Lattice determination of the spectral function for

$D_{s} \rightarrow l \nu_{l} \gamma^{*}$ decays

Giuseppe Gagliardi, INFN Sezione di Roma Tre

R. Frezzotti, V. Lubicz, G. Martinelli, F. Mazzetti, C.T. Sachrajda,

F. Sanfilippo, S. Simula, N. Tantalo

Ne Ψ 23, 16 February 2023, Pisa.

Outline of the talk

Introduction

- Sketch of the problem of the analytic continuation for hadronic amplitudes above kinematical thresholds.
- Spectral density methods as a way-out to the problem.

The HLT method to reconstruct smeared hadronic amplitudes

- Brief description of the method.
- The reconstruction at work in a simple toy model.

Smeared amplitudes for $D_{s}^{ \pm} \rightarrow l^{\prime+} l^{\prime-} l^{ \pm} \nu_{l}$ decays

- Proof-of-principle calculation at $a \sim 0.08 \mathrm{fm}$.

Off-topic(?): The real photon case, i.e. $D_{s} \rightarrow l \nu_{l} \gamma$.

- Full calculation of the axial and vector form factors F_{A} and F_{V}.

Introduction

General statement of the problem (I)

An hadronic amplitude $H(E)$ can be safely extracted on the lattice only for energy E smaller than the energies of all the intermediate states contributing to $H(E)$.
E.g. consider an hadronic amplitude of the form
$H(E)=\int_{0}^{\infty} d t e^{i E t} C(t), \quad C(t) \equiv\langle 0| T\left\{J_{A}(t) J_{B}(0)\right\}|P\rangle \stackrel{t>0}{=} \sum_{n=0}^{\infty} C_{n} e^{-i E_{n} t}$
with J_{A}, J_{B} arbitrary currents and $|P\rangle$ an hadronic state.
If $E<E_{n}$ safe analytic continuation from Minkowskian to Euclidean space

$$
H(E)=\int_{0}^{\infty} d t e^{i E t} C(t) \stackrel{\tau \equiv i t}{=}
$$

General statement of the problem (II)

On a finite lattice, where non-analiticities are absent, we can access

$$
C_{E}(t) \equiv C(-i t) \text { for } 0 \leq t \leq T .
$$

$$
H^{T}(E)=-i \int_{0}^{T} d t e^{E t} C_{E}(t)=-i \sum_{n=0}^{\infty} C_{n} \frac{1-e^{-\left(E_{n}-E\right) T}}{E_{n}-E}
$$

$$
\begin{array}{cc}
\text { if } E<E_{n}: & \text { if } E_{0}<E \text { : } \\
H^{T}(E) \underset{T \rightarrow \infty}{\rightarrow}-i \sum_{n=0}^{\infty} \frac{C_{n}}{E_{n}-E} & H^{T}(E) \underset{T \rightarrow \infty}{\rightarrow}-i \sum_{n=0}^{\infty} \frac{C_{n}}{E_{n}-E}+\sum_{n}^{E_{n}<E} i C_{n} \frac{e^{\left(E-E_{n}\right) T}}{E-E_{n}} \\
\chi
\end{array}
$$

- For $E_{0}<E$ dominant T-divergent part of $H^{T}(E)$ must be subtracted \Longrightarrow difficult in presence of statistical errors, problem worsens when many states E_{n} below energy E.
- Above threshold hadronic amplitudes become complex (for $E=E_{n}$). How do we get imaginary parts?

Hadronic amplitudes via the spectral representation (I)

The spectral density $\rho\left(E^{\prime}\right)$ of the correlator $C(t>0)$ is defined as

$$
\rho\left(E^{\prime}\right)=\langle 0| J_{A}(0) \delta\left(\mathcal{H}-E^{\prime}\right) J_{B}(0)|P\rangle
$$

- \mathcal{H} is the QCD Hamiltonian. One has

$$
C(t) \stackrel{t>0}{=} \int_{0}^{\infty} d E^{\prime} \rho\left(E^{\prime}\right) e^{-i E^{\prime} t}, \quad C_{E}(t) \stackrel{t>0}{=} \int_{0}^{\infty} d E^{\prime} \rho\left(E^{\prime}\right) e^{-E^{\prime} t}
$$

