Precision beta decays and implications for new physics

Vincenzo Cirigliano
University of Washington

INSTITUTE for NUCLEAR THEORY

Outline

- Introduction: beta decays in the SM and beyond

- The "Cabibbo angle anomaly"
- Scrutinize the SM prediction: radiative corrections to neutron decay in EFT
- Study the implications for new physics: connection to other probes (Z pole, LHC, ...)
- Conclusions and outlook

β decays in the SM and beyond

- Beta decays have played a central role in the development of the Standard Model
- Nowadays: precision measurements provide a tool to challenge the SM \& probe possible new physics

β decays in the SM and beyond

- In the SM, mediated by W exchange \Rightarrow only "V-A"; Cabibbo universality; lepton universality

$$
\mathrm{GF}_{\mathrm{F}}^{(\beta)} \sim \mathrm{G}_{\mathrm{F}}(\mu) \mathrm{V}_{\mathrm{ij}} \sim 1 / \mathrm{v}^{2} \mathrm{~V}_{\mathrm{ij}}
$$

Cabibbo Universality

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Cabibbo-Kobayashi-Maskawa

β decays in the SM and beyond

- In the SM, mediated by W exchange \Rightarrow only "V-A"; Cabibbo universality; lepton universality

β decays in the SM and beyond

- In the SM, mediated by W exchange \Rightarrow only "V-A"; Cabibbo universality; lepton universality

- Precision of $0.1-0.01 \%$ probes $\Lambda>10 \mathrm{TeV}$. Several precision tests are possible....

Searches for 'non V-A' currents

Measure differential decay distributions (mostly sensitive to $\varepsilon_{\mathrm{S}, \mathrm{T}}$)

Lee-Yang, 1956 Jackson-Treiman-Wyld 1957
b (gses, gTET):
distortion of beta spectrum

See talk by G. King

$$
a\left(g_{A}\right), A\left(g_{A}\right), B\left(g_{A}, g_{\alpha} \varepsilon_{a}\right), . .
$$

isolated via suitable experimental asymmetries

Bounds on $\varepsilon_{s, T}$ at the 0.1% level, $\Lambda \sim 5-10 \mathrm{TeV}$

Cabibbo universality tests

Extract $V_{u d}=\cos \theta_{c}$ and $V_{u s}=\sin \theta_{c}$ from total decay rates

$$
\Gamma=G_{F}^{2} \times\left|V_{i j}\right|^{2} \times\left|M_{\mathrm{had}}\right|^{2} \times\left(1+\Delta_{R}\right) \times F_{\mathrm{kin}}
$$

CKM element

Hadronic matrix
element

Radiative corrections:
$(\alpha / \pi) \sim 2 \times 10^{-3}$ and smaller effects

Cabibbo universality tests

Extract $V_{u d}=\cos \theta_{c}$ and $V_{u s}=\sin \theta_{c}$ from total decay rates

$$
\Gamma=G_{F}^{2} \times\left|V_{i j}\right|^{2} \times\left|M_{\mathrm{had}}\right|^{2} \times\left(1+\Delta_{R}\right) \times F_{\mathrm{kin}}
$$

CKM element

Hadronic matrix element

Radiative corrections:
$(\alpha / \pi) \sim 2 . \times 10^{-3}$ and smaller effects

Unitarity test

$$
\Delta_{\mathrm{CKM}} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}-1=0
$$

Paths to $V_{u d}$ and $V_{u s}$

$\mathrm{V}_{\text {ud }}$	$0^{+} \rightarrow 0^{+}$ $\left(\pi^{ \pm} \rightarrow \pi^{0} e v\right)$	$n \rightarrow p e \bar{v}$ (Mirror transitions)	$\pi \rightarrow \mu \nu$
$\mathrm{V}_{\text {us }}$	$K \rightarrow \pi \mid v$	$(\Lambda \rightarrow p e \bar{v}, \ldots)$	$K \rightarrow \mu v$

(Hadronic τ decays)

Quark current mediating the decay

Input from many experiments and many theory papers

Paths to $V_{u d}$ and $V_{u s}$

$\mathrm{V}_{\text {ud }}$	$0^{+} \rightarrow 0^{+}$ $\left(\pi^{ \pm} \rightarrow \pi^{0} e v\right)$	$n \rightarrow p e \bar{v}$ (Mirror transitions)	$\pi \rightarrow \mu \nu$
$\mathrm{V}_{\text {us }}$	$K \rightarrow \pi \mathrm{l} v$	$(\Lambda \rightarrow p e \bar{v}, \ldots)$	$K \rightarrow \mu \nu$

