

SVILUPPO DELL'OTTICA CON LE LENTI E RICOSTRUZIONE 2D, 3D

Meeting Annuale Collaborazione Nazionale DUNE Laboratori Nazionali di Frascati 8 Novembre 2022

Matteo Vicenzi, Lea Di Noto, Marco Pallavicini

GRAIN optical readout

- Active target in \vec{B} field:
 - > No charge collection
 - > Timing and calorimetry w/ scintillation light
 - \succ imaging \rightarrow spatial reconstruction
- Technologies: coded masks, lenses
- Lenses are more traditional, but there are challenges:
 - > VUV wavelength \rightarrow no transparent materials (CaF₂, MgF₂...) + low PDE
 - Refractive indexes
 - Fixed focus: cameras are static!

• LAr + Xe doping: $127nm \rightarrow 174nm$

UniGe

NFN

- Better PDE for SiPMs, easier to find suitable materials, larger scattering length + light-yield.
- Fused Silica HPFS 8655 (n=1.59, T> 99.6%/cm @ 174nm)
- Two plane-convex lenses + inner gas layer (n = 1): optical work done at the gas interfaces.
 - Robustness: $\Delta n = 0.59$ fixed by the materials, independent of the external medium.
- Geometrical complementarity between cameras.
 - Lens-sensor distance: $10 \ cm \rightarrow$ Depth-of-field between 35 cm to 80 cm.

Distance from LEFT lens Distance from RIGHT lens

Uni**Ge**

INFN

Neutrino event

 ν_{μ} CC event in GRAIN. •

-20

-20

-10

0

-10

Example of four images recorded by • the lens-cameras.

-30**6** -30

[Ⅲ 30 ★ 20

[____]

≻

Matteo Vicenzi – Meeting Collaborazione Nazionale DUNE – 8 Novembre 2022

Reconstruction flow

Use of Monte Carlo truth information

2D reconstruction

«Full» 2D reconstruction

• Reconstruction algorithm to find and fit lines based on the **Hough Transform**.

«Fast» 2D reconstruction

• Fit directly on the Monte Carlo **truth projections** of the tracks, if long enough (>10 pixels) to be visible.

Vertex reconstruction

 If single points can be clearly matched between views (such as vertex projections), they can be propagated back into 3D.

Endpoint reconstruction

 Same for track endpoints: selected as the average of the most forward (along Z) pixels of the cluster.

3D reconstruction

ZY (side)

Track clusters in **multiple views** can be combined for a 3D reconstruction of the interaction.

500

400

300

200

100

-100

-200

-300

-400

-200

4 mg azv

-100

0

200

100

300

400

500

-200

Reco track

[mm]

600

400

200

-200

-400

-600-

MC-truth track

Matteo Vicenzi – Meeting Collaborazione Nazionale DUNE – 8 Novembre 2022

Energy reconstruction

- Total energy deposited \rightarrow calorimetry
- Track-by-track energy reconstruction:
 - Exploits track separation in the images
 - \succ Nⁱ_{photons} = αⁱ_{OE}αⁱ_{GEOM}N₀ → for *i*-th camera
 - $\succ \alpha_{GEOM}^{i}$: estimated from 3D reco using toy MC
- Very **crude** method \rightarrow not impossible but requires further development especially for ν events.

 $\vec{r} \cdot \hat{z} > 0.1$

Uni**Ge**

Neutrino energy

- FastReco for STT and ECAL + GRAIN info (track direction, track energy 20% smear)
 - Helps with *p* stopping in LAr
 - Less with π^{\pm} (secondaries not reconstructed)

Matteo Vicenzi – Meeting Collaborazione Nazionale DUNE – 8 Novembre 2022

Summary and outlook

- Baseline design for an **imaging system in LAr** based on VUV lenses
- Preliminary reconstruction algorithm \rightarrow 3D reconstruction, vertex location, ~energy
- Combined with FastReco for ECAL/STT \rightarrow neutrino energy
- Warm prototype tested
- Next steps:
 - > Adjust optical design for GRAIN at 1.6m (\rightarrow bigger diameter, different focal length?)
 - Reco improvements: remove MC-truth, investigate energy reconstruction
 - > Cold test in preparation (see <u>L. Di Noto's talk</u>)

Back-up

GRAIN: LAr target in SAND

• As a **passive** target:

- > 1-ton LAr (~1 X_0) inside the magnetic field.
- Compromise between mass (event statistics) and thickness (transparency to charged particles).
- Study v-Ar interactions with downstream tracker/calorimeter
- As an **active** target:
 - > No charge collection \rightarrow too slow (few $mm/\mu s$ vs 10 μs wide beam spill).
 - Collect LAr scintillation light with arrays of SiPMs for timing and calorimetry
 - ➢ Perform imaging of the event with VUV scintillation light
 (R&D for UV cameras) → vertex location, event topology

Challenges for lenses

- VUV wavelenght:
 - ➢ Hard to find suitable materials (MgF₂, CaF₂, ...)
 - Low PDE (10-15%) even for UV-grade SiPMs
- Refractive index:
 - LAr is close to ~1.4, too similar to some materials.
 Difficulty in designing the optics.
- Fixed focal plane:
 - ➢ Focus is fixed by lens-sensor distance but covering up to O(1m) is required.

^{*} this PDE reported by Hamamatsu is overestimated, Wavelength (nm) but its behavior is indicative of other models (https://doi.org/10.1016/i.nima.2019.05.096)

Uni**Ge**

Hough transform

MC-truth

projection

Expected 11

- Reconstruction algorithm to find and fit lines based on the Hough Transform.
- Reduces the problem to a local max search in the parameter space (θ , ρ).

UniGe INFN

Full simulation

CAM 11 a

3D reconstruction

• Track clusters in **multiple views** can be combined for a 3D reconstruction of the interaction.

Matteo Vicenzi – Meeting Collaborazione Nazionale DUNE – 8 Novembre 2022

Software flowchart

