_{\rm f}$: Coulomb corrections (photon loops with \mathcal{L}_{π}) & $O(\epsilon_{recoil})$

 $\Delta_{\rm R}$: proportional to $(g_{\rm V})^2$ \times (I + O(α) virtual and real effects from \mathcal{L}_{π})

VC, J. de Vries, L. Hayen, E. Mereghetti, A. Walker-Loud 2202.10439

$$\frac{\lambda^{\rm exp}}{\lambda^{\rm QCD}} = 1 + \delta_{\rm RC}$$

$$\delta_{RC} \simeq (2.0 \pm 0.6)\%$$

Large uncertainty due to unknown LEC that could be determined by future lattice calculations

Radiative corrections generally improve agreement between data and Lattice QCD

$\lambda = g_A/g_V$ to $O(\alpha)$ and $O(\alpha \varepsilon_{\chi})$

 (g_A/g_V) gets %-level corrections proportional to the pion EM mass splitting, 100x larger than previous estimate

Corrections to total decay rate

VC, W. Dekens, E. Mereghetti, O. Tomalak, 2306.03138

$$\Gamma_n = \frac{G_F^2 |V_{ud}|^2 m_e^5}{2\pi^3} \left(1 + 3\lambda^2\right) \cdot f_0 \cdot \left(1 + \Delta_f\right) \cdot \left(1 + \Delta_R\right), \quad \lambda = g_A/g_V$$

$\Delta_R = 4.044(24)_{\text{Had}}(8)_{\alpha}$

$$3.573(5)\%$$

$$_{\alpha\alpha_s^2}(7)_{\alpha\epsilon_\chi^2}(5)_{\mu_\chi}[27]_{\text{total}} \times 10^{-2}$$

Corrections to total decay rate

VC, W. Dekens, E. Mereghetti, O. Tomalak, 2306.03138

$$\Gamma_n = \frac{G_F^2 |V_{ud}|^2 m_e^5}{2\pi^3} \left(1 + 3\lambda^2\right) \cdot f_0 \cdot \left(1 + \Delta_f\right) \cdot \left(1 + \Delta_R\right), \quad \lambda = g_A/g_V$$

CORRECTION	COMPARISON with LITERATURE**	MAIN SOURCE of DISCREPANCY
$\Delta_f = 3.573(5)\%$	-0.035%	NR vs relativistic Fermi funct
$\Delta_{\rm R} = 4.044(27)\%$	+0.061%	a² Log(m _N /m _e)
$\Delta_{\rm TOT} = 7.761(27)\%.$	+0.026%	Both related to the treatment NLL corrections in the hadronic

** As compiled in VC, A. Crivellin, M. Hoferichter, M. Moulson, 2208.11707. Non-perturbative input in Δ_R is the same

Overall shift of -0.013% in V_{ud} (neutron) compared to previous literature

Implications for new physics

VC, A. Crivellin, M. Hoferichter, M. Moulson, 2208.11707, PLB
VC, W. Dekens, J. deVries, E. Mereghetti, T.Tong 2204.08440, PRD
VC, W. Dekens, J. de Vries, E. Mereghetti, T.Tong, in preparation

Connecting scales & processes — Connecting scales — EFT To connect UV physics to beta decays, use EFT

- New physics effects are encoded in ten quark-level couplings
- Quark-level version of Lee-Yang \bullet effective Lagrangian

GeV-scale effective Lagrangian

VC, Gonzalez-Alonso, Jenkins 0908.1754, NPB

$$\mathcal{L}_{CC}^{(\mu)} = -\frac{G_F^{(0)}}{\sqrt{2}} \left(1 + \epsilon_L^{(\mu)} \right) \, \bar{e} \gamma^{\rho} (1 - \gamma_5) \nu_e \cdot \bar{\nu}_{\mu} \gamma_{\rho} (1 - \gamma_5) \mu + \dots$$

$$\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \times \left[\left(\delta^{ab} + \epsilon_L^{ab} \right) \bar{e}_a \gamma_\mu (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d \right. \\ \left. + \epsilon_R^{ab} \bar{e}_a \gamma_\mu (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma^\mu (1 + \gamma_5) d \right. \\ \left. + \epsilon_S^{ab} \bar{e}_a (1 - \gamma_5) \nu_b \cdot \bar{u} d \right. \\ \left. - \epsilon_P^{ab} \bar{e}_a (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma_5 d \right. \\ \left. + \epsilon_T^{ab} \bar{e}_a \sigma_{\mu\nu} (1 - \gamma_5) \nu_b \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

VC, Graesser, Gonzalez-Alonso 1210.4553, JHEP

Leptonic interactions

Semi-leptonic interactions

GeV-scale effective Lagrangian

VC, Gonzalez-Alonso, Jenkins 0908.1754, NPB

$$\mathcal{L}_{CC}^{(\mu)} = -\frac{G_F^{(0)}}{\sqrt{2}} \left(1 + \epsilon_L^{(\mu)}\right) \bar{e}\gamma^{\rho}(1 - \gamma_5)\nu_e \cdot \bar{\nu}_{\mu}\gamma_{\rho}(1 - \gamma_5)\mu + \dots$$

$$\mathcal{L}_{CC} = -\frac{G_F^{(0)}V_{ud}}{\sqrt{2}} \times \left[\left(\delta^{ab} + \epsilon_L^{ab}\right) \bar{e}_a\gamma_{\mu}(1 - \gamma_5)\nu_b \cdot \bar{u}\gamma^{\mu}(1 - \gamma_5)d\right]$$

$$+ \epsilon_R^{ab} \bar{e}_a\gamma_{\mu}(1 - \gamma_5)\nu_b \cdot \bar{u}\gamma^{\mu}(1 + \gamma_5)d$$

$$+ \epsilon_S^{ab} \bar{e}_a(1 - \gamma_5)\nu_b \cdot \bar{u}d$$

$$\mathcal{E}_i \sim (\mathbf{v}/\Lambda)^2$$

$$- \epsilon_P^{ab} \bar{e}_a(1 - \gamma_5)\nu_b \cdot \bar{u}\gamma_5d$$

$$+ \epsilon_T^{ab} \bar{e}_a\sigma_{\mu\nu}(1 - \gamma_5)\nu_b \cdot \bar{u}\sigma^{\mu\nu}(1 - \gamma_5)d\right] + \text{h.c.}$$