(Hadronic

 τ decays)Commentl: Modern approaches to rad. corr. build upon Sirlin current algebra formulation from the '60 \& '70s New wave of "inner" radiative corrections (n , nuclei) initiated by dispersive analysis of Seng, Gorchtein, Patel, Ramsey-Musolf 2018, all the way to very recent lattice QCD calculation by Ma et al, 2308. 16755

$$
\begin{array}{r}
\left|V_{u d}\right|^{2}=\frac{2984.432(3) s}{f t\left(1+\Delta_{R}^{V}+\delta_{R}^{\prime}+\delta_{N S}-\delta_{C}\right)} \\
\hline V_{u d}^{0^{+} \rightarrow 0^{+}}=0.97367(11)_{\exp }(13)_{\Delta_{V}^{R}}(27)_{\mathrm{NS}}[32]_{\text {total }}
\end{array}
$$

Paths to $V_{u d}$ and $V_{u s}$

$\mathrm{V}_{\text {ud }}$	$0^{+} \rightarrow 0^{+}$ $\left(\pi^{ \pm} \rightarrow \pi^{0} e v\right)$	$n \rightarrow p e \bar{v}$ (Mirror transitions)	$\pi \rightarrow \mu \nu$
$\mathrm{V}_{\text {us }}$	$K \rightarrow \pi \mathrm{l} v$	$(\Lambda \rightarrow p e \bar{v}, \ldots)$	$K \rightarrow \mu v$

(Hadronic

 t decays)Comment 2: neutron decay is beginning to provide very competitive $\delta \mathrm{V}_{\mathrm{ud}}$

$$
\begin{aligned}
& V_{u d}^{\mathrm{n}, \mathrm{PDG}}=0.97441(3)_{f}(13)_{\Delta_{R}}(82)_{\lambda}(28)_{\tau_{n}}[88]_{\text {total }} \\
& V_{u d}^{\mathrm{n}, \text { best }}=0.97413(3)_{f}(13)_{\Delta_{R}}(35)_{\lambda}(20)_{\tau_{n}}[43]_{\text {total }} \\
&
\end{aligned}
$$

Most precise measurements

Maerkish et al,
$\lambda=g_{A} / g_{V}$

The Cabibbo angle "anomaly"

$$
\Gamma=G_{F}^{2} \times\left|V_{i j}\right|^{2} \times\left|M_{\text {had }}\right|^{2} \times\left(1+\Delta_{R}\right) \times F_{\text {kin }}
$$

- The 'anomalies':
- $\sim 3 \sigma$ effect in global fit $\left(\Delta_{\text {CKM }}=-1.48(53) \times 10^{-3}\right)$
- $\mathrm{V}_{\text {ud }}$ and $\mathrm{V}_{\text {us }}$ from different processes \rightarrow different $\Delta_{\text {CKM }}$
- $\sim 3 \sigma$ problem in meson sector (KI2 vs KI3)

The Cabibbo angle "anomaly"

$$
\Gamma=G_{F}^{2} \times\left|V_{i j}\right|^{2} \times\left|M_{\mathrm{had}}\right|^{2} \times\left(1+\Delta_{R}\right) \times F_{\mathrm{kin}}
$$

- Expected experimental improvements:
- neutron decay (will match nominal nuclear uncertainty)
- pion beta decay ($3 x$ to $10 x$ at PIONEER phases II, III)
- possibly new $K_{\mu 3} / K_{\mu 2}$ BR measurement at NA62 \& HIKE
- Further theoretical scrutiny
- Lattice gauge theory: $\mathrm{K} \rightarrow \pi$ vector f.f. , rad. corr. for KI 3
- EFT for neutron and nuclei, with goal $\delta \Delta_{R} \sim 2 \times 10^{-4}$
- ...
- Possible BSM explanations: EFT \& specific models

The Cabibbo angle "anomaly"

$$
\Gamma=G_{F}^{2} \times\left|V_{i j}\right|^{2} \times\left|M_{\mathrm{had}}\right|^{2} \times\left(1+\Delta_{R}\right) \times F_{\mathrm{kin}}
$$

- Expected experimental improvements:
- neutron decay (will match nominal nuclear uncertainty)
- pion beta decay ($3 x$ to $10 x$ at PIONEER phases II, III)
- possibly new $K_{\mu 3} / K_{\mu 2}$ BR measurement at NA62 \& HIKE
- Further theoretical scrutiny
- Lattice gauge theory: $K \rightarrow \pi$ vector f.f., rad. corr. for KI3
- EFT for neutron and nuclei, with goal $\delta \Delta_{R} \sim 2 \times 10^{-4}$
- ...
- Possible BSM explanations: EFT \& specific models

Radiative corrections to neutron beta decay in EFT

VC, J. de Vries, L. Hayen, E. Mereghetti, A.Walker-Loud 2202.I0439, PRL VC, W. Dekens, E. Mereghetti, O.Tomalak, 2306.03I38, PRD

EFT for neutron decay: why?

