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3D RECONSTRUCTION WITH CODED APERTURE MASKS

Coded aperture mask techniques were developed as the evolution of a single pinhole camera

Matrix of multiple pinholes to improve light collection and reduce exposure time

Image formed on sensor is the superimposition of multiple pinhole images.

Advantages:

Good light transmission (50%)

Good depth of field

Small required volume

Detailed description of Hadamard masks and

deconvolution methods:

Eur. Phys. J. C 81 (11) 1011 (2021)

Readout system with SiPM matrixes coupled with coded aperture masks.

The custom reconstruction algorithm produces a 3D map of the deposited energy:

• measured incident photons are propagated back into the LAr volume with an 

appropriate weight assigned to voxels.

• This weight represents the Bayesian probability of the voxel to be a source of the 

detected photons.

• A score in the segmented reconstruction volume is calculated by adding these weights.
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RECONSTRUCTED NEUTRINO EVENTS IN GRAIN 
• Simulated GRAIN geometry: x, y, z = 130 x 146 x 48 cm3 

• 76 cameras, covering most of the available surface:
• 25 cameras on each curved (YX) face arranged in a 5x5 

grid

• 5 cameras on top/bottom

• 8 cameras on each side (YZ) face

• 32x32 matrix sensors, 3.2 mm pixels and 25% QE with full 

electronics simulation

• 2x2 mosaic rank 31 Hadamard pattern, mask pitch 2.91 

mm
XY

Z

~
1

8
 cm

~2 cm

~
1

0
 cm
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CHALLENGES

Same event neutrino event, voxel 
selection amplitude cuts: 

(1) 98.5% of max value

(2) 95.5 % of max value

1. Computationally heavy – parallel implementation on GPU, weights are geometry dependent and can be 

precomputed once and stored.

2. Particles may cross a camera, producing photons between the SiPM 

matrix and the mask, “blinding” them. A Method based on Convolutional 

Neural Networks to be developed to classify blind camera and remove 

them from reconstruction.

3. Low contrast between signal and background voxels:  
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ITERATIVE ALGORITHM 

Iterative algorithm based on Maximum Likelihood Expectation Maximization: 

𝜆𝑗
𝑘+1 =

𝜆𝑗
𝑘

σ𝑠 𝑝 𝑗, 𝑠
⋅ා

𝑠

𝐻𝑠 ⋅ 𝑝 𝑗, 𝑠


𝑗
𝑝(𝑗, 𝑠) ⋅ 𝜆𝑗

𝑘

• 𝜆𝑗
𝑘 activity density of voxel j at iteration k 

• p(j,s) probability of a photon originated in voxel j 

is detected by pixel s

• 𝐻𝑠 detected photon on pixel s

Contrast improvement 
1 Iteration 5 Iterations 10 Iterations

mip
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CAMERAS COMPARISON 

GRAIN mosaic

mip

mask rank 31

Mask size = sensor matrix 
mask rank 43

Performance comparison of different mask sizes and ranks with Hadamard pattern

2x2 masks rank 31
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MIPS SIMULATION IN GRAIN SIMPLIFIED GEOMETRY

1
3

0
 cm

• Simplified geometry with 2x2 cameras placed on cryostat sides 

and a single camera row on top and bottom, 130 cm apart 

• Diagonal muons ~3 GeV simulated through volume center 

• 5 iteration of MLEM algorithm

• Time window for photon collection = 200 ns, 25% PDE

• With rank 31 and rank 43 masks track reconstruction is possible

• Track ~ 6-8 voxels width →local principal curves algorithm

Next step:

Tracks and nu events GRAIN 

geometry with full coverage of 

side walls 
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ENERGY RECONSTRUCTION IN GRAIN 

Challenges:

• Space dependence

- Same events in different positions inside 
GRAIN generate a different number of 
photons.

• Large number of events required 

- Long computational time

Solution:

• Different coefficients for different volume 
region

• Reduce light yield

• Fast detector response

After isolating the contribution of each event from the background of the previous events (see V. Pia’s talk), we 

want to  Reconstruct the deposited energy in GRAIN from the total number of detected photons 

Obtain a calibration coefficient to estimate the total deposited energy from the number of the detected photons.

1/8 of GRAIN volume divided in 

5x5x5 cm voxels 

N.B. Calorimetry studies performed with mosaic cameras and full wall coverage
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UNIFORM/CENTRAL VOXEL COMPARISON
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A comparison between neutrino events with vertex in the central voxel and a uniform distribution in 
GRAIN volume was made to check whether or not the space dependence complication is real.

Sample:

10k νμ CCQEDetected photons for numu CCQE interaction

Vs

Deposited energy (from EDepSim)

Central 

voxel

Detected photons for numu CCQE interaction

Vs

Deposited energy (from EDepSim)

A larger spread is visible for 

the uniformly distributed events.

The calibration must be 

performed on a local 

scale.