VC, Graesser, Gonzalez-Alonso 1210.4553, JHEP

Leptonic interactions

S

Corrections to V_{ud} and V_{us}

Find set of ε 's so that V_{ud} and V_{us} bands meet on the unitarity circle

Right-handed quark couplings

Right-handed currents (in the 'ud' and 'us' sectors)

 $|\bar{V}_{ud}|^2_{0^+ \to 0^+} = |V_{ud}|^2 \left(1 + 2\epsilon_R\right)$ $|\bar{V}_{ud}|^2_{n \to pe\bar{\nu}} = |V_{ud}|^2 \left(1 + 2\epsilon_R\right)$ $|\bar{V}_{us}|^2_{Ke3} = |V_{us}|^2 \left(1 + 2\epsilon_R^{(s)}\right)$ $|\bar{V}_{ud}|^2_{\pi_{e3}} = |V_{ud}|^2 \left(1 + 2\epsilon_R\right)$ $|\bar{V}_{us}|^2_{K_{\mu 2}} = |V_{us}|^2 \left(1 - 2\epsilon_R^{(s)}\right)$ $|\bar{V}_{ud}|^2_{\pi_{\mu_2}} = |V_{ud}|^2 \left(1 - 2\epsilon_R\right)$

• CKM elements from vector (axial) channels are shifted by $|+\varepsilon_R|$ ($|-\varepsilon_R|$).

Grossman-Passemar-Schacht 1911.07821 JHEP Alioli et al 1703.04751, JHEP

 V_{us}/V_{ud} , V_{ud} and V_{us} shift in anti-correlated way, can resolve all tensions!

$$\begin{aligned} \Delta_{CKM}^{(1)} &= |V_{ud}^{\beta}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ &= -1.76(56) \times 10^{-3} \\ \Delta_{CKM}^{(2)} &= |V_{ud}^{\beta}|^{2} + |V_{us}^{K_{\ell 2}/\pi_{\ell 2},\beta}|^{2} - 1 \\ &= -0.98(58) \times 10^{-3} \\ \Delta_{CKM}^{(3)} &= |V_{ud}^{K_{\ell 2}/\pi_{\ell 2},K_{\ell 3}}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ &= -1.64(63) \times 10^{-2} \end{aligned}$$

$$\Delta_{\text{CKM}}^{(1)} = 2\epsilon_R + 2\Delta\epsilon_R V_{us}^2,$$

$$\Delta_{\text{CKM}}^{(2)} = 2\epsilon_R - 2\Delta\epsilon_R V_{us}^2,$$

$$\Delta_{\text{CKM}}^{(3)} = 2\epsilon_R + 2\Delta\epsilon_R (2 - V_{us}^2)$$

$$\downarrow$$

$$\epsilon_R = -0.69(27) \times 10^{-3}$$

$$\Delta\epsilon_R = -3.9(1.6) \times 10^{-3}$$

 $\Lambda_{\rm R} \sim 5-10 \,{\rm TeV}$

Preferred ranges are not in \bullet conflict with other constraints from β decays

VC, Hayen, deVries, Mereghetti, Walker-Loud, 2202.10439

 $\lambda^{ ext{exp}}$

 $\overline{\lambda \text{QCD}}$

Ζ Ν

$$\Delta_{\text{CKM}}^{(1)} = 2\epsilon_R + 2\Delta\epsilon_R V_{us}^2,$$

$$\Delta_{\text{CKM}}^{(2)} = 2\epsilon_R - 2\Delta\epsilon_R V_{us}^2,$$

$$\Delta_{\text{CKM}}^{(3)} = 2\epsilon_R + 2\Delta\epsilon_R (2 - V_{us}^2),$$

$$\downarrow$$

$$\epsilon_R = -0.69(27) \times 10^{-3},$$

$$\Delta\epsilon_R = -3.9(1.6) \times 10^{-3}$$

 $\Lambda_{\rm R} \sim 5-10 \,{\rm TeV}$

$$= 1 + \delta_{\mathrm{RC}} - 2\epsilon_R$$

$$\lambda \equiv \frac{g_A}{g_V}$$
$$\delta_{RC} \simeq (2.0 \pm 0.6)\%$$

 $\epsilon_R = -0.2(1.2)\%$

 \bullet

For other BSM explanations, see A. Crivellin 2207.02507 and references therein

$$\Delta_{\text{CKM}}^{(1)} = 2\epsilon_R + 2\Delta\epsilon_R V_{us}^2,$$

$$\Delta_{\text{CKM}}^{(2)} = 2\epsilon_R - 2\Delta\epsilon_R V_{us}^2,$$

$$\Delta_{\text{CKM}}^{(3)} = 2\epsilon_R + 2\Delta\epsilon_R (2 - V_{us}^2)$$

$$\downarrow$$

$$\epsilon_R = -0.69(27) \times 10^{-3}$$

$$\Delta\epsilon_R = -3.9(1.6) \times 10^{-3}$$

$$\Lambda_R \sim 5 - 10 \text{ TeV}$$

Does the R-handed current explanation survive after taking into account high energy data?