- Widely separated mass scales play a role in neutron decay \& EFT approach not fully embraced in the literature

	$M_{W, Z}$
\gg	$\Lambda_{\chi} \sim m_{N} \sim 4 \pi F_{\pi} \sim 1 \mathrm{GeV}$
\gg	$m_{\pi} \sim 140 \mathrm{MeV}$
\gg	$q_{\mathrm{ext}} \sim m_{n}-m_{p} \sim m_{e} \sim 1 \mathrm{MeV}$

Weak scale

XSB \& nucleon mass scale
Pion mass / hadronic structure
Q value

- Small ratios appear as expansion parameters and arguments of logarithms
$\epsilon_{W}=\Lambda_{\chi} / M_{W} \sim 10^{-2}$
$\epsilon_{\chi}=m_{\pi} / \Lambda_{\chi} \sim 0.1$
$\epsilon_{\text {recoil }}=q_{\text {ext }} / \Lambda_{\chi} \sim 10^{-3} \sim \alpha / \pi$
$\epsilon_{\pi}=q_{\mathrm{ext}} / m_{\pi} \sim 10^{-2}$
- At the required precision $\left(\sim 10^{-4}\right)$, need to keep terms of $O\left(G_{F} \mathrm{a}\right), \mathrm{O}\left(\mathrm{G}_{\mathrm{F}} \mathrm{A} \varepsilon_{\chi}\right)$, along with leading logarithms $\left(L L \sim(a \ln (\varepsilon))^{n}\right)$ and next-to-leading logarithms $\left(N L L \sim a\left(a_{s} \ln \left(\varepsilon_{W}\right)\right)^{n}, a(a \ln (\varepsilon))^{n}\right)$

Multi-step strategy

- Matching and running in a tower of EFTs: SM \rightarrow LEFT \rightarrow HBChPT \rightarrow tEFT

Corrections to neutron decay

- Convenient starting point for decay rate calculation is an effective theory with nucleons, leptons and photons

$$
\mathcal{L}_{\lambda t}=-\sqrt{2} G_{F} V_{u d} \bar{e} \gamma_{\mu} P_{L} \nu_{e} \bar{N}\left(g_{V} v_{\mu}-2 g_{A} S_{\mu}\right) \tau^{+} N+\ldots
$$

gv and ga themselves depend on $a, \varepsilon_{W}, \varepsilon_{X}$, ε_{π} (consistently with the decoupling theorem)

Corrections to neutron decay

- Convenient starting point for decay rate calculation is an effective theory with nucleons, leptons and photons

Corrections to neutron decay

- Convenient starting point for decay rate calculation is an effective theory with nucleons, leptons and photons

$$
\mathcal{L}_{\pi}=-\sqrt{2} G_{F} V_{u d} \bar{e} \gamma_{\mu} P_{L} \nu_{e} \bar{N}\left(g_{V} v_{\mu}-2 g_{A} S_{\mu}\right) \tau^{+} N+\ldots
$$

gv and g_{A} themselves depend on $a, \varepsilon_{w}, \varepsilon_{x}$, ε_{π} (consistently with the decoupling theorem)

$$
\lambda=g_{A} / g v \quad \quad \Gamma_{n}=\frac{G_{F}^{2}\left|V_{u d}\right|^{2} m_{e}^{5}}{2 \pi^{3}}\left(1+3 \lambda^{2}\right) \cdot f_{0} \cdot\left(1+\Delta_{f}\right) \cdot\left(1+\Delta_{R}\right)
$$

Includes electromagnetic shift to $g v$ and g_{A} from $E>m_{\pi}$
Δ_{f} : Coulomb corrections (photon loops with $\mathcal{L}_{4 t}$) \& $\mathrm{O}\left(\epsilon_{\text {recoil }}\right)$
Δ_{R} : proportional to $(\mathrm{gv})^{2}$ $\times\left(I+O(a)\right.$ virtual and real effects from $\left.\mathcal{L}_{\nless t}\right)$

$\lambda=g_{A} / g v$ to $O(a)$ and $O\left(a \varepsilon_{x}\right)$

VC, J. de Vries, L. Hayen, E. Mereghetti, A.Walker-Loud 2202.I 0439

- ($\left.g_{A} / g v\right)$ gets \%-level corrections proportional to the pion EM mass splitting, 100x larger than previous estimate

$$
\begin{aligned}
& \frac{\lambda^{\exp }}{\lambda^{\mathrm{QCD}}}=1+\delta_{\mathrm{RC}} \\
& \delta_{R C} \simeq(2.0 \pm 0.6) \%
\end{aligned}
$$

Large uncertainty due to unknown LEC that could be determined by future lattice calculations

Radiative corrections generally improve agreement between data and Lattice QCD

Corrections to total decay rate

VC, W. Dekens, E. Mereghetti, O.Tomalak, 2306.03I38

$$
\Gamma_{n}=\frac{G_{F}^{2}\left|V_{u d}\right|^{2} m_{e}^{5}}{2 \pi^{3}}\left(1+3 \lambda^{2}\right) \cdot f_{0} \cdot\left(1+\Delta_{f}\right) \cdot\left(1+\Delta_{R}\right), \quad \lambda=g_{A} / \mathrm{gv}
$$

$$
\Delta_{f}=3.573(5) \%
$$

$$
\Delta_{R}=4.044(24)_{\mathrm{Had}}(8)_{\alpha \alpha_{s}^{2}}(7)_{\alpha \epsilon_{\chi}^{2}}(5)_{\mu_{\chi}}[27]_{\mathrm{total}} \times 10^{-2}
$$

