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3D RECONSTRUCTION WITH CODED APERTURE MASKS

Advantages:
Good light transmission (50%)
Good depth of field

Small required volume

Readout system with SiPM matrixes coupled with coded aperture masks.

The custom reconstruction algorithm produces a 3D map of the deposited energy:
* measured incident photons are propagated back into the LAr volume with an

appropriate weight assigned to voxels.

* This weight represents the Bayesian probability of the voxel to be a source of the

detected photons.

* A score in the segmented reconstruction volume is calculated by adding these weights.

Coded aperture mask techniques were developed as the evolution of a single pinhole camera
Matrix of multiple pinholes to improve light collection and reduce exposure time
Image formed on sensor is the superimposition of multiple pinhole images.

Detailed description of Hadamard masks and

deconvolution methods:
Eur. Phys. J.C 81 (11) 1011 (2021)
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RECONSTRUCTED NEUTRINO EVENTS IN GRAIN

Simulated GRAIN geometry: x,y,z = 130 x 146 x 48 cm3

76 cameras, covering most of the available surface:
* 25 cameras on each curved (YX) face arranged in a 5x5
grid
* 5 cameras on top/bottom
* 8 cameras on each side (YZ) face l

—

32x32 matrix sensors, 3.2 mm pixels and 25% QE with ful¢o
electronics simulation 3
2x2 mosaic rank 31 Hadamard pattern, mask pitch 2.91

mm
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CHALLENGES

1. Computationally heavy — parallel implementation on GPU, weights are geometry dependent and can be
precomputed once and stored.

2. Particles may cross a camera, producing photons between the SiPM
matrix and the mask, “blinding” them. A Method based on Convolutional
Neural Networks to be developed to classify blind camera and remove

Them from reconstruction. even(‘QB,CAN‘!_NN_YB,png event93_CAM_NN_Y2.png V] .png gPrEnto3_CAM_NN_YO0.png

3. Low contrast between signal and background voxels:

Reconstructed voxels

Reconstructed voxels

Same event neutrino event, voxel
selection amplitude cuts:

(1) 98.5% of max value
(2) 95.5 % of max value




ITERATIVE ALGORITHM

lterative algorithm based on Maximum Likelihood Expectation Maximization:
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CAMERAS COMPARISON

Performance comparison of different mask sizes and ranks with Hadamard pattern

GRAIN mosaic
2x2 masks rank 31

mask rank 31 mask rank 43
Mask size = sensor matrix

mera_comparison/demo_3.2_mosalc_ar_Mmu3U.pkl, contrast mera_comparison/demo_3.2_single_af_mu30.pkKl, contrast ev 5 cam combined, contrast 140.89 %
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MIPS SIMULATION IN GRAIN SIMPLIFIED GEOMETRY

* Simplified geometry with 2x2 cameras placed on cryostat sides
and a single camera row on top and bottom, 130 cm apart
* Diagonal muons ~3 GeV simulated through volume center

* 5 iteration of MLEM algorithm
* Time window for photon collection = 200 ns, 25% PDE

*  With rank 31 and rank 43 masks track reconstruction is possible
* Track ~ 6-8 voxels width 2local principal curves algorithm

Next step:
Tracks and nu events GRAIN

geometry with full coverage of
side walls




ENERGY RECONSTRUCTION IN GRAIN

After isolating the contribution of each event from the background of the previous events (see V. Pia’s talk), we
want to Reconstruct the deposited energy in GRAIN from the total number of detected photons

Obtain a calibration coefficient to estimate the total deposited energy from the number of the detected photons.

Challenges: Solution:
* Space dependence * Different coefficients for different volume
- Same events in different positions inside region
GRAIN generate a different number of I , 1/8 of GRAIN volume divided in
photons. 5x5x5 cm voxels

* Reduce light yield
* Large number of events required gy

: : * Fast detector response
- Long computational time

N.B. Calorimetry studies performed with mosaic cameras and full wall coverage




UNIFORM/CENTRAL VOXEL COMPARISON

A comparison between neutrino events with vertex in the central voxel and a uniform distribution in
GRAIN volume was made to check whether or not the space dependence complication is real.

