$u_{\mu} + Ar \rightarrow \mu^{-} + p$ channel selection in SAND

V. Pia, M. Tenti DUNE Italia Collaboration Meeting – LNF 7th November 2022

• Assess the contributions SAND (with GRAIN) could provide in understanding the physics of $v_{\mu} + Ar$ interaction including FSI

- Here we exploit GRAIN as homogeneous calorimeter
 - Study the effect of the spill structure on the calorimetric capabilities of GRAIN

• Performaces of SAND in terms of selecting and reconstructing exclusive $\mu^- + p$ channel are studied

Caveat and References

- Work in progress
- Final results are preliminary
- Repositories:
 - <u>baltig.infn.it/dune/analyses/grain-physics-case</u>
 - <u>baltig.infn.it/dune/sand-optical/opticalmeniscus</u>

MC Sample

- 8.2M $\nu_{\mu} Ar^{40}$ (CC+NC) interactions generated by GENIE 2.12.10
- Muon neutrino energy spectrum: FHC
- Beam direction: along z
- Neutrino interactions are uniformely distributed in LAr volume inside GRAIN
- Particles are propagated with edep-sim

Reconstruction

- SAND detector is composed by: Magnet, ECAL, GRAIN and STT
- STT tracks reconstructed by <u>FastReco</u>
- ECAL clusters reconstructed by <u>sand-reco</u>
- GRAIN as calorimeter with 10% energy resolution
- Particle ID is assumed

7th November 2022

5

Common Final Topologies (CCQE)

GENIE CCQE Common (Non Zero Momentum) Final Topol.

53.3%

60

50

40

30

20

10

21.8%

other

CCQElike Selection

- 1. Only 1 muon and 1 proton tracks reconstructed by STT
- Reconstructed energy in GRAIN compatible with energy release expected by 2 mip.
 - [vtx position in GRAIN reconstructed using STT tracks]
- 3. No unmatched clusters in ECAL

CCQElike Efficiency

Signal: $\mu^- + p$ channel Selection: CCQElike

ALL	:	8200000
SIGNAL	:	764398
SELECTED	:	93226
SELECTED SIGNAL	:	87358
SELECTED BACKGROUND	:	5868
SELECTION EFFICIENCY	:	11.4%
SELECTION PURITY	:	93.7%

h_neutrino_energy_true [CCQElike]

CCQElike Sample

Neutrino Energy Reconstruction in CCQElike

Unfolding

- Attempt to unfold the reconstructed variables
- RooUnfold package
- Method: Singular Value Decomposition
- [Unfolded/True 1]< 5% ...but overregularisation?
- Checks in progress

14000

12000

-unfold

true

Purpose (2)

- Here we exploit GRAIN as homogeneous calorimeter
 - Study the effect of the spill structure on the calorimetric capabilities of GRAIN
- Isolate the contribution of each event from the background of the previous events

 Reconstruct the deposited energy in GRAIN from the total number of detected photons by means of a calibration lookup table (more in Valentina's presentation tomorrow)

Spill simulation

- Spill simulated in GENIE
- Argon scintillation by <u>OptMen</u>
- 25% QE, 7% crosstalk applied as multipliers to the total number of detected photons

Peaks fit

• Rising edge and tails fitted separately

• Tails:
$$f(t) = \sum_{j=f,s} \frac{A_j}{2\tau_j} \exp\left[\frac{1}{2}\left(\frac{\sigma}{\tau_j}\right)^2 - \left(\frac{t-t_m}{\tau_j}\right)\right] \left[1 - \operatorname{erf}\left(\frac{1}{\sqrt{2}}\left(\frac{\sigma}{\tau_j} - \frac{(t-t_m)}{\sigma}\right)\right)\right]$$

• Rising edge:
$$P(t) = \frac{1}{1+e^{-t}}$$

Peaks fit

INFN DU(

Total number of photons

• After the background removal it is possible to compute the number of photons detected for each peak.