- The hadronic amplitude $H(E)$ can be computed as

$$
H(E)=\lim _{\epsilon \rightarrow 0}-i \int_{0}^{\infty} d E^{\prime} \rho\left(E^{\prime}\right) \int_{0}^{\infty} d t e^{-i\left(E^{\prime}-E\right) t} f(\epsilon, t)
$$

- $f(\epsilon, t)$ is any regulator for the time integral, with $f(0, t)=1$.
- E.g. $f(\epsilon, t)=\exp (-\epsilon t), \exp \left(-\epsilon^{2} t^{2} / 2\right)$. Using standard ϵ-prescription:

$$
i H(E)=\lim _{\epsilon \rightarrow 0} \int_{0}^{\infty} d E^{\prime} \frac{\rho\left(E^{\prime}\right)}{E^{\prime}-E-i \epsilon}
$$

Hadronic amplitudes via the spectral representation (II)

From the knowledge of $\rho\left(E^{\prime}\right)$, the real and imaginary part of $i H(E)$ can be computed:

$$
\begin{aligned}
& \operatorname{Re}[i H(E)]=\lim _{\epsilon \rightarrow 0} \int_{0}^{\infty} d E^{\prime} \rho\left(E^{\prime}\right) \frac{E^{\prime}-E}{\left(E-E^{\prime}\right)^{2}+\epsilon^{2}}=\text { P.V. } \int_{0}^{\infty} d E^{\prime} \frac{\rho\left(E^{\prime}\right)}{E^{\prime}-E} \\
& \operatorname{Im}[i H(E)]=\lim _{\epsilon \rightarrow 0} \int_{0}^{\infty} d E^{\prime} \rho\left(E^{\prime}\right) \frac{\epsilon}{\left(E-E^{\prime}\right)^{2}+\epsilon^{2}}=\pi \rho(E)
\end{aligned}
$$

For $E<E_{0}$, since $\rho(E)=0, \operatorname{Im}[i H(E)]=0$ and the P.V. can be dropped:

$$
\operatorname{Re}[i H(E)]=\int_{E_{0}}^{\infty} d E^{\prime} \rho\left(E^{\prime}\right) \underbrace{\int_{0}^{\infty} d t e^{-\left(E^{\prime}-E\right) t}}_{=\left(E^{\prime}-E\right)^{-1} \text { if } E^{\prime}<E}=\int_{0}^{\infty} d t e^{E t} C_{E}(t)
$$

For $E>E_{0}, \lim \epsilon \rightarrow 0$ can be taken only after evaluating the energy integral.
We propose to employ the previous representation to evaluate the smeared amplitudes $\operatorname{Re}[i H(E, \epsilon)], \operatorname{Im}[i H(E, \epsilon)]$ at finite ϵ, and then take $\lim \epsilon \rightarrow 0$.

The HLT method to reconstruct smeared hadronic amplitudes

The problem of numerically-inverting the Laplace transform

The spectral density $\rho\left(E^{\prime}\right)$ is related to our lattice input $C_{E}(t)$ through an inverse Laplace transform:

$$
C_{E}(t) \stackrel{t \geq 0}{=} \int_{0}^{\infty} d E^{\prime} e^{-E^{\prime} t} \rho\left(E^{\prime}\right) \Longrightarrow \rho\left(E^{\prime}\right)=\mathcal{L}^{-1}\left\{C_{E}\right\}\left(E^{\prime}\right)
$$

- Evaluating \mathcal{L}^{-1} is an ill-posed problem if $C_{E}(t)$ known only on a finite set of points and with a finite accuracy [typical situation in a lattice calculation].
- Evaluating the convolution of $\rho\left(E^{\prime}\right)$ with the ϵ-kernels [what QFT dictates]:

$$
K_{\mathrm{Re}}(x, \epsilon)=\frac{x}{x^{2}+\epsilon^{2}}, \quad K_{\operatorname{Im}}(x, \epsilon)=\frac{\epsilon}{x^{2}+\epsilon^{2}}
$$

is instead a well-posed problem at non-zero ϵ [G. Backus \& F. Gilbert 1968].