Connecting scales & processes — 2 Connecting scales — EFT To connect UV physics to beta decays, use EFT

Connecting scales & processes — 2 Connecting scales — EFT To connect UV physics to beta decays, use EFT

Identified by a matching calculation with the SM-EFT at the weak scale

Weak scale effective Lagrangian

 $\epsilon_{L,R}$ originate from SU(2)xU(1) invariant vertex corrections

$$l^{i} = \begin{pmatrix} \nu_{L}^{i} \\ e_{L}^{i} \end{pmatrix} \quad q^{i} = \begin{pmatrix} u_{L}^{i} \\ d_{L}^{i} \end{pmatrix} \quad H = \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix}$$

Dekens- Andreoli, de Vries, Mereghetti, Oosterhof, 2107.10852 Belfatto-Berezhiani 2103.05549 Belfatto-Trifinopoulos 2302.14097

2L

Weak scale effective Lagrangian

 $\epsilon_{L,R}$ originate from SU(2)xU(1) invariant vertex corrections

 $\epsilon_{s,P,T}$ and one contribution to ϵ_{L} arise from SU(2)xU(1) invariant 4-fermion operators

$O_{qde} = (\overline{\ell}e)(\overline{d}q) + \text{h.c.}$	8
$O_{lq} = (\bar{l}_a e) \epsilon^{ab} (\bar{q}_b u) + \text{h.c.}$;
$O_{lq}^t = (\bar{l}_a \sigma^{\mu\nu} e) \epsilon^{ab} (\bar{q}_b \sigma_{\mu\nu} u) + \text{h.c.}$	
$O_{lq}^{(3)} = \bar{l}\gamma_{\mu}\sigma^{a}l \ \bar{q}\gamma^{\mu}\sigma^{a}q$	
$O_{ll} = \bar{l}\gamma_{\mu}l \ \bar{l}\gamma^{\mu}l$	

ES,P ES,P ET EL EL

i ngh scale checcive Lagrangian

$$\mathcal{L}^{(ext{eff})} = \mathcal{L}_{ ext{SM}} + \sum_i rac{1}{\Lambda_i^2}$$
 (

$$\mathcal{L}^{(\text{eff})} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{1}{\Lambda_{i}^{2}} \mathcal{O}_{i} = \mathcal{L}_{\text{SM}} + \frac{1}{\nu^{2}} \sum_{i} \hat{o}_{i} \mathcal{O}_{i}$$
minon operators:
$$\frac{3^{3}}{\mu^{2}} = (\overline{h}^{2} \sigma^{\alpha})(\overline{q}^{2})_{\mu} \sigma^{\alpha}q) \qquad \text{Thes} \quad \mathcal{O}_{\text{and}} = (\overline{e}\gamma^{\mu})(u\gamma_{\mu}a) + \text{n.c.}$$

$$\frac{3^{3}}{\mu^{2}} = (\overline{h}^{2} \sigma^{\alpha})(\overline{q}^{2})_{\mu} + n.c.$$

$$\frac{1}{\mu^{2}} \sum_{i} \sum_{j} \sum_{i} \frac{\partial_{i}} \mathcal{O}_{i}$$

$$\frac{3^{3}}{\mu^{2}} = (\overline{h}^{2} \sigma^{\alpha})(\overline{q}^{2})_{\mu} + n.c.$$

$$\frac{1}{\mu^{2}} \sum_{i} \sum_{j} \sum_{i} \frac{\partial_{i}} \mathcal{O}_{i}$$

$$\frac{\partial_{i}}{\partial_{i}} = (\overline{h}^{2} \sigma^{\alpha})(\overline{h}^{2})_{\mu} + n.c.$$

$$\frac{\partial_{i}}$$

Four-fermion operators:	Four-fermion operators:
$O_{lq}^{(3)} = (l\gamma^{\mu}\sigma^{\mu}l)(\overline{q}\gamma_{\mu}\sigma^{\mu}q)$	$O_{la}^{(3)} = (\bar{l}\gamma^{\mu}\sigma^{a}l)(\bar{q}\gamma_{\mu}\sigma^{a}q) \qquad \text{Test} O_{e\nu ud} = (\bar{l}\gamma^{\mu}\sigma^{a}l)(\bar{l}\gamma^{\mu}\sigma^{a}q) \qquad \text{Test} O_{e\nu ud} = (\bar{l}\gamma^{\mu}\sigma^{a}l)(\bar{l}\gamma$
$O_{qde} = (\overline{\ell}e)(\overline{d}q) + \text{h.c.}$	$O_{1} = (\overline{\ell}e)(\overline{d}a) + hc$ Test $O_{2} = \ell$
$O_{lq} = (\bar{l}_a e) \epsilon^{ab} (\bar{q}_b u) + \text{h.c.}$	$O_{qae} = (cc)(uq) + \text{Inc.} \qquad \text{Test} \qquad O_{qu\nu} = (cc)(uq) + \text{Inc.} \qquad \text{Test} \qquad \text{Test} \qquad O_{qu\nu} = (cc)(uq) + \text{Inc.} \qquad \text{Test} \qquad O_{qu\nu} = (cc)(uq) + ($
$O_{lq}^{t} = (\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar{q}_{b}\sigma_{\mu\nu}u) + $ Vertex corrections:	$O_{lq}^{t} = (\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar{q}_{b}\sigma_{\mu\nu}u) + h.c\mathrm{Test}_{lest} \qquad O_{lq}^{t'} = (\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar{l}_{a}\sigma^{\mu\nu}u) + h.c\mathrm{Test}_{lest} \qquad O_{lq}^{t'} = (\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar$
$\begin{array}{c} \hline \hline \\ \hline \\ O_{\varphi\varphi} = i(\varphi^T \epsilon D_\mu \varphi)(\overline{u} \varphi^\mu d) \end{array}$	$V_{\theta} tex correct (iH_{S}^{\dagger} D_{\mu} H) (\bar{u}_{p} \gamma_{Test}^{\mu} d_{r}^{t})$
$O_{\varphi q}^{(3)} = i(\varphi^{\dagger}\sigma^{a}D^{\mu}\varphi)(\overline{q}\gamma_{\mu}\sigma^{a})$ $O_{\varphi l}^{(3)} = i(\varphi^{\dagger}\sigma^{a}D^{\mu}\varphi)(\overline{l}\gamma_{\mu}\sigma^{a})$	$(3) \qquad O_{\varphi\varphi} = i(\varphi \overline{\mathcal{L}} \epsilon \mathcal{D}_{\mu} \varphi)(\overline{u} \gamma^{\mu} d) + h \overline{\mathcal{C}} st \qquad O_{\varphi\varphi}' = i $
$O_{\varphi l}^{(3)} = i(\varphi^{\dagger}\sigma^{a}D^{\mu}\varphi)(\bar{l}\gamma_{\mu}\sigma^{a}D^{\mu}\varphi)(\bar{l}\gamma_$	$Hq = O_{\varphi q}^{(3)} = i(\varphi^{\dagger} \sigma^{\prime} D \psi^{\prime} \varphi)(q \gamma_{\mu} \partial^{\prime} q) + I_{\text{fight}}^{(3)} q r)$
Θ	$ \begin{array}{c} (3) \\ H \\ \end{array} = \begin{array}{c} O^{(3)}_{\varphi l} = i(\varphi^{\dagger} \overline{D}^{a} D^{\mu} \varphi)(\overline{l} \gamma_{\overline{\ell}} \overline{\sigma}^{a} l) I^{+} h \varphi_{l} \\ \overline{l} D \\ \end{array} $
Constrained by	$Ht \qquad (II + t D_{\mu}II)(tp + \gamma tr)$
	Constrained by Z-pole and σ_{had} Usually
	$ V_{ud} ^2 \tau_n \left(1 + 3g_A^2\right) (1 + \Delta_R) = 5099.3(3)s$

