Deposition of P-Terphenyl &

Test of Vertical Drift Tiles

N. Canci

DUNE Experiment -- Italian Collaboration Meeting -- INFN-LNF -- Nov 07-08, 2022

Outlines

Activities at Naples

- Megacell test for Module-0 ProtoDUNE Vertical Drift
- PDE studies of XA-Megacell
- Evaporation Site for PTP coating
- Update on SiPM PDE measurement system

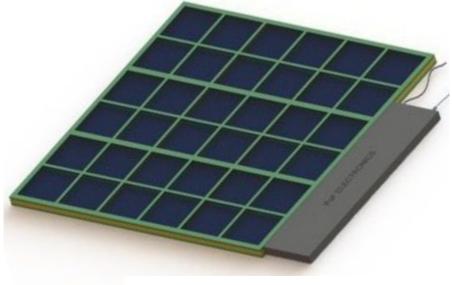
Activities at Pavia

- Refurbishment and upgrade of system for Quantum Efficiency measurement
- Measurement of the diffusivity, reflectivity and transparency of samples

Conclusions

Test of ProtoDUNE XA-Megacells

- Custom made cryostat located inside the INFN Naples Cryolab cleanroom (1.15 m diameter – 1.57 m height) coupled with a single wall domed flange)
- System developed by DarkSide collaboration as main part of PDU Test Facility
- Equipped with PT1000 temperature/level meter sensors, pressure gauges and analog pressure indicator, sevice output flanges
- Cryostat and cryogenic system designed for automatic LN filling (~7 hrs) and draining (~15 hrs)
- Illumination system with optical feedthrough and light diffusers
- 405 nm laser available, procurement of UV led source



Test of ProtoDUNE XA-Megacells in LN

- Characterization of the electronics
- Measurement and characterization of the dark count rate
- No LAr VUV light response evaluation
- Pulsed laser (or UV led) illumination
 - SPE measurement
 - GAIN and S/N ratio measurement at different OverVoltages
- Possible time slot for the test of Megacells in Naples cryostat in January 2023 (depending on the countinuously changing schedule)

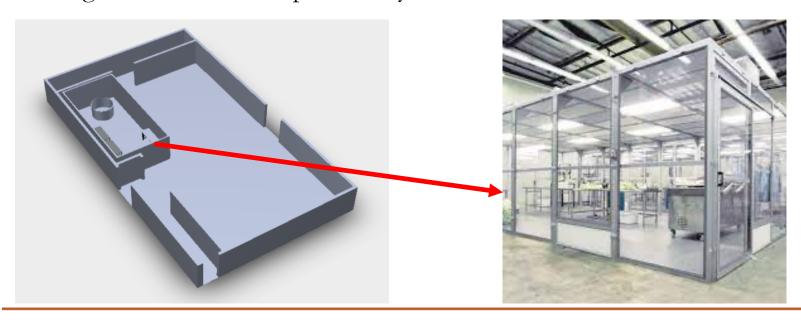
PDE measurement of XA-Megacells in LAr: goal

- XA-Supercell efficiency of 2.9% found in the best conditions
- Geometry of XA-Megacell ($62 \times 62 \text{ cm}^2$) different from XA-Supercell
- SiPM coverage in the XA-Megacell (SiPM number × area over dichroic number × area) about half with respect to XA-Supercell
- > Evaluation of PDE in XA-Megacell needed
- ✓ PDE evaluation through the measurement of $N_γ$ from ²⁴¹Am **α**-source (and estimation from simulation and possible contribution from reflected photons)
 - Correction factors: SiPM secondary pulses, LAr purity
 - LAr purity evaluation by analyzing VUV light triplet component (possible cryogenic PMT used as reference)
- ✓ XA-Megacell different implementation of WLS plane-flex circuit coupling to check the relative response

PDE measurement of XA-Megacells in LAr: operations

- Dedicated XA-Megacell fully assembled needed for the test
 - Refurbishment of old XA-Megacell from prototypes
 - Dichroics and PTP evaporation from Campinas (possible participation from Naples Group to evaporation campaign)
 - Bias and signal readout «in copper»
- Manipulation system (rotation+translation) holding 241 Am α -source (~250 Bq activity) to be intalled
- Installation of cryogenic PMT used as reference for evaluation of LAr scintillation light triplet component

- Cryostat filled with 5.0 liquid argon purified by an in-line Trigon filter
- Recirculation options (against logistics and main activities scheduled for DarkSide):
 - 1) No Ar recirculation implemented (baseline option)
 - 2) GAr recirculation system and purification with hot getter implemented (under evaluation)