Corrections to total decay rate

VC, W. Dekens, E. Mereghetti, O.Tomalak, 2306.03138

$$
\Gamma_{n}=\frac{G_{F}^{2}\left|V_{u d}\right|^{2} m_{e}^{5}}{2 \pi^{3}}\left(1+3 \lambda^{2}\right) \cdot f_{0} \cdot\left(1+\Delta_{f}\right) \cdot\left(1+\Delta_{R}\right), \quad \lambda=g_{A} / g \vee
$$

CORRECTION	COMPARISON with LITERATURE**	MAIN SOURCE of DISCREPANCY
$\Delta_{f}=3.573(5) \%$	-0.035%	NR vs relativistic Fermi function
$\Delta_{\mathrm{R}}=4.044(27) \%$	$+0.061 \%$	a^{2} Log $\left(\mathrm{m}_{\mathrm{N}} / \mathrm{m}_{\mathrm{e}}\right)$
$\Delta_{\mathrm{TOT}}=7.761(27) \%$.	$+0.026 \%$	Both related to the treatment of NLL corrections in the hadronic EFT

${ }^{* *}$ As compiled in VC,A. Crivellin, M. Hoferichter, M. Moulson, 2208.II707. Non-perturbative input in Δ_{R} is the same Overall shift of -0.013% in $\mathrm{V}_{\text {ud }}$ (neutron) compared to previous literature

Implications for new physics

VC, A. Crivellin, M. Hoferichter, M. Moulson, 2208.II707, PLB VC, W. Dekens, J. deVries, E. Mereghetti, T.Tong 2204.08440, PRD
VC, W. Dekens, J. de Vries, E. Mereghetti, T.Tong, in preparation

Connecting scales \& processes

To connect UV physics to beta decays, use EFT

- Start with GeV scale effective Lagrangian
- New physics effects are encoded in ten quark-level couplings
- Quark-level version of Lee-Yang effective Lagrangian

GeV-scale effective Lagrangian

VC, Gonzalez-Alonso, Jenkins 0908.1754, NPB

$$
\mathcal{L}_{C C}^{(\mu)}=-\frac{G_{F}^{(0)}}{\sqrt{2}}\left(1+\epsilon_{L}^{(\mu)}\right) \bar{e} \gamma^{\rho}\left(1-\gamma_{5}\right) \nu_{e} \cdot \bar{\nu}_{\mu} \gamma_{\rho}\left(1-\gamma_{5}\right) \mu+\ldots
$$

Semi-leptonic interactions

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CC}} & =-\frac{G_{F}^{(0)} V_{u d}}{\sqrt{2}} \times\left[\left(\delta^{a b}+\epsilon_{L}^{a b}\right) \bar{e}_{a} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d\right. \\
& +\epsilon_{R}^{a b} \bar{e}_{a} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} \gamma^{\mu}\left(1+\gamma_{5}\right) d \\
& +\epsilon_{S}^{a b} \bar{e}_{a}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} d \\
& -\epsilon_{P}^{a b} \bar{e}_{a}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} \gamma_{5} d \\
& \left.+\epsilon_{T}^{a b} \bar{e}_{a} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} \sigma^{\mu \nu}\left(1-\gamma_{5}^{2}\right) d\right]+ \text { h.c. }
\end{aligned}
$$

GeV-scale effective Lagrangian

$$
\mathcal{L}_{C C}^{(\mu)}=-\frac{G_{F}^{(0)}}{\sqrt{2}}\left(1+\epsilon_{L}^{(\mu)}\right) \bar{e} \gamma^{\rho}\left(1-\gamma_{5}\right) \nu_{e} \cdot \bar{\nu}_{\mu} \gamma_{\rho}\left(1-\gamma_{5}\right) \mu+\ldots
$$

$$
\left.\left.\begin{array}{rl}
\mathcal{L}_{\mathrm{CC}} & =-\frac{G_{F}^{(0)} V_{u d}}{\sqrt{2}} \times\left[\left(\delta^{(\mu)} V_{u d}\right.\right. \\
\sqrt{2} \\
\hline
\end{array} \epsilon_{L}^{a b}\right) \bar{e}_{a} \gamma_{\mu}\left(1-\gamma_{5}^{(\mu)}\right) \nu_{b} \cdot \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d\right] \text { Semi-leptonic interactions }
$$

$$
+\epsilon_{S}^{a b} \bar{e}_{a}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} d
$$

$$
\varepsilon_{\mathrm{i}} \sim(\mathrm{v} / \Lambda)^{2}
$$

$$
-\epsilon_{P}^{a b} \bar{e}_{a}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} \gamma_{5} d
$$

$$
\left.+\epsilon_{T}^{a b} \bar{e}_{a} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) d\right]+ \text { h.c. }
$$

