LENSES in GRAIN: 3D Reconstruction for light Points and Tracks

Giovanni De Matteis and Luigi Martina
Dipartimento di Matematica e Fisica Università del Salento Italy Joint work with Lecce Group and
L. Di Noto and M. Vicenzi (Genova)

MATHEMATICAL FRAMEWORK: MULTIPLE VIEW PROJECTIVE GEOMETRY IN 3D

SINGLE VIEW GEOMETRY

\mathbf{X} : source point, \mathbf{x} : reconstructed image on the image plane

DOUBLE VIEW GEOMETRY

X: source point
\mathbf{x} : reconstructed image on the first image plane
x^{\prime} : reconstructed image on the second image plane

TRIPLE VIEW GEOMETRY

MULTIPLE VIEW GEOMETRY

3D Reconstruction: system of coupled double-view geometry

$$
\begin{align*}
\mathbf{x} & =\mathbf{P X} \tag{1}\\
\mathbf{x}^{\prime} & =\mathbf{P}^{\prime} \mathbf{X} \tag{2}
\end{align*}
$$

\mathbf{X} : 3D source point
x : 2D reconstructed image on the first image plane
$\mathrm{x}^{\prime}: 2 \mathrm{D}$ reconstructed image on the second image plane
\mathbf{P} and \mathbf{P}^{\prime} projection/camera matrices
Use of projective coordinates

3D reconstruction

$$
\begin{gather*}
\mathbf{0}=\mathbf{x} \times \mathbf{x}=\mathbf{x} \times \mathbf{P} \mathbf{X} \tag{3}\\
\mathbf{0}=\mathbf{x}^{\prime} \times \mathbf{x}^{\prime}=\mathbf{x}^{\prime} \times \mathbf{P}^{\prime} \mathbf{X} \tag{4}\\
\mathbf{X}=\mathbf{P}^{+} \mathbf{x}+\left[\frac{\left(\mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x} \times \mathbf{x}^{\prime}\right) \cdot\left(\mathbf{x}^{\prime} \times \mathbf{P}^{\prime} C\right)}{\left(\mathbf{x}^{\prime} \times \mathbf{P}^{\prime} C\right) \cdot\left(\mathbf{x}^{\prime} \times \mathbf{P}^{\prime} C\right)}\right] C \tag{5}\\
\mathbf{X}=\mathbf{P}^{\prime+} \mathbf{x}^{\prime}+\left[\frac{\left(\mathbf{P} \mathbf{P}^{\prime+} \mathbf{x}^{\prime} \times \mathbf{x}\right) \cdot\left(\mathbf{x} \times \mathbf{P} C^{\prime}\right)}{\left(\mathbf{x} \times \mathbf{P} C^{\prime}\right) \cdot\left(\mathbf{x} \times \mathbf{P} C^{\prime}\right)}\right] C^{\prime} \tag{6}\\
\mathbf{P}^{+}=\mathbf{P}^{T}\left(\mathbf{P} \mathbf{P}^{T}\right)^{-1} \tag{7}\\
\mathbf{P}^{\prime+}=\mathbf{P}^{\prime T}\left(\mathbf{P}^{\prime} \mathbf{P}^{T}\right)^{-1} \tag{8}
\end{gather*}
$$

The Fundamental Matrix

$$
\begin{gather*}
\mathbf{F}=\left[\mathbf{P}^{\prime} C\right]_{\times} \mathbf{P}^{\prime} \mathbf{P}^{+} \tag{9}\\
\operatorname{det} \mathbf{F}=0 \tag{10}
\end{gather*}
$$

Compatibility Condition

$$
\begin{equation*}
\mathbf{x}^{\prime T} \cdot \mathbf{F} \mathbf{x}=0 \tag{11}
\end{equation*}
$$