$$\mathcal{L}_{SM} + \sum_{i} \frac{1}{\Lambda_{i}^{2}} O_{i} = \mathcal{L}_{SM} + \frac{1}{v^{2}} \sum_{i} \hat{\alpha}_{i} O_{i}$$
Trainers
$$\frac{\nabla \sigma^{0}(\bar{\alpha})(\bar{\alpha}\gamma_{\mu}\sigma^{d}q) \quad \text{Test}}{\nabla \sigma^{0}(\bar{\alpha}\gamma_{\mu}q^{d}) + \text{h.c.}} \quad O_{qw} = (\bar{\nu}\nu)(q) + \text{h.c.}$$

$$\frac{\nabla qw}{(\bar{\alpha}\phi)\psi(\bar{\alpha}) + \text{h.c.}} \quad \frac{\nabla qw}{(\bar{\alpha}\phi)\psi(\bar{\alpha}) + \text{h.c.}} \quad O_{iq} = (\bar{\alpha}\psi)^{w}(\bar{\alpha}\phi) + \text{h.c.}$$

$$\frac{\nabla qw}{(\bar{\alpha}\phi)\psi(\bar{\alpha})\psi(\bar{\alpha}) + \text{h.c.}} \quad O_{iq} = (\bar{\alpha}\phi)^{w}(\bar{\alpha}\phi) + \text{h.c.}$$

$$\frac{\nabla qw}{(\bar{\alpha}\phi)\psi(\bar{\alpha})} + \frac{1}{\bar{\alpha}\psi(\bar{\alpha}\phi)} = (\bar{\alpha}\phi)^{w}(\bar{\alpha}\phi) + \text{h.c.}$$

$$\frac{\nabla qw}{(\bar{\alpha}\phi)\psi(\bar{\alpha}\phi)\psi(\bar{\alpha}) + \frac{1}{\bar{\alpha}\psi(\bar{\alpha}\phi)} + \frac{1}{\bar{\alpha}\psi(\bar{\alpha}\phi)} = (\bar{\alpha}\phi)^{w}(\bar{\alpha}\phi) + \text{h.c.}$$

$$\frac{\nabla qw}{(\bar{\alpha}\phi)\psi(\bar{\alpha}\phi)\psi(\bar{\alpha}\phi)} + \frac{1}{\bar{\alpha}\psi(\bar{\alpha}\phi)\psi(\bar{\alpha}\phi)} + \frac{1}{\bar{\alpha}\psi(\bar{\alpha}\phi)\psi(\bar{\alpha$$

i ngri scale checcive Lagrangian

$$\mathcal{L}^{(ext{eff})} = \mathcal{L}_{ ext{SM}} + \sum_i rac{1}{\Lambda_i^2}$$

$$\mathcal{L}^{(\text{eff})} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{1}{\Lambda_{i}^{2}} O_{i} \equiv \mathcal{L}_{\text{SM}} + \frac{1}{v^{2}}$$

traints

VC, Graesser, Gonzalez-Alonso 1210.4553 Alioli-Dekens-Girard-Mereghetti 1804.07407 Gupta et al. 1806.09006 Boughezal-Mereghetti-Petriello 2106.05337

i light scale checcive Lagrangian

$$\mathcal{L}^{(ext{eff})} = \mathcal{L}_{ ext{SM}} + \sum_i rac{1}{\Lambda_i^2}$$

$$\mathcal{L}^{(\text{eff})} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{1}{\Lambda_i^2} O_i \equiv \mathcal{L}_{\text{SM}} + \frac{1}{v^2}$$