Ad-hoc spills

- 8.2M $v_{\mu} Ar^{40}$ (CC+NC) interactions generated by GENIE 2.12.10
- 1M ν_{μ} *SAND* (CC+NC) interactions generated by GENIE 2.12.10
- Build one spill per $v_{\mu} Ar^{40}$ interaction extracting random backround event from the $v_{\mu} - SAND$ sample

Next steps

- Simulate the spills for each $v_{\mu} Ar^{40}$ event and fit the peaks
- Timing match between first STT hit and peaks of the spill to identify the neutrino interaction
- Reconstruct the position of the interaction inside GRAIN
 - from STT or 3D reco
- Reconstruct the deposited energy in GRAIN from the total number of detected photons

Conclusions

- GRAIN physics case has been addressed studying the performance of SAND (w/ GRAIN) in selecting and reconstructing $\mu^- + p$ channel
- 8.2M $v_{\mu} + Ar$ events have been simulated
- GRAIN exploited as homogeneous calorimeter
- CCQElike selection has been defined:
 - Efficiency > 10% and Purity > 90%
- Events have been reconstructed and Unfolding procedure has been applied to retrieve true variable distributions
- Checks on unfolding procedure is in progress
- Studies on the effect of the spill structure and on the calorimetry capabilities of GRAIN are in progress

20 7th November 2022 V.Pia, M. Tenti | $\nu_{\mu}+Ar \rightarrow \mu^{-}+p$ channel selection in SAND

Common Final Topologies

Efficiency VS ...

Inelasticity and Q² Reconstruction in CCQElike

Unfolding

Simple Charged Topology

- Stable final particles GHepStatus == kIstStableFinalState
- Simple exclusive charged topology: $\mu + \pi^+, \mu + p, \mu + \pi^+ + p$

0.5_E

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

24.9 %

0μ + X

fraction

ÍNFŃ

25 15/09/2022

7.6 %

 $\mu + \pi^+$

0.3 %

μ

17.8 %

μ+p

Detector simulation

- Official geometry:
 <u>https://github.com/DUNE/dunendggd</u>
- Interactions are placed in GRAIN
- LAr volume: elliptical cylinder
- LAr mass: 988.6 kg
- Particles propagated with *edep-sim*

STT track Reconstruction

- STT track reconstruction with FastReco: <u>https://baltig.infn.it/dune/FastReco</u>
- FastReco in a nutshell:
 - STT Track are reconstructed if number of STT hits in YZ view >= 4
 - Reconstructed momentum from Gluckstern formula
 - Particle ID is assumed

Topology Migration

GRAIN as calorimeter

- Use calorimetric info from GRAIN
- Preliminary studies suggest a 10% resolution on the energy deposit can be achieved
- Define grain_reco_energy as 10% gaussian smeared grain_true_energy_deposit
- Define *grain_extra_energy* as *grain_reco_energy* subtracted by the energy deposits in GRAIN expected from particles reconstructed in STT
- If true_topology == reco_topology, then grain_extra_energy ~ 0

Expected energy deposit in GRAIN

- The expected energy deposit in GRAIN is given by: (energy loss rate) X (path length in LAr)
- Energy loss rate is assumed that of muons
- Path length in Lar is evaluated analytically from vertex position

 Vertex position is reconstructed using the two highest momentum (if more than two) tracks

grain_extra_energy

all:true_topology == $\mu + \pi^+$ signal:(true_topology == $\mu + \pi^+$) && (reco_topology == $\mu + \pi^+$)background:(true_topology != $\mu + \pi^+$) && (reco_topology == $\mu + \pi^+$)

Preliminary Results

Assuming:

- LAr fiducial mass: 1 t
- spill per second: 0.83
- events per spill per ton: 0.14
- days per year: 200
- years: 5

	Selection	Efficiency	Purity	n. of events in 5y (S+B)
	None	100%	8%	~ 10M
- π ⁺	reco_topology	44%	36%	935k
+ <i>n</i> /	reco_topology && ∆E_extra < -2.5 MeV	13%	71%	140k
	None	100%	18%	~ 10M
d +	reco_topology	29%	41%	1.26M
· n	reco_topology && ∆E_extra < 2.5 MeV	10%	83%	215k
+1	None	100%	10%	~ 10M
1 + 1	reco_topology	14%	47%	316k
$d + \eta$	reco_topology && ∆E_extra < 2.5 MeV	5%	82%	65k

 $\mu + \pi^+$

33 15/09/2022

15/09/2022

34