Corrections to V_{ud} and V_{us}

Find set of ε 's so that $\mathrm{V}_{\text {ud }}$ and $\mathrm{V}_{\text {us }}$ bands meet on the unitarity circle

Right-handed quark couplings

- Right-handed currents (in the 'ud' and 'us' sectors)

$$
\begin{aligned}
\left|\bar{V}_{u d}\right|_{0^{+} \rightarrow 0^{+}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2 \epsilon_{R}\right) \\
\left|\bar{V}_{u d}\right|_{n \rightarrow p e \bar{\nu}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2 \epsilon_{R}\right) \\
\left|\bar{V}_{u s}\right|_{K e 3}^{2} & =\left|V_{u s}\right|^{2}\left(1+2 \epsilon_{R}^{(s)}\right) \\
\left|\bar{V}_{u d}\right|_{\pi_{e 3}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2 \epsilon_{R}\right) \\
\left|\bar{V}_{u s}\right|_{K_{\mu 2}}^{2} & =\left|V_{u s}\right|^{2}\left(1-2 \epsilon_{R}^{(s)}\right) \\
\left|\bar{V}_{u d}\right|_{\pi_{\mu 2}}^{2} & =\left|V_{u d}\right|^{2}\left(1-2 \epsilon_{R}\right)
\end{aligned}
$$

- CKM elements from vector (axial) channels are shifted by $I+\varepsilon_{R}\left(I-\varepsilon_{R}\right)$. $\mathrm{V}_{\mathrm{us}} / \mathrm{V}_{\text {ud }}, \mathrm{V}_{\text {ud }}$ and $\mathrm{V}_{\text {us }}$ shift in anti-correlated way, can resolve all tensions!

Unveiling R-handed quark currents?

$$
\begin{aligned}
\Delta_{C K M}^{(1)} & =\left|V_{u d}^{\beta}\right|^{2}+\left|V_{u s}^{K_{\ell 3}}\right|^{2}-1 \\
& =-1.76(56) \times 10^{-3} \\
\Delta_{C K M}^{(2)} & =\left|V_{u d}^{\beta}\right|^{2}+\left|V_{u s}^{K_{\ell 2} / \pi_{\ell 2}, \beta}\right|^{2}-1 \\
& =-0.98(58) \times 10^{-3} \\
\Delta_{C K M}^{(3)} & =\left|V_{u d}^{K_{\ell 2} / \pi_{\ell 2}, K_{\ell 3}}\right|^{2}+\left|V_{u s}^{K_{\ell 3}}\right|^{2}-1 \\
& =-1.64(63) \times 10^{-2}
\end{aligned}
$$

Unveiling R-handed quark currents?

VC-Crivellin-Hoferichter-Moulson 2208.11707

\[

\]

Unveiling R-handed quark currents?

VC-Crivellin-Hoferichter-Moulson 2208.11707

$\Delta_{\text {CKM }}^{(1)}=2 \epsilon_{R}+2 \Delta \epsilon_{R} V_{u s}^{2}$,
$\Delta_{\text {CKM }}^{(2)}=2 \epsilon_{R}-2 \Delta \epsilon_{R} V_{u s}^{2}$,
$\Delta_{\text {CKM }}^{(3)}=2 \epsilon_{R}+2 \Delta \epsilon_{R}\left(2-V_{u s}^{2}\right)$

$\epsilon_{R}=-0.69(27) \times 10^{-3}$
$\Delta \epsilon_{R}=-3.9(1.6) \times 10^{-3}$

$$
\Lambda_{R} \sim 5-10 \mathrm{TeV}
$$

- Preferred ranges are not in conflict with other constraints from β decays

VC, Hayen, deVries, Mereghetti, Walker-Loud, 2202.10439

$$
\frac{\lambda^{\exp }}{\lambda^{\mathrm{QCD}}}=1+\delta_{\mathrm{RC}}-2 \epsilon_{R}
$$

$$
\epsilon_{R}=-0.2(1.2) \%
$$

$$
\begin{gathered}
\lambda \equiv \frac{g_{A}}{g_{V}} \\
\delta_{R C} \simeq(2.0 \pm 0.6) \%
\end{gathered}
$$

Unveiling R-handed quark currents?

$$
\begin{gathered}
\Delta_{\mathrm{CKM}}^{(1)}=2 \epsilon_{R}+2 \Delta \epsilon_{R} V_{u s}^{2}, \\
\Delta_{\mathrm{CKM}}^{(2)}=2 \epsilon_{R}-2 \Delta \epsilon_{R} V_{u s}^{2}, \\
\Delta_{\mathrm{CKM}}^{(3)}=2 \epsilon_{R}+2 \Delta \epsilon_{R}\left(2-V_{u s}^{2}\right) \\
\\
\epsilon_{R}=-0.69(27) \times 10^{-3} \\
\Delta \epsilon_{R}=-3.9(1.6) \times 10^{-3} \\
\Lambda_{\mathrm{R}} \sim 5-10 \mathrm{TeV}
\end{gathered}
$$

- Does the R-handed current explanation survive after taking into account high energy data?