Four-fermion operators:	Four-fermion operators:
$O_{lq}^{(3)} = (l\gamma^{\mu}\sigma^{\mu}l)(\overline{q}\gamma_{\mu}\sigma^{\mu}q)$	$O_{lq}^{(3)} = (\bar{l}\gamma^{\mu}\sigma^{a}l)(\bar{q}\gamma_{\mu}\sigma^{a}q) \qquad \text{Test} O_{e\nu ud} = (\bar{l}\gamma^{\mu}\sigma^{a}l)(\bar{l}\gamma^{\mu}\sigma^{a}q) \qquad \text{Test} O_{e\nu ud} = (\bar{l}\gamma^{\mu}\sigma^{a}l)(\bar{l}\gamma$
$O_{qde} = (\overline{\ell}e)(\overline{d}q) + \text{h.c.}$	$O_{rds} = (\overline{\ell}e)(\overline{d}a) + hc$ Test $O_{rm} = 0$
$O_{lq} = (\bar{l}_a e) \epsilon^{ab} (\bar{q}_b u) + \text{h.c.}$ $O_t^t = (\bar{l}_a e^{\mu\nu} e) \epsilon^{ab} (\bar{q}_b u) + \text{h.c.}$	$O_{lq} = (\bar{l}_a e) \epsilon^{ab} (\bar{q}_b u) + \text{h.c.} \qquad \begin{array}{c} \text{Test} \\ \text{Test} \\ \text{Test} \end{array} \qquad O_{lq}' = (\bar{l}_a e) \epsilon^{ab} (\bar{q}_b u) + \text{h.c.} \\ \end{array}$
$O_{lq}^{t} = (\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar{q}_{b}\sigma_{\mu\nu}u) + $ Vertex corrections:	$O_{lq}^{t} = (\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar{q}_{b}\sigma_{\mu\nu}u) + h.c\mathrm{Test}_{est} \qquad O_{lq}^{t'} = (O_{lq}^{t'}) = 0$
$O_{\varphi\varphi} = i(\varphi^T \epsilon D_\mu \varphi)(u \varphi^J d)$	$Martex corrected H ^{\dagger} D_{\mu} H) (\bar{u}_p \gamma^{\mu} d_r)$
$O_{\varphi q}^{(3)} = i(\varphi^{\dagger}\sigma^{a}D^{\mu}\varphi)(\overline{q}\gamma_{\mu}\sigma^{a})$ $O_{\varphi l}^{(3)} = i(\varphi^{\dagger}\sigma^{a}D^{\mu}\varphi)(\overline{l}\gamma_{\mu}\sigma^{a})$	3) $O_{\varphi\varphi} = i(\varphi \overline{\tau} \epsilon D_{\mu} \varphi)(\overline{u} \gamma^{\mu} d) + h \tau \epsilon t$
$O_{\varphi l}^{(3)} = i(\varphi^{\dagger}\sigma^{a}D^{\mu}\varphi)(\bar{l}\gamma_{\mu}\delta^{a})$	
$\Theta^{(i)}$	$ \begin{array}{c} 3) \\ H \end{array} = \begin{array}{c} O_{\varphi l}^{(3)} \equiv i(\varphi^{\dagger} \overline{D}^{a} D^{\mu} \varphi)(\overline{l} \gamma_{\mu} \sigma^{a} l) I^{+} h \mathcal{L}_{\mu} \\ H \end{array} $
Constrained by	$Hl = (H \cdot i D_{\mu}^{\dagger} H)(l_p \tau^{\dagger} \gamma^{\mu} l_r)$
	Constrained by Z-pole and σ_{had} Usually
	$ V_{ud} ^2 \tau_n (1 + 3g_A^2) (1 + \Delta_R) = 5099.3(3)s$ $\Delta_R = 0.03983(27)$

$$\begin{split} |V_{ud}|^{2} &= \frac{\int e^{(1+2564!452(5)^{2}8^{i}5 - e^{i}C)}}{ft\left(1 + \Delta_{R}^{V} + \delta_{R}^{i} + \delta_{NS} - \delta_{C}\right)} \\ \mathbf{A}_{CKM}^{(1)} &= |V_{ud}^{\beta}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ \Delta_{CKM}^{(1)} &= |V_{ud}^{\beta}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ \Delta_{CKM}^{(2)} &= |V_{ud}^{\beta}|^{2} + |V_{uK_{\ell 2}}^{K_{\ell 2}}|^{2} + |V_{uS}^{K_{\ell 2}}|^{2} - 1 \\ \Delta_{CKM}^{(2)} &= |V_{d}^{\beta}|^{2} + |V_{uK_{\ell 2}}^{K_{\ell 2}}|^{2} + |V_{us}^{K_{\ell 2}}|^{2} - 1 \\ \Delta_{CKM}^{(2)} &= |V_{d}^{\beta}|^{2} + |V_{uK_{\ell 3}}^{K_{\ell 2}}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ \Delta_{CKM}^{(3)} &= |V_{ud}^{\beta}|^{2} + |V_{ud}^{K_{\ell 2}}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ \Delta_{CKM}^{(3)} &= |V_{ud}^{K_{\ell 2}/\pi_{\ell 2}, K_{\ell 3}}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ &= -1.64(63) \times 10^{-2} \\ A_{ud}^{\beta} &= |V_{ud}^{K_{\ell 2}}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ &= -1.64(63) \times 10^{-2} \\ A_{ud}^{\beta} &= |V_{ud}^{\delta}|^{2} + |V_{us}^{\delta}|^{2} - 1 \\ &= -1.64(63) \times 10^{-2} \\ A_{ud}^{\delta} &= |V_{ud}^{\delta}|^{2} + |V_{us}^{\delta}|^{2} - 1 \\ &= -1.64(63) \times 10^{-2} \\ A_{ud}^{\delta} &= |V_{ud}^{\delta}|^{2} + |V_{us}^{\delta}|^{2} - 1 \\ &= -1.64(63) \times 10^{-2} \\ A_{ud}^{\delta} &= |V_{ud}^{\delta}|^{2} + |V_{us}^{\delta}|^{2} - 1 \\ &= -1.64(63) \times 10^{-2} \\ A_{ud}^{\delta} &= |V_{ud}^{\delta}|^{2} + |V_{us}^{\delta}|^{2} + |V_{us}^{\delta}|^{2} - 1 \\ &= -1.64(63) \times 10^{-2} \\ A_{ud}^{\delta} &= |V_{ud}^{\delta}|^{2} + |V_{us}^{\delta}|^{2} + |V_{us}^{\delta}|^{2}$$

$$\frac{\lambda^{\text{es}}}{\lambda^{\text{QCD}}} = \frac{1}{\Gamma + g \phi_{\text{RC}}} - 2\epsilon_R^d$$

$$\frac{\lambda^{\text{exp}}}{\lambda^{\text{QCD}}} = 1 + \delta_{\text{RC}} - 2\epsilon_R^d$$

$$\frac{\lambda^{\text{exp}}}{\lambda^{\text{QCD}}} = 1 + \delta_{\text{RC}} - 2\epsilon_R^d$$

$$\frac{\lambda^{\text{exp}}}{\lambda^{\text{QCD}}} = 1 + \delta_{\text{RC}} - 2\epsilon_R$$

 $\lambda^{ ext{exp}}$

i light scale checcive Lagrangian

$$\mathcal{L}^{(ext{eff})} = \mathcal{L}_{ ext{SM}} + \sum_i rac{1}{\Lambda_i^2} \, .$$

$$\mathcal{L}^{(\text{eff})} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{1}{\Lambda_i^2} O_i \equiv \mathcal{L}_{\text{SM}} + \frac{1}{v^2}$$