- The HLT method: find for fixed E and ϵ the best approximation to $K_{\mathrm{Re} / \operatorname{Im}}\left(E^{\prime}-E, \epsilon\right)$ in terms of $b_{t}\left(E^{\prime}\right) \equiv \exp \left(-E^{\prime} t\right)^{*}$:
$K_{\mathrm{Re}}\left(E^{\prime}-E, \epsilon\right) \simeq \sum_{t=t_{\min }}^{t_{\max }} g_{\mathrm{Re}}(t, E, \epsilon) \cdot b_{t}\left(E^{\prime}\right), \quad K_{\operatorname{Im}}\left(E^{\prime}-E, \epsilon\right) \simeq \sum_{t=t_{\min }}^{t_{\max }} g_{\mathrm{Im}}(t, E, \epsilon) \cdot b_{t}\left(E^{\prime}\right)$
in such a way to optimize the balance between systematic and statistical errors
[M. Hansen, A. Lupo, N. Tantalo 2019]. (${ }^{*} E^{\prime}, E, \epsilon$ and $t \in \mathbb{N}$ intended now in lattice units!)

The HLT method

$$
\operatorname{Re}[i H(E, \epsilon)] \simeq \sum_{t=t_{\min }}^{t_{\max }} C_{E}(t) g_{\mathrm{Re}}(t, E, \epsilon), \quad \operatorname{Im}[i H(E, \epsilon)] \simeq \sum_{t=t_{\min }}^{t_{\max }} C_{E}(t) g_{\operatorname{Im}}(t, E, \epsilon)
$$

In the HLT, best coefficients $g_{r}(t, E, \epsilon), r=\{\operatorname{Re}, \operatorname{Im}\}$, obtained minimizing

$$
W_{r}[\boldsymbol{g}]=(1-\lambda) \frac{A_{r}[\boldsymbol{g}]}{A_{r}[\mathbf{0}]}+\frac{\lambda}{C_{E}^{2}(0)} B[\boldsymbol{g}], \quad \lambda \in[0,1]
$$

$$
A_{r}[\boldsymbol{g}]=\underbrace{\int_{E_{t h}}^{\infty} d E^{\prime}\left|K_{r}\left(E^{\prime}-E, \epsilon\right)-\sum_{t=t_{\min }}^{t_{\max }} g(t) b_{t}\left(E^{\prime}\right)\right|^{2}}_{\text {syst. error on kernel reconstruction }}, \quad B[\boldsymbol{g}]=\underbrace{\sum_{t, t^{\prime}=t_{\min }}^{t_{\max }} g(t) \overbrace{\operatorname{Cov}_{C_{E}}\left(t, t^{\prime}\right)}^{\text {covariance matrix of } C_{E}} g\left(t^{\prime}\right)}_{\text {stat. error on } \operatorname{Re}[i H(E, \epsilon)], \operatorname{Im}[i H(E, \epsilon)]}
$$

- λ is the trade-off parameter, when $\lambda \simeq 1$ very poor kernel reconstruction.
- For $\lambda \simeq 0$ accurate kernel reconstruction, $g(t)$ typically large in magnitude and oscillating \Longrightarrow large stat. errors induced on $i H(E, \epsilon)$.
- \Longrightarrow find the optimal value λ^{*} where stat. and syst. are balanced and results stable under variations of $\lambda \sim \lambda^{*}$.

The reconstruction at work in a toy-model without errors

Two-resonances model:

$$
\rho(E)=\frac{1}{\pi} \sum_{n=1,2} \frac{\Gamma_{n}}{\left(E-E_{n}\right)^{2}+\Gamma_{n}^{2}}, \quad \begin{aligned}
& E_{1}=0.10, \Gamma_{1}=5 \cdot 10^{-3} \\
& E_{2}=0.15, \Gamma_{2}=10^{-2}
\end{aligned}
$$

- We computed $C_{E}(t)$ with extended machine precision for $t=1, \ldots, 200$.
- $H(E, \epsilon)$ reconstructed from $C_{E}(t)$ using the HLT method with $B[\boldsymbol{g}]=0$.

The reconstruction at work in a toy-model without errors

Two-resonances model:

$$
\rho(E)=\frac{1}{\pi} \sum_{n=1,2} \frac{\Gamma_{n}}{\left(E-E_{n}\right)^{2}+\Gamma_{n}^{2}}, \quad \begin{aligned}
& E_{1}=0.10, \Gamma_{1}=5 \cdot 10^{-3} \\
& E_{2}=0.15, \Gamma_{2}=10^{-2}
\end{aligned}
$$

- We computed $C_{E}(t)$ with extended machine precision for $t=1, \ldots, 200$.
- $H(E, \epsilon)$ reconstructed from $C_{E}(t)$ using the HLT method with $B[\boldsymbol{g}]=0$.