Connecting scales \& processes - 2

To connect UV physics to beta decays, use EFT

- Need to know high-scale origin of the various ε_{a}

Connecting scales \& processes - 2

To connect UV physics to beta decays, use EFT

- Need to know high-scale origin of the various ε_{a}
- Identified by a matching calculation with the SM-EFT at the weak scale

Weak scale effective Lagrangian

$\varepsilon_{L, R}$ originate from $S U(2) \times U(1)$ invariant vertex corrections

Building blocks

$$
l^{i}=\binom{\nu_{L}^{i}}{e_{L}^{i}} \quad q^{i}=\binom{u_{L}^{i}}{d_{L}^{i}} \quad H=\binom{\varphi^{+}}{\varphi^{0}}
$$

Can be generated by
$W_{L}-W_{R}$ mixing in Left-Right symmetric models or by exchange of vector-like quarks

Weak scale effective Lagrangian

$\varepsilon_{L, R}$ originate from $S U(2) x U(1)$ invariant vertex corrections

$$
Q_{H q}^{(3)}=\left(H^{\dagger} i \overleftrightarrow{D_{\mu}}{ }_{\mu}^{I} H\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)
$$

$$
Q_{H u d}=i\left(\widetilde{H}^{\dagger} D_{\mu} H\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)
$$

$$
Q_{H l}^{(3)}=\left(H^{\dagger} i \overleftrightarrow{D_{\mu}}{ }_{\mu} H\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)
$$

$\varepsilon_{S, P, T}$ and one contribution to $\varepsilon\llcorner$ arise from $\mathrm{SU}(2) \times U(1)$ invariant

4-fermion operators

$$
\begin{gathered}
O_{q d e}=(\bar{\ell} e)(\bar{d} q)+\text { h.c. } \\
O_{l q}=\left(\bar{l}_{a} e\right) \epsilon^{a b}\left(\bar{g}_{b} u\right)+\text { h.c. } \\
O_{l q}^{t}=\left(\bar{l}_{a} \sigma^{\mu \nu} e\right) \epsilon^{a b}\left(\bar{q}_{b} \sigma_{\mu \nu} u\right)+\text { h.c. } \\
O_{l q}^{(3)}=\bar{l} \gamma_{\mu} \sigma^{a} l \bar{q} \gamma^{\mu} \sigma^{a} q \\
O_{l l}=\bar{l} \gamma_{\mu} l \bar{l} \gamma^{\mu} l
\end{gathered}
$$

High Energy constraints

High Energy constraints

Contribute tp PP $\rightarrow e v+X$ and $P p \rightarrow e^{+} e^{-}+X$ at the LHC

LHC: $\mathrm{pp} \rightarrow \mathrm{ev}+\mathrm{X}$

VC, Graesser, Gonzalez-Alonso 1210.4553

Alioli-Dekens-Girard-Mereghetti 1804.07407
Gupta et al. 1806.09006
Boughezal-Mereghetti-Petriello 2106.05337

High Energy constraints

Can be probed at the LHC by associated Higgs + W production

S. Alioli, VC, W. Dekens, J. de Vries, E. Mereghetti I703.0475 I

Current LHC results allow for to $\varepsilon_{L, R} \sim 5 \%$

High Energy constraints

Contribute to Z-pole and other precision electroweak (EW) observables, including** Mw

High Energy constraints

Contribute to Z-pole and other precision electroweak (EW) observables, including** Mw

In fact, explanations of Mw anomaly in SMEFT (beyond oblique corrections) are in tension with $\Delta_{\text {CKM }}$

Global fit to EWPO $\Rightarrow \quad \Delta_{\text {CKM }}^{\mathrm{EWfit}}=-(0.012 \pm 0.005)$,
deBlas et al 2204.04204,
Bagnaschi et al 2204.05260,

The CLEW framework

- So we see that a consistent analysis of beta decays in the SM-EFT requires using data from

Operators contributing to all three groups of observables

EW

Lessons from CLEWed analysis

- CLEW analysis with no assumption about flavor symmetry requires 37 effective couplings
- When including the CDF value of mw , best fit also include oblique parameters (S, T) besides the RH CC vertex correction
- Do they all matter? No.
- The best fit (with the lowest $\mathrm{AIC}=2 \mathrm{k}-\ln (\mathrm{L})$) is given by just including the two RH CC vertex corrections
- Next best fit is obtained by adding LH vertex corrections which slightly improve the EWPO

$$
Q_{H u d}=i\left(\widetilde{H}^{\dagger} D_{\mu} H\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)
$$

Falsifying R-handed current hypothesis

- Two options (besides comparing gA from experiment and Lattice QCD)
- $K \rightarrow(\pi \pi)_{I=2}$ decay amplitude: experiment vs Lattice QCD
- WH \& WZ production at the High Luminosity LHC

Conclusions \& Outlook

- The Cabibbo angle anomaly is one of few low-energy "cracks" in the SM, probing new physics up to $\Lambda \sim 20 \mathrm{TeV}$ — big deal if confirmed, requires both experimental and theoretical scrutiny
- A new analysis of neutron beta decay through a tower of EFTs allowed us to reach NLL accuracy and revealed \%-level corrections to gA/gv.
Future work: development of EFT for few nucleon systems \& interface with ab-initio nuclear calculations
- Most natural BSM explanations of Cabibbo anomaly are "righthanded vertex corrections" in the EFT language
- CLEW framework is necessary for consistent analysis. RH CC 'explanation’ of the Cabibbo anomaly survives CLEWed analysis

Backup

Pion decay and Lepton Flavor Universality

- $R_{\mathrm{e} / \mu}=\Gamma(\pi \rightarrow \mathrm{eV}) / \Gamma(\pi \rightarrow \mu \mathrm{V})$ helicity suppressed the SM (V-A), zero if $\mathrm{m}_{\mathrm{e}} \rightarrow 0$

$\sigma_{\text {exp }} \sim 15 \sigma_{\mathrm{th}} \Rightarrow$ pristine LFU test possible

$$
\begin{aligned}
& R_{e / \mu}(\mathrm{SM})=1.23524(015) \times 10^{-4} \\
& R_{e / \mu}(\mathrm{Exp})=1.23270(230) \times 10^{-4}
\end{aligned}
$$

Pion decay and Lepton Flavor Universality

- $R_{e / \mu}=\Gamma(\pi \rightarrow \mathrm{ev}) / \Gamma(\pi \rightarrow \mu v)$ helicity suppressed the $S M(V-A)$, zero if $m_{e} \rightarrow 0$
- $\sigma_{\text {exp }} \sim 15 \sigma_{\text {th }} \Rightarrow$ pristine LFU test possible

VC-Rosell 0707.3439

$$
\begin{aligned}
& R_{e / \mu}(\mathrm{SM})=1.23524(015) \times 10^{-4} \\
& R_{e / \mu}(\mathrm{Exp})=1.23270(230) \times 10^{-4}
\end{aligned}
$$

- PIONEER @ PSI will match theoretical uncertainty. Order of magnitude gap room for surprises! Will probe scales Λ_{A} $\sim 30 \mathrm{TeV}$ or $\Lambda_{P} \sim 1000 \mathrm{TeV}$ (helicity!)

Corrections to V_{ud} and V_{us}

- General case

$$
\begin{aligned}
\left|\bar{V}_{u d}\right|_{0^{+} \rightarrow 0^{+}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2\left(\epsilon_{L}^{e e}+\epsilon_{R}-\epsilon_{L}^{(\mu)}\right)+c_{0^{+}}^{S}(Z) \epsilon_{S}^{e e}\right) \\
\left|\bar{V}_{u d}\right|_{n \rightarrow p e \bar{\nu}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2\left(\epsilon_{L}^{e e}+\epsilon_{R}-\epsilon_{L}^{(\mu)}\right)+c_{n}^{S} \epsilon_{S}^{e e}+c_{n}^{T} \epsilon_{T}^{e e}\right) \\
\left|\bar{V}_{u s}\right|_{K e 3}^{2} & =\left|V_{u s}\right|^{2}\left(1+2\left(\epsilon_{L}^{e e(s)}+\epsilon_{R}^{(s)}-\epsilon_{L}^{(\mu)}\right)\right) \\
\left|\bar{V}_{u d}\right|_{\pi_{e 3}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2\left(\epsilon_{L}^{e e}+\epsilon_{R}-\epsilon_{L}^{(\mu)}\right)\right) \\
\left|\bar{V}_{u s}\right|_{K_{\mu 2}}^{2} & =\left|V_{u s}\right|^{2}\left(1+2\left(\epsilon_{L}^{\mu \mu(s)}-\epsilon_{R}^{s(s)}-\epsilon_{L}^{(\mu)}\right)-2 \frac{B_{0}}{m_{\ell}} \epsilon_{P}^{\mu \mu(s)}\right) \\
\left|\bar{V}_{u d}\right|_{\pi_{\mu 2}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2\left(\epsilon_{L}^{\mu \mu}-\epsilon_{R}-\epsilon_{L}^{(\mu)}\right)-2 \frac{B_{0}}{m_{\ell}} \epsilon_{P}^{\mu \mu}\right)
\end{aligned}
$$

$\varepsilon_{s}{ }^{(s)}$: shifts the slope of the scalar form factor, at levels well below EXP and TH uncertainties
$\varepsilon_{T^{(s)}}$: suppressed by $\mathrm{m}_{\text {lept }} / \mathrm{m}_{\mathrm{K}}$