Four-fermion operators:	Four-fermion operators:
$O_{lq}^{(3)} = (l\gamma^{\mu}\sigma^{\mu}l)(\overline{q}\gamma_{\mu}\sigma^{\mu}q)$ $O_{qde} = (\overline{\ell}e)(\overline{d}q) + \text{h.c.}$ $O_{lq} = (\overline{l}_{a}e)\epsilon^{ab}(\overline{q}_{b}u) + \text{h.c.}$ $O_{lq}^{t} = (\overline{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\overline{q}_{b}\sigma_{\mu\nu}u) + \text{Vertex corrections:}$	$O_{lq}^{(3)} = (\bar{l}\gamma^{\mu}\sigma^{a}l)(\bar{q}\gamma_{\mu}\sigma^{a}q) \qquad \begin{array}{l} \text{Test} & O_{e\nu ud} = (\bar{l}\varphi) \\ O_{qde} = (\bar{\ell}e)(\bar{d}q) + \text{h.c.} & \text{Test} \\ O_{lq} = (\bar{l}_{a}e)\epsilon^{ab}(\bar{q}_{b}u) + \text{h.c.} & \text{Test} \\ O_{lq}^{t} = (\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar{q}_{b}\sigma_{\mu\nu}u) + \text{h.cTest} & O_{lq}^{t} = (\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar{q}_{b}\sigma_{\mu\nu}u) + \text{h.cTest} \\ O_{lq}^{t} = (\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar{q}_{b}\sigma_{\mu\nu}u) + \text{h.cTest} & O_{lq}^{t'} = (\bar{l}_{a}\sigma^{\mu\nu}e)\epsilon^{ab}(\bar{q}_{b}\sigma_{\mu\nu}u) + \text{h.cTest} \\ \end{array}$
$O_{\varphi\varphi} = i(\varphi^{T}\epsilon D_{\mu}\varphi)(\bar{u}\varphi^{\mu}d)$ $O_{\varphi q}^{(3)} = i(\varphi^{\dagger}\sigma^{a}D^{\mu}\varphi)(\bar{q}\gamma_{\mu}\sigma^{a})$ $O_{\varphi l}^{(3)} = i(\varphi^{\dagger}\sigma^{a}D^{\mu}\varphi)(\bar{l}\gamma_{\mu}\sigma^{a})$	$ \begin{array}{l} \underbrace{\mathcal{Y}_{\theta} \text{rtex-corrected fields}^{\dagger} D_{\mu} H}_{3)} = \underbrace{\mathcal{O}_{\varphi\varphi} = i(\varphi_{\varphi\varphi}^{T} \in \mathcal{D}_{\mu}\varphi)(\overline{u}\gamma^{\mu}d) + \operatorname{prest}}_{O(3)} \\ \mathcal{O}_{\varphi\varphi} = i(\varphi_{\varphi}^{T} \in \mathcal{D}_{\mu}\varphi)(\overline{u}\gamma^{\mu}d) + \operatorname{prest}}_{O(3)} \\ \mathcal{O}_{\varphi} = i(\varphi_{\varphi}^{T} \cap \mathcal{D}_{\mu}\varphi)(\overline{u}\gamma^{\mu}d) + \operatorname{prest}}_{O(3)} \\ \mathcal{O}_{\varphi} = i(\varphi_$
$O_{\varphi l}^{(\sigma)} = i(\varphi^{\dagger}\sigma^{a}D^{\mu}\varphi)(l\gamma_{\mu}\sigma^{a})$ Constrained by	$ \begin{array}{c} Iq \\ Iq \\ Il \\ Hl \end{array} = \begin{array}{c} O_{\varphi q}^{(3)} \equiv i(\varphi^{\dagger} \overline{\sigma}^{a} \mu \varphi)(\bar{q} \gamma_{\mu} \overline{\sigma}^{a} q) + \text{here} I \\ O_{\varphi q}^{(3)} \equiv i(\varphi^{\dagger} \overline{\sigma}^{a} D^{\mu} \varphi)(\bar{l} \gamma_{\mu} \overline{\sigma}^{a} l) I^{+} \text{here} I \\ Hl \end{array} = \begin{array}{c} O_{\varphi q}^{(3)} \equiv i(\varphi^{\dagger} \overline{\sigma}^{a} D^{\mu} \varphi)(\bar{l} \gamma_{\mu} \overline{\sigma}^{a} l) I^{+} \text{here} I \\ Hl \end{array} $
	Constrained by Z-pole and σ_{had} Usually $ V_{ud} ^2 \tau_n (1+3g_A^2) (1+\Delta_R) = 5099.3(3)s$ $\Delta_R = 0.03983(27)$

Contribute to Z-pole and other precision electroweak (EW) observables, including** Mw

$$\begin{split} |V_{ud}|^2 &= \frac{\int e^{-(1+2954!432(5)^2 s^{-3}-5C)}}{ft \left(1 + \Delta_R^V + \delta_R' + \delta_{NS} - \delta_C\right)} \\ \Delta_{CKM}^{(1)} &= |V_{ud}^\beta|^2 + |V_{us}^{\kappa_{\ell 3}}|^2 - 1 \\ \Delta_{CKM}^{(1)} &= |V_{ud}^\beta|^2 + |V_{us}^{\kappa_{\ell 3}}|^2 - 1 \\ \Delta_{CKM}^{(2)} &= |V_{ud}^\beta|^2 + |V_{us}^{\kappa_{\ell 2}}|^2 + |V_{us}^{\kappa_{\ell 2}}|^2 - 1 \\ \Delta_{CKM}^{(2)} &= |V_{ud}^\beta|^2 + |V_{us}^{\kappa_{\ell 2}}|^2 + |V_{us}^{\kappa_{\ell 3}}|^2 - 1 \\ \Delta_{CKM}^{(2)} &= |V_{ud}^\beta|^2 + |V_{ud}^{\kappa_{\ell 2}} + |V_{us}^{\kappa_{\ell 3}}|^2 - 1 \\ \Delta_{CKM}^{(3)} &= |V_{ud}^\beta|^2 + |V_{ud}^{\kappa_{\ell 2}} + |V_{us}^{\kappa_{\ell 3}}|^2 - 1 \\ a = -1.64(63) \times 10^{-2} \\ \Delta_{CKM}^{(3)} &= |V_{ud}^{\kappa_{\ell 2}} - \pi_{\ell 2}, \kappa_{\ell 3}|^2 + |V_{us}^{\kappa_{\ell 3}}|^2 - 1 \\ &= -1.64(63) \times 10^{-2} \\ \lambda \equiv \frac{g_A}{g_V} \\ \frac{\lambda^{exp}}{\lambda^{QCD}} &= 1 + \delta_{RC} - 2\epsilon_R^d \\ \frac{\lambda^{exp}}{\lambda^{QCD}} &= 1 + \delta_{RC} - 2\epsilon_R \end{split}$$