GRAIN: lens system

3D representation of 39 selected source points

2D representation of source points (point 0)
Image on lens-sensor 13

2 D representation of source points (point 0) Image on lens-sensor 14

2 D representation of source points (point 0) Image on lens-sensor 33

2 D representation of source points (point 0) Image on lens-sensor 34

Centroids

Image points \mathbf{x} and \mathbf{x}^{\prime} are the centroids of the distribution of photons

$$
\begin{align*}
& \mathbf{x}=\frac{\sum_{i j} \gamma_{i j} \mathbf{x}_{i j}}{\sum_{i j} \gamma_{i j}} \tag{12}\\
& \mathbf{x}^{\prime}=\frac{\sum_{i j} \gamma_{i j}^{\prime} \mathbf{x}_{i j}^{\prime}}{\sum_{i j} \gamma_{i j}^{\prime}} \tag{13}
\end{align*}
$$

$\mathbf{x}_{i j}, \mathbf{x}_{i j}^{\prime}$ image pixels
$\gamma_{i j}$: number of photons on pixel (i, j) of the first camera
$\gamma_{i j}^{\prime}$: number of photons on pixel (i, j) of the second camera

3D reconstruction - General Framework

$$
\begin{gather*}
\mathbf{0}=\mathbf{x} \times \mathbf{x}=\mathbf{x} \times \mathbf{P} \mathbf{X} \tag{14}\\
\mathbf{0}=\mathbf{x}^{\prime} \times \mathbf{x}^{\prime}=\mathbf{x}^{\prime} \times \mathbf{P}^{\prime} \mathbf{X} \tag{15}\\
\mathbf{X}=\mathbf{P}^{+} \mathbf{x}+\left[\frac{\left(\mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x} \times \mathbf{x}^{\prime}\right) \cdot\left(\mathbf{x}^{\prime} \times \mathbf{P}^{\prime} C\right)}{\left(\mathbf{x}^{\prime} \times \mathbf{P}^{\prime} C\right) \cdot\left(\mathbf{x}^{\prime} \times \mathbf{P}^{\prime} C\right)}\right] C \tag{16}\\
\mathbf{X}=\mathbf{P}^{\prime+} \mathbf{x}^{\prime}+\left[\frac{\left(\mathbf{P} \mathbf{P}^{\prime+} \mathbf{x}^{\prime} \times \mathbf{x}\right) \cdot\left(\mathbf{x} \times \mathbf{P} C^{\prime}\right)}{\left(\mathbf{x} \times \mathbf{P} C^{\prime}\right) \cdot\left(\mathbf{x} \times \mathbf{P} C^{\prime}\right)}\right] C^{\prime} \tag{17}\\
\mathbf{P}^{+}=\mathbf{P}^{T}\left(\mathbf{P} \mathbf{P}^{T}\right)^{-1} \tag{18}\\
\mathbf{P}^{\prime+}=\mathbf{P}^{\prime T}\left(\mathbf{P}^{\prime} \mathbf{P}^{\prime T}\right)^{-1} \tag{19}
\end{gather*}
$$

The Fundamental Matrix

$$
\begin{gather*}
\mathbf{F}=\left[\mathbf{P}^{\prime} C\right]_{\times} \mathbf{P}^{\prime} \mathbf{P}^{+} \tag{20}\\
\operatorname{det} \mathbf{F}=0 \tag{21}
\end{gather*}
$$

Compatibility Condition

$$
\begin{equation*}
\mathbf{x}^{\prime T} \cdot \mathbf{F} \mathbf{x}=0 \tag{22}
\end{equation*}
$$

3D reconstruction:

front-to-front lenses and using theoretical $\mathrm{P}, \mathrm{P}^{\prime}$ and F

$$
\begin{aligned}
X_{s} & =-\frac{2 c x^{\prime}\left(x^{2}+y^{2}\right)}{f\left(x^{2}+y^{2}+x x^{\prime}+y y^{\prime}\right)} \\
Y_{s} & =-\frac{2 c y^{\prime}\left(x^{2}+y^{2}\right)}{f\left(x^{2}+y^{2}+x x^{\prime}+y y^{\prime}\right)} \\
\mathbf{x} & =(x, y), \quad \mathbf{x}^{\prime}=\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

c distance of the center of the lens from the center of GRAIN
f lens-sensor distance
WARNING: the labels X_{s} and Y_{s} are meant as the transversal 3D coordinates to the projection direction