REDUCED LIGHT YELD + FAST RESPONSE VALIDATION   
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F. Chiapponi



CENTRAL VOXEL EVENTS
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Central voxel

Detected photons for different numu interaction types

Vs

Deposited energy (from EDepSim)

Central voxel

Detected photons for different numu interaction types

Vs

Deposited energy (from EDepSim)

Samples:

10k νμCCQE

10k νμCCDIS

10k νμCCRES



RECONSTRUCTED ENERGY  RESOLUTION
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The calibration coefficient can be used to estimate the deposited energy of an event 
from the total number of detected photons.

Mean value of true deposited energy as a 

function of detected photons

𝐸𝑡𝑟𝑢𝑒 − 𝐸𝑟𝑒𝑐𝑜
𝐸𝑡𝑟𝑢𝑒



RECONSTRUCTED ENERGY RESOLUTION
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𝐸𝑡𝑟𝑢𝑒−𝐸𝑟𝑒𝑐𝑜

𝐸𝑡𝑟𝑢𝑒
for each simulated event as a function of the true deposited energy



CALIBRATED ENERGY RESOLUTION
Cube calibration coefficient distribution:

F. Chiapponi

This allows to estimate an overall energy 
resolution using 𝒌𝒎𝒆𝒂𝒏
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CONCLUSIONS
3D RECONSTRUCTION: 

•Improved 3D algorithm with Maximum likelihood expectation maximization

• Cameras with mosaic masks, chosen for 2D deconvolution techniques, are not ideal for 3D 
algorithm, various masks dimensions are being investigated 

• Currently MLEM algorithm is able to reconstruct MIP tracks in GRAIN with similar 
performances to first algorithm, but using only cameras on sides and top/bottom (~30-40k 
channels)

CALORIMETRY:

• Computed calibration coefficient for 5 cm side voxels

• First estimate of Energy resolution for GRAIN:
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BACKUP SLIDES
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ML – EM 3D RECO ALGORITHM  

𝜆𝑗 =
1

σ𝑠 𝑝 ȁ𝑠 𝑣
⋅

𝑠

𝐻𝑠 ⋅ 𝑝 ȁ𝑣 𝑠

𝑝 ȁ𝑣 𝑠 = 
𝑝 ȁ𝑠 𝑣 ⋅ 𝑝 𝑣

𝑝(𝑠)
𝑝 𝑠 = σ𝑗 𝑝 ȁ𝑠 𝑣 ⋅ 𝑝 𝑣

𝑝 𝑣 = 𝑝𝑟𝑖𝑜𝑟 = 1

𝜆𝑗 = voxel score

V = photon originated in voxel j

S = photon detected by sensor s

𝑓 𝐻𝑠 𝜆𝑠) = 𝑒−[𝜆𝑠]
[𝜆𝑠]

𝐻𝑠

𝐻𝑠 !

𝐻𝑠 numero di hit nel pixel s

where [𝜆𝑠] = 

𝑗

𝜆𝑗 𝑝(𝑗, 𝑠)

• 𝜆𝑗 unknown activity density to be estimated from 

measured data

• p(j,s) probability of a photon originated in voxel j 

is detected by pixel s

Log-likelihood maximization

𝜆𝑗
𝑘+1 =

𝜆𝑗
𝑘

σ𝑠 𝑝 𝑗, 𝑠
⋅ා

𝑠

𝐻𝑠 ⋅ 𝑝 𝑗, 𝑠


𝑗
𝑝(𝑗, 𝑠) ⋅ 𝜆𝑗

𝑘

k = iteration number

𝜆𝑗
0 = 1

OLD ALGORITHM
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A few events V. Cicero



Solid angle distribution
For a given event, in the i-th voxel:

𝑁𝑝ℎ𝑜𝑡𝑜𝑛𝑠
𝑖 = 𝛼𝑄𝐸

𝑖 𝛼𝐺𝐸𝑂𝑀
𝑖 𝑁0

Where:

• 𝑖 = 1,… , 𝑛𝑉𝑂𝑋𝐸𝐿𝑆

• 𝑁0 = number of photons emitted isotropically in a single voxel

• 𝛼𝑄𝐸
𝑖 = quantum efficiency → KNOWN

• 𝛼𝐺𝐸𝑂𝑀
𝑖 = geometrical acceptance → analytically ESTIMATED

• 𝑁𝑝ℎ𝑜𝑡𝑜𝑛𝑠
𝑖 = total number of photons collected in the image from that voxel → MEASURED Log 

scale

Both simulated voxels are in 

the almost uniform region of 

𝛼𝐺𝐸𝑂𝑀
𝑖 . 



Blind cameras
• Due to the distribution of the masks, the events in the 

central region often blind a camera. This camera gives 

a much larger number of detected photons.

Samples:

10k νμCCQE

10k νμCCDIS

10k νμCCRES



Reconstructed energy resolution

CCQE

CCDISCCRES