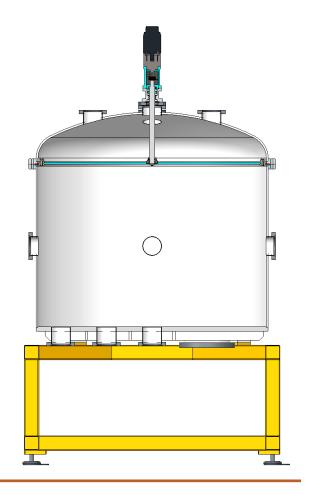


WLS coating evaporation site

- Need of an europen site for PTP coating complementary to the Campinas evaporation site
- DUNE Naples Group funded for the procurement and construction of an evaporation system for the primary PTP coating
- Dedicated clean area (to be built) at INFN Naples and Physics Dept University of Naples already assigned to host the evaporation system

PTP coating evaporation system

- Design of evaporation system already done
- System able to provide 2 cycles per working day
- Dimensions of the chamber to host $\sim 40 (10 \times 10 \text{ cm}^2)$ filters
- Dedicated support plates to hold different types of filters
- Procedures to validate the coating process
- Need of further equipment for a quick characterization of the coated filters



PTP evaporation system: main technical specifications

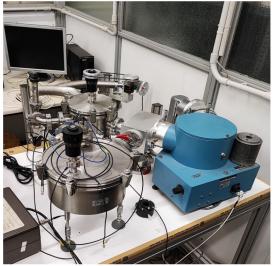
- Evaporator dimensions: 120 cm diameter, 70 cm height chamber
- Vacuum level of the chamber $\sim 10^{-5}$ mbar
- Complete removable top flage dome with a dedicated crane
- Pumping station composed by a primary dry pump (\sim 40 m³/h) and turbopump (\sim 2000 l/s)
- Matrix of 3 Knudsen effusion cells distributed on the bottom flange to allow for good deposition uniformity
- Quartz sensor for the deposition thickness estimation during the process
- Step rotating motor mounted on the dome holding the filters support structures
- Evaporator chamber mounted on the proper support structure allowing for operations and inspection of the parts

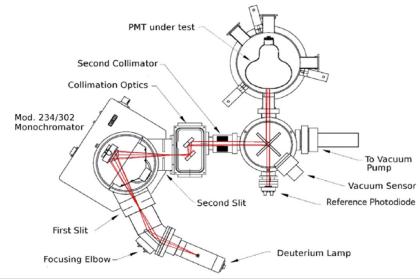
SiPM PDE system update

- Monochromator and chamber assembled
- Cryocooler compressor refurbished
- Motors with sample holder order procured (not yet delivered)
- Reference PMT to be implemented

Next steps:

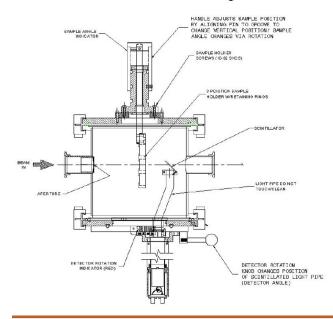
- Monochromator grating mounted and calibration in progress
- Tests to be performed: vacuum, temperature trend, alignment, beam mapping
- Software development: unique interface for monochromator driver, sample holder motors, electrometer and waveform digitizer





INFN-Pavia Contribution

- ➤ Upgrade of the already installed system based on a VUV monochromator (McPherson 234/302):
 - deuterium lamp
 - rotating mirror (Al+MgF₂)
 - calibrated photo-diode used as a reference
 - chamber hosting the photo-detector
- Allows for absolute measurement of Quantum Efficiency on detectors up to 8" diameter in the range 120-220 nm
- ➤ QE can be measured along a selected axis through movement/rotation of the device under test
- Instrument already successfully used in the past to test the new ICARUS PMTs presently operating at FNAL



INFN-Pavia Contribution

Upgrade of the system: vacuum chamber with a support system for the sample under test+a light detector placed on a goniometer to measure the light transmitted and/or reflected and/or diffused by the sample on an angle between 15 and 180 degrees with respect to the direction of the light beam

McPherson Model 121 Sample Chamber

Contribution to DUNE

Measurement of the diffusivity/reflectivity/transparency of sample materials in the VUV, in particular for:

- the characterization of the dichroic filters used in DUNE
- measurements on materials presently used by ProtoDUNE

Slide from Pavia Group

Conclusions

- Activities at Naples
- Test facility in Naples operative and ready for XA-Megacell qualification for ProtoDUNE
- Feasibility of PDE measurement of XA-Megacell in Naples Cryogenic laboratory ongoing
- WLS PTP european site funded at INFN-Naples
- Experimental area for the evaporator already allocated
- Evaporation system design ready, construction in the next months
- PDE system assembly ongoing towards the final configuration prior the commissioning
- Activities at Pavia
- Contribution on characterization of the dichroic filters and measurements on materials presently used by ProtoDUNE
- Refurbishment and upgrade of a system for measurement of the diffusivity/reflectivity/transparency of sample materials in the VUV range