$$\begin{aligned} |V_{ud}|^{2} &= \frac{\Delta_{R} = 0.03983(27)}{2984.432(3) s} \\ |V_{ud}|^{2} &= \frac{ft \left(1 + 2984.432(3) s\right)}{ft \left(1 + \Delta_{R}^{V} + \delta_{R}^{'} + \delta_{NS} - \delta_{C}\right)} \\ \Delta_{CKM}^{(1)} &= |V_{ud}^{\beta}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ \Delta_{CKM}^{(1)} &= |V_{ud}^{\beta}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ \Delta_{CKM}^{(2)} &= |V_{ud}^{\beta}|^{2} + |V_{us}^{K_{\ell 3}}|^{2} - 1 \\ \Delta_{CKM}^{(2)} &= -\frac{1}{1} \frac{1}{4} \frac{1}{6} \frac{1}{(56)} \frac{$$

High scale e

$$L^{(d)} = L_{sy} + \sum_{A^2} d^{(d)} d^{(d)} d^{(d)} d^{(d)} d^{(d)} + \sum_{A^2} d^{(d)} d^{(d)} d^{(d)} d^{(d)} d^{(d)} + \sum_{A^2} d^{(d)} d^{(d)} d^{(d)} + \sum_{A^2} d^{(d)} d^{(d)} d^{(d)} d^{(d)} + \sum_{A^2} d^{(d)} d^{(d)} d^{(d)} + \sum_{A^2} d^{(d)} d^{(d)}$$

26 + 6 a ERAPI BATATA

BII HIGE ICHI $L_{II} = C_{II} + C_{II}$. in stip ne Pineal

 H_{ll} eth cienterator neur HqBotain^{n.c.}

the fight of the second of the $\frac{\sigma}{T} = \frac{1}{\sqrt{2}} \left(\frac{1}{2} + \frac{1}{2} +$

we had the presence is and trade the unitarity supere we neglec Warrackes 10^{R} 20^{R} 10^{R} 10^{R} SM) And mass of the W boson leceives cor-WB is the second solution of M_{V} and all in SMEFT (begand ears here the encertain are intension with Ascent play a re THE MEDICAL HERE AND THE PROPERTY AND TH Have and dees hot he second State To The the state of the s The Basis and trade the Contract Basis and trade the Contract of C (333)

 $(\underline{3},\underline{3},\underline{3},\underline{3})$

The CLEW framework

• So we see that a consistent analysis of beta decays in the SM-EFT requires using data from

Collider: Drell-Yan, associated Higgs production, ...

Lessons from CLEWed analysis

- CLEW analysis with no assumption about flavor symmetry requires 37 effective couplings
- Do they all matter? No.

٠

- The best fit (with the lowest AIC = 2k ln(L)) is given by just including the two RH CC vertex corrections
- Next best fit is obtained by adding LH vertex corrections which slightly improve the EWPO
- When including the CDF value of m_W , best fit also include oblique parameters (S,T) besides the RH CC vertex correction

VC, W. Dekens, J. De Vries, E. Mereghetti, T. Tong, in preparation

Falsifying R-handed current hypothesis

VC, W. Dekens, J. De Vries, E. Mereghetti, T. Tong, in preparation

Conclusions & Outlook

The Cabibbo angle anomaly is one of few low-energy "cracks" in the SM, probing new physics up to $\Lambda \sim 20 \text{ TeV}$ — big deal if confirmed, requires both experimental and theoretical scrutiny

• A new analysis of neutron beta decay through a tower of EFTs allowed us to reach NLL accuracy and revealed %-level corrections to g_A/g_V . Future work: development of EFT for few nucleon systems & interface with ab-initio nuclear calculations

- Most natural BSM explanations of Cabibbo anomaly are "righthanded vertex corrections" in the EFT language
- CLEW framework is necessary for consistent analysis. RH CC 'explanation' of the Cabibbo anomaly survives CLEWed analysis

Multi-step strategy

Mw.z Λ_x (~GeV) k_E m_π

Pion decay and Lepton Flavor Universality

• $R_{e/\mu} = \Gamma (\pi \rightarrow ev) / \Gamma (\pi \rightarrow \mu v)$ helicity suppressed the SM (V-A), zero if $m_e \rightarrow 0$

• $\sigma_{exp} \sim 15\sigma_{th} \Rightarrow$ pristine LFU test possible

Pion decay and Lepton Flavor Universality

• $R_{e/\mu} = \Gamma (\pi \rightarrow ev) / \Gamma(\pi \rightarrow \mu v)$ helicity suppressed the SM (V-A), zero if $m_e \rightarrow 0$

• $\sigma_{exp} \sim 15\sigma_{th} \Rightarrow$ pristine LFU test possible

OG):
$$R_{e/\mu}^{exp} = (1.2327 \pm 0.0023) x 10^{-4} (\pm 0.19\%)$$

 $\frac{g_e}{g_{\mu}} = 0.9990 \pm 0.0009 (\pm 0.09\%)$
 $g_{\mu}^{exp} \le \pm 0.1\%$
S $(R_{e/\mu}^{exp} \le \pm 0.1\%)$

Corrections to V_{ud} and V_{us}

• General case

 $|\bar{V}_{ud}|^2_{0^+ \to 0^+} = |V_{ud}|^2 \left(1+2\right)^2 \left(1+2$ $|\bar{V}_{ud}|^2_{n \to p e \bar{\nu}} = |V_{ud}|^2 (1 + 1)^2 (1 + 1)^2 (1$ $|\bar{V}_{us}|^2_{Ke3} = |V_{us}|^2 \left(1+2\right)$ $|\bar{V}_{ud}|^2_{\pi_{e3}} = |V_{ud}|^2 \left(1+2\right)$ $|\bar{V}_{us}|^2_{K_{\mu 2}} = |V_{us}|^2 \left(1+2\right)$ $|\bar{V}_{ud}|^2_{\pi_{\mu_2}} = |V_{ud}|^2 \left(1+2\right)$