Sample:
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REDUCED LIGHT YELD + FAST RESPONSE VALIDATION

Light yield reduction

Good proportionality has been found in the number of
detected photons for different light yields of 10k
photons/MeV scaled to 40k photons/MeV
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Detected photons for different numu interaction types
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RECONSTRUCTED ENERGY RESOLUTION

The calibration coefficient can be used to estimate the deposited energy of an event
from the total number of detected photons.

Mean value of true deposited energy as a function

Signal amplitude vs true deposited energy
of signal amplitude for one cube
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(E_true - E_reco) / E_true

RECONSTRUCTED ENERGY RESOLUTION

E —E . : i
Eerue—Erecol for each simulated event as a function of the true deposited energy
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CALIBRATED ENERGY RESOLUTION

The energy resolution of each cube has been computed

Cube calibration coefficient distribution: fitting the points with the function
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CONCLUSIONS

3D RECONSTRUCTION:
Improved 3D algorithm with Maximum likelihood expectation maximization

Cameras with mosaic masks, chosen for 2D deconvolution techniques, are not ideal for 3D
algorithm, various masks dimensions are being investigated

Currently MLEM algorithm is able to reconstruct MIP tracks in GRAIN with similar
performances to first algorithm, but using only cameras on sides and top /bottom (~30-40k

channels)

CALORIMETRY:
Computed calibration coefficient for 5 cm side voxels
First estimate of Energy resolution for GRAIN: a 15%
Fx B 20%

E quE
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ML — EM 3D RECO ALGORITHM

Hg numero di hit nel pixel s

* A; unknown activity density to be estimated from
[As]"s : . dd
f(HglAQ) = p—l4s] 150 where [Ag] = ZA]. p(j,s) measure ata
H! . p(i,s) probability of a photon originated in voxel j
is detected by pixel s

) Log-likelihood maximization

‘ Ak+1 Ak HS . p(l’ S) Aj = voxel score |
J ZS p(] S) Z ) p(], S) . Ak OLD ALGORITHM V = photon originated in voxel |
J J = photon detected by sensor :
s A= ZHS p(vls)
Ty p(slv)
k = iteration number
=1
f pols) = BB p(s) = T;p(slv) - p(v)
p(v) = prior =1




P(sens |vox)

P(sens |vox) = P geometry - P attenuation - P detection i
- Pgeometry=Q /4mn oppure Avisibile/ Asens B =
0 - angolo solido cottezo dall'area del senzore (c,5) che 21 vede attraverszo 1 forl della maschera dal centro del .
voxel (L),E) .
B{i.LE
A : area del sensore (c,5) che =i vede attraverso 1 fori della maschera dal voxel (1],k) 0 i
. _df
. P attenuation = e~ /Latt —
» d: distanzalcentro sensore, centro voxel)
*  Aatt: lunghezza di attenuazione
I AR
. P detection =* 1la PDE di un SiPM dipende anche dall’'angolo di incidenza del fotone (non ancora
implementato nella simulazione) o — =
. L9
l.D-= 131 a:_lq
[ ] [ |
3 0.9t < B i
E— 1 Makarmi P. et al. "Refectivity and PDE of VUV4 |
Boas 7 L Hamamaa‘sq SiPMs in liguid xenon” aii £ = 0 0
v . https:farxiv.org/pdf 191006438 pdf
207 {
[+
0.6+ i

0 10 20 ElY 40 50 oy Fi
Angle of Incidemce (degree)




A few events V. cleero
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Solid angle distribution

For a given event, in the i-th voxel:

i _ i i 800
photons — AXQEXGEOI -

Where:

L= 1, ...,nVOXELS

N, = number of photons emitted isotropically in a single voxel
abe = quantum efficiency — KNOWN
atzom = geometrical acceptance — analytically ESTIMATED

;hotons = total number of photons collected in the image from that voxel —

Both simulated voxels are in

the almost uniform region of o014
i
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Blind cameras

 Due to the distribution of the masks, the events in the =&
central region often blind a camera. This camera gives .t
a much larger number of detected photons. <
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Reconstructed energy resol
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