Once the correspondence is implemented: $\mathbf{x}^{\prime T} \cdot \mathbf{F x}=0$ 3 D reconstruction

$$
\begin{gathered}
X_{s}=-\frac{2 c x x^{\prime}}{f\left(x+x^{\prime}\right)} \\
Y_{s}=-\frac{2 c y y^{\prime}}{f\left(y+y^{\prime}\right)} \\
\mathbf{x}=(x, y), \quad \mathbf{x}^{\prime}=\left(x^{\prime}, y^{\prime}\right)
\end{gathered}
$$

c distance of the center of the lens from the center of GRAIN
f lens-sensor distance
WARNING: the labels X_{s} and Y_{s} are meant as the transversal 3D coordinates to the projection direction

APPLICATION TO SELECTED 39 3D SOURCE POINTS POINT 0: Explicit Example

Point0 (10.22, -10.31, -164.16) in the global frame (mm) TRUTH

	X	Y	Z
TRUTH	10.22	-10.31	-164.16
$13-14$		-11.08	-166.09
$33-34$	11.39		-165.48

3D global representation of the reconstructed points

Black points: original sources Red points: reconstructed points

3D representation of the reconstructed points

Black points: original sources Red points: reconstructed points Segments connecting two corresponding points (original and reconstructed) are drawn but not visible at this scale

3 D representation of the reconstructed points

Black points: original sources Red points: reconstructed points Segments connecting two corresponding points (original and reconstructed) are drawn

Histograms: $\Delta X=X_{c}-X_{t}$

X_{c} : calculated X coordinate
X_{t} : original X coordinate

$$
\operatorname{Mean}(\Delta X)=1.4 \quad \mathrm{~mm}
$$

Histograms: $\Delta Y=Y_{c}-Y_{t}$

Y_{c} : calculated Y coordinate
Y_{t} : original Y coordinate

$$
\operatorname{Mean}(\Delta Y)=0.1 \quad \mathrm{~mm}
$$

Histograms: $\Delta Z=Z_{c}-Z_{t}$

Z_{c} : calculated Z coordinate
Z_{t} : original Z coordinate

$$
\operatorname{Mean}(\Delta Z)=-0.2 \quad \mathrm{~mm}
$$

Histograms: ΔR

$$
\Delta Z \text { vs } Z_{t}
$$

Towards Tracks reconstruction: theoretical preliminaries Back-projection of lines

$$
\pi=\mathbf{P}^{T} \mathbf{l}
$$

π vector of plane parameters in 3D space, \mathbf{P} camera matrix, \mathbf{l} vector of line parameters on the sensor, \mathbf{L} infinite line in 3 D space to be reconstructed

Line Reconstruction

$$
\mathbf{L}=\binom{\mathbf{l}^{T} \mathbf{P}}{\mathbf{l}^{T} \mathbf{P}^{\prime}}
$$

π vector of plane π parameters in 3D space, π^{\prime} vector of plane π^{\prime} parameters in 3 D space, $\mathbf{P}, \mathbf{P}^{\prime}$ camera matrices, $\mathbf{l}, \mathbf{l}^{\prime}$ vectors of lines l, l^{\prime} parameters on the sensor, \mathbf{L} infinite line in 3 D space (reconstructed)

Triple-View Geometry and image correspondences: the Trifocal Tensor

CONCLUSIONS

- Double Double-view-geometry for 3D light source points reconstruction in GRAIN
- Reconstruction for a couple of front-to-front mutually orthogonal double views
- Use of centroids for image points
- Resolution of order 1 mm
- Possible systematics (1 mm)

TO BE DONE

- Extension to a larger set of source points uniformly distributed over GRAIN volume (with M. Vicenzi and L. Di Noto)
- APPLICATION TO TRACKS, Infinite Lines, Semilines and Vertices (with M. Vicenzi and L. Di Noto)
- Optimization/Calibration of \mathbf{F} and camera matrices \mathbf{P}
- Correction to \mathbf{F} and \mathbf{P} for coded masks
- Lens distortions
- Error analysis
- Application to lenses and masks simultaneously
- Triple view geometry for IMAGE TRANSFER: Trifocal Tensor
...AND

THANK YOU

FOR YOUR ATTENTION!