Smeared amplitudes for
$D_{s}^{ \pm} \rightarrow l^{\prime+} l^{\prime-} l^{ \pm} \nu_{l}$ decays

Relevant Feynman diagrams for the process

$$
\text { The } P^{+} \equiv \bar{D} \gamma^{5} U \rightarrow l^{\prime+} l^{\prime-} l^{+} \nu_{l} \text { decays }
$$

(a)

(b)

- Diagram (b) is perturbative, only QCD input is decay constant f_{P}.
- Diagram (a) is non-perturbative. Virtual photon γ^{*} emitted from either a U-type or a D-type quark line. For $P^{+}=D_{s}^{+}: U=c, D=s$.

Non-perturbative QCD contribution encoded in the hadronic tensor

$$
H_{W}^{\mu \nu}(k, \boldsymbol{p})=\int d^{4} x e^{i k \cdot x}\langle 0| T\left[J_{\mathrm{em}}^{\mu}(x) J_{W}^{\nu}(0)\right]|P(\boldsymbol{p})\rangle, \quad W=V, A
$$

- $k=\left(E_{\gamma}, \boldsymbol{k}\right)$ is photon 4-momentum, \boldsymbol{p} is P-meson 3-momentum.
- We neglect $\mathrm{SU}(3)$-vanishing quark-line disconnected diagrams.

Threshold problem at large virtualities k^{2}

$$
\begin{aligned}
H_{W}^{\mu \nu}(k, 0) & =\int_{-\infty}^{\infty} d t e^{i E_{\gamma} t}\langle 0| T\left[J_{\mathrm{em}}^{\mu}(t, \boldsymbol{k}) J_{W}^{\nu}(0)\right]|P(\mathbf{0})\rangle= \\
& =\underbrace{\int_{-\infty}^{0} d t e^{i E_{\gamma} t}\langle 0| J_{W}^{\nu}(0) J_{\mathrm{em}}^{\mu}(t, \boldsymbol{k})|P(\mathbf{0})\rangle}_{H_{W, 1}^{\mu \nu}(k)}+\underbrace{\int_{0}^{\infty} d t e^{i E_{\gamma} t}\langle 0| J_{\mathrm{em}}^{\mu}(t, \boldsymbol{k}) J_{W}^{\nu}(0)|P(\mathbf{0})\rangle}_{H_{W, 2}^{\mu \nu}(k)}
\end{aligned}
$$

Inserting a complete set of states between the two currents:

$$
\begin{aligned}
& H_{W, 1}^{\mu \nu}(k)=-i \sum_{r} \frac{\langle 0| J_{W}^{\nu}(0)|r\rangle\langle r| J_{\mathrm{em}}^{\mu}(\boldsymbol{k})|P(\mathbf{0})\rangle}{E_{r}+E_{\gamma}-M_{P}-i \epsilon}, \quad \boldsymbol{p}_{r}=-\boldsymbol{k}, \quad|r\rangle=\bar{D} \gamma^{\nu} U, \bar{D} \gamma^{\nu} \gamma^{5} U \\
& H_{W, 2}^{\mu \nu}(k)=-i \sum_{n} \frac{\langle 0| J_{\mathrm{em}}^{\mu}(\boldsymbol{k})|n\rangle\langle n| J_{W}^{\nu}(0)|P(\mathbf{0})\rangle}{E_{n}-E_{\gamma}-i \epsilon}, \quad \boldsymbol{p}_{n}=+\boldsymbol{k}, \quad|n\rangle=\bar{D} \gamma^{\mu} D, \bar{U} \gamma^{\mu} U
\end{aligned}
$$

- 1st TO: $E_{r} \geq \sqrt{M_{P}^{2}+|\boldsymbol{k}|^{2}} \Longrightarrow E_{r}+E_{\gamma}-M_{P} \geq 0$
- 2nd TO: $E_{n}-E_{\gamma}<0$ if $\sqrt{k^{2}}>M_{n}$ [mass of the vector state $|n\rangle$]

Threshold at: $\sqrt{k_{t h}^{2}}=\min \left(M_{V_{U}}, M_{V_{D}}\right) \Longrightarrow E_{\gamma, t h}=\sqrt{k_{t h}^{2}+|\boldsymbol{k}|^{2}}$.
$M_{V_{f}}$ is the mass of the lightest $\bar{f} \gamma^{\mu} f$ state. For $P^{+}=D_{s}^{+}, M_{V_{s}}=M_{\phi}, M_{V_{c}}=M_{J / \Psi}$.