 $\varepsilon_{S}^{(s)}$: shifts the slope of the scalar form factor, at levels well below EXP and TH uncertainties

$$2\left(\epsilon_{L}^{ee} + \epsilon_{R} - \epsilon_{L}^{(\mu)}\right) + c_{0}^{S}(Z) \epsilon_{S}^{ee}\right)$$

$$2\left(\epsilon_{L}^{ee} + \epsilon_{R} - \epsilon_{L}^{(\mu)}\right) + c_{n}^{S}\epsilon_{S}^{ee} + c_{n}^{T}\epsilon_{T}^{ee}\right)$$

$$2\left(\epsilon_{L}^{ee}(s) + \epsilon_{R}^{(s)} - \epsilon_{L}^{(\mu)}\right)\right)$$

$$2\left(\epsilon_{L}^{ee} + \epsilon_{R} - \epsilon_{L}^{(\mu)}\right)$$

$$2\left(\epsilon_{L}^{\mu\mu(s)} - \epsilon_{R}^{(s)} - \epsilon_{L}^{(\mu)}\right) - 2\frac{B_{0}}{m_{\ell}}\epsilon_{P}^{\mu\mu(s)}\right)$$

$$2\left(\epsilon_{L}^{\mu\mu} - \epsilon_{R} - \epsilon_{L}^{(\mu)}\right) - 2\frac{B_{0}}{m_{\ell}}\epsilon_{P}^{\mu\mu}\right)$$

ε_T(s): suppressed by m_{lept}/m_K

Table 1. List of the most relevant Ser AFTS dimense the improvement of the second Connection to EXprecision tests $\sim Hl$ Calculated at lineaWerder and the tesults in dimension-six operators is Farth 13 particular we do tain (0.19 ± 0.09) TeV⁻² • Explanations of M_W anomaly in Structure We do tain Flavor Violation (beyond alling a consistent of the stand the shift we shift we have the perstol basis and trade the A COMPANY CONTRACTOR OF A CONT 246where v \geq $c_w = costole 1$ [25]. Here d does $W \overrightarrow{B}$ and nly studied $\sim \sim \sim \sim$ \sim in SMECTURE from tor Alson content of \hat{C}_{ll} for the full of \hat{C}_{ll} of \hat{C}_{ll} for the full of \hat{C}_{ll} of www.and the level but of the level but o

Table 1. List of Whe most releft ant the monthesise sults in Connection to EXpression tests $\sim Hl$ Calculated at lineaWerder and the tesults in dimension-six operators is Farth in the second structure we do the second structure of the second str (beyond allighter consistent of the stand we slightly thange the peretop basis and trade the where v 246 \geq $c_w = costole 1$ [25]. Here VIE VY DOSON Operator Unat appeals nere coes nor and does $W \vec{B}$ and BRIE GRAD ily studie in SME the spon of the second but on the level but on 324

$$\lambda = g_A/g_V$$
 to (

VC, J. de Vries, L. Hayen, E. Mereghetti, A. Walker-Loud 2202.10439

c_{3,4} are LECs from $\mathcal{L}_{\pi N}^{p^2}$ They can be determined by analysis of pion-nucleon scattering

$O(\alpha)$ and $O(\alpha \epsilon_x)$

 (g_A/g_V) gets %-level corrections proportional to the pion EM mass splitting, much larger than previous estimate

Gorchtein-Seng 2106.091 $\frac{\lambda^{\text{exp}}}{\lambda^{\text{QCD}}} = 1 + \frac{\alpha}{2\pi} \left(\Delta^{(0)}_{\text{em}} + \Delta^{(1)}_{\text{em}} + \dots \right) \quad \Delta^{(n)}_{\text{em}} \sim O(\epsilon_{\chi}^{n})$ Combination of unknown ChPT LECs $m_{\pi^{\pm}}^2 - m_{\pi^0}^2 = 2e^2 F_{\pi}^2 Z_{\pi} \qquad Z_{\pi} \simeq 0.8$ $\Delta_{\rm em}^{(0)} = Z_{\pi} \left[\frac{1 + 3g_A^{(0)\,2}}{2} \left(\log \frac{\mu^2}{m_{\pi}^2} - 1 \right) - g_A^{(0)2} \right] + \hat{C}(\mu)$

$$\lambda = g_A/g_V$$
 to (

VC, J. de Vries, L. Hayen, E. Mereghetti, A. Walker-Loud 2202.10439

$$\frac{\alpha}{2\pi} \Delta_{\rm em}^{(0)} \in \{0.25, 0.65\} \cdot 10^{-2} \longleftarrow \mu \in \{m_{\rm H}, \frac{\alpha}{2\pi} \Delta_{\rm em}^{(1)} = \{1.15, 1, 70, 1.85\} \cdot 10^{-2} \longleftarrow {\rm C}_{3,4} \text{ are LE}_{\rm N2LC}$$

$$\frac{\alpha}{2\pi} \Delta_{\rm em}^{(0+1)} \in \{1.4, 2.5\} \cdot 10^{-2} \longleftarrow {\rm C}_{10}$$

- Large NLO correction understood in terms of large LECs $c_{3,4} \sim 5 \text{ GeV}^{-1}$ dominated by Δ -exchange
- Convergence cannot be fully assessed due to unknown LEC

$O(\alpha)$ and $O(\alpha \epsilon_x)$

 (g_A/g_V) gets %-level corrections proportional to the pion EM mass splitting, much larger than previous estimate

$$\frac{\alpha}{2\pi} \left(\Delta_{\rm em}^{(0)} + \Delta_{\rm em}^{(1)} + \dots \right)$$

$$\Delta_{\rm em}^{(n)} \sim O(\epsilon_{\chi}^n)$$

 $\{w_N/2, m_N\}$

ECs at NLO, D, N3LO

ens et al., 0.08978

agreement between data and Lattice QCD