Connection to EW precision tests

VC, Dekens, deVries, Mereghetti, Tong 2204.08440

- Explanations of Mw anomaly in SMEFT + Minimal FlavorViolation (beyond oblique corrections) are in tension with $\Delta_{\text {CKM }}$

Connection to EW precision tests

VC, Dekens, deVries, Mereghetti, Tong 2204.08440

- Explanations of Mw anomaly in SMEFT + Minimal FlavorViolation (beyond oblique corrections) are in tension with $\Delta_{\text {CKM }}$

$$
\frac{\delta m_{W}^{2}}{m_{W}^{2}}=v^{2} \frac{s_{w} c_{w}}{s_{w}^{2}-c_{w}^{2}}\left[2 C_{H W B}+\frac{c_{w}}{2 s_{w}} C_{H D}+\frac{s_{w}}{c_{w}}\left(2 C_{H l}^{(3)}-C_{l l}\right)\right]
$$

$$
\Delta_{\mathrm{CKM}}=v^{2}\left[C_{\Delta}-2 C_{l q}^{(3)}\right]
$$

$$
C_{\Delta}=2\left[C_{H q}^{(3)}-C_{H l}^{(3)}+\hat{C}_{l l}\right]
$$

$\lambda=g_{A} A g v$ to $O(a)$ and $O\left(a \varepsilon_{x}\right)$

VC, J. de Vries, L. Hayen, E. Mereghetti, A.Walker-Loud 2202.I 0439

- ($\left.g_{A} / g_{v}\right)$ gets \%-level corrections proportional to the pion EM mass splitting, much larger than previous estimate

Hayen 2010.07262,

$$
\frac{\lambda^{\exp }}{\lambda^{\mathrm{QCD}}}=1+\frac{\alpha}{2 \pi}\left(\Delta_{\mathrm{em}}^{(0)}+\Delta_{\mathrm{em}}^{(1)}+\ldots\right) \quad \Delta_{\mathrm{em}}^{(n)} \sim O\left(\epsilon_{\chi}^{n}\right)
$$

$$
m_{\pi^{ \pm}}^{2}-m_{\pi^{0}}^{2}=2 e^{2} F_{\pi}^{2} Z_{\pi} \quad Z_{\pi} \simeq 0.8
$$

Combination of unknown ChPT LECs

$$
\Delta_{\mathrm{em}}^{(0)}=Z_{\pi}\left[\frac{1+3 g_{A}^{(0) 2}}{2}\left(\log \frac{\mu^{2}}{m_{\pi}^{2}}-1\right)-g_{A}^{(0) 2}\right]+\hat{C}(\mu)
$$

$$
\Delta_{\mathrm{em}}^{(1)}=Z_{\pi} 4 \pi m_{\pi}\left[c_{4}-c_{3}+\frac{3}{8 m_{N}}+\frac{9}{16 m_{N}} g_{A}^{(0) 2}\right]
$$

$\mathrm{c}_{3,4}$ are LECs from $\mathcal{L}_{\pi N}^{p^{2}}$
They can be determined by analysis of pion-nucleon scattering

$\lambda=g_{A} / g v$ to $O(a)$ and $O\left(a \varepsilon_{x}\right)$

VC, J. de Vries, L. Hayen, E. Mereghetti, A.Walker-Loud 2202.I 0439

- ($\left.g_{A} / g_{v}\right)$ gets \%-level corrections proportional to the pion EM mass splitting, much larger than previous estimate

$$
\frac{\lambda^{\exp }}{\lambda^{\mathrm{QCD}}}=1+\frac{\alpha}{2 \pi}\left(\Delta_{\mathrm{em}}^{(0)}+\Delta_{\mathrm{em}}^{(1)}+\ldots\right) \quad \Delta_{\mathrm{em}}^{(n)} \sim O\left(\epsilon_{\chi}^{n}\right)
$$

$$
\begin{array}{cc}
\frac{\alpha}{2 \pi} \Delta_{\mathrm{em}}^{(0)} \in\{0.25,0.65\} \cdot 10^{-2} \longleftarrow & \mu \in\left\{m_{N} / 2, m_{N}\right\} \\
\frac{\alpha}{2 \pi} \Delta_{\mathrm{em}}^{(1)}=\{1.15,1,70,1.85\} \cdot 10^{-2} \longleftarrow & \begin{array}{c}
\text { c3,4 are LECs at NLO, } \\
\text { N2LO, N3LO }
\end{array} \\
\frac{\alpha}{2 \pi} \Delta_{\mathrm{em}}^{(0+1)} \in\{1.4,2.5\} \cdot 10^{-2} & \begin{array}{c}
\text { Siemenset all., } \\
1610.08978
\end{array} \\
\hline
\end{array}
$$

- Large NLO correction understood in terms of large LECs $\mathrm{C}_{3,4} \sim 5 \mathrm{GeV}^{-1}$ dominated by Δ-exchange
- Convergence cannot be fully assessed due to unknown LEC

Radiative corrections generally improve agreement between data and Lattice QCD