The hadronic tensor from Euclidean lattice correlators

$H_{W}^{\mu \nu}$ can be extracted from the following Euclidean three-point function evaluated on a $L^{3} \times T$ lattice:

$$
M_{W}^{\mu \nu}\left(t, t_{W}, \boldsymbol{k}\right) \equiv T\left\langle J_{\mathrm{em}}^{\mu}\left(t+t_{W}, \boldsymbol{k}\right) J_{W}^{\nu}\left(t_{W}\right) \hat{P}(0)\right\rangle_{L T}
$$

- \hat{P} is an interpolator for the $P^{+}(\mathbf{0})$ meson, inserted at Euclidean time 0.
- Weak current placed at a fixed Euclidean time t_{W}.
- To ensure ground-state dominance, t_{W} must be chosen sufficiently large.
- We employ local weak current J_{W} and local/conserved e.m. current $J_{\text {em }}$.

Up to a normalization factor $\mathcal{N}\left(t_{W}\right)$ and finite- t_{W} corrections:

$$
\begin{aligned}
& C_{W, 1}^{\mu \nu}(t, \boldsymbol{k}) \equiv\langle 0| J_{W}^{\nu}(0) J_{\mathrm{em}}^{\mu}(t, \boldsymbol{k})|P(\mathbf{0})\rangle \stackrel{t \leq 0}{=} \frac{1}{\mathcal{N}\left(t_{W}\right)} M_{W}^{\mu \nu}\left(\boldsymbol{k}, t, t_{W}\right) \\
& C_{W, 2}^{\mu \nu}(t, \boldsymbol{k}) \equiv\langle 0| J_{\mathrm{em}}^{\mu}(t, \boldsymbol{k}) J_{W}^{\nu}(0)|P(\mathbf{0})\rangle \stackrel{t \geq 0}{=} \frac{1}{\mathcal{N}\left(t_{W}\right)} M_{W}^{\mu \nu}\left(\boldsymbol{k}, t, t_{W}\right)
\end{aligned}
$$

Proof-of-principle calculation for $P=D_{s}$

We evaluated $M_{W}^{\mu \nu}\left(t, t_{W}, \boldsymbol{k}\right)$ on a single $N_{f}=2+1+1$ Wilson-clover twisted-mass ETMC gauge ensemble at the physical point

Ensemble	$a[\mathrm{fm}]$	L / a	T / a	t_{W} / a	$N_{\text {confs }}$	$N_{\text {sources }}$
cB211.072.64	0.079	64	128	$22\left[25^{*}\right]$	302	4

[^0]- \boldsymbol{k} along z-axis, simulated $x_{\gamma} \equiv 2|\boldsymbol{k}| / M_{D_{s}}: 0.2,0.5,0.7$.
- Implemented $\boldsymbol{k},-\boldsymbol{k}$ average \Longrightarrow effective noise reduction at small x_{γ}.
- Analyzed separately the s- and c-quark contrib. to $C_{W, 1}^{\mu \nu}$ and $C_{W, 2}^{\mu \nu}$.
- Threshold problems only in s-quark contrib. $C_{W, 2}^{\mu \nu ; s}$ for $\sqrt{k^{2}}>M_{\phi}$.

From $C_{W ; 2}^{\mu \nu ; s}$, we evaluate the smeared amplitudes employing the HLT method

$$
\begin{aligned}
\operatorname{Re} / \operatorname{Im}\left[i H_{W, 2}^{\mu \nu ; s}\left(E_{\gamma}, \boldsymbol{k}, \epsilon\right)\right] & =\int_{0}^{\infty} d E^{\prime} \rho_{W, 2}^{\mu \nu ; s}\left(E^{\prime}, \boldsymbol{k}\right) K_{\operatorname{Re} / \operatorname{Im}}\left(E^{\prime}-E_{\gamma}, \epsilon\right) \\
C_{W, 2}^{\mu \nu ; s}(t, \boldsymbol{k}) & =\int_{0}^{\infty} d E^{\prime} \rho_{W, 2}^{\mu \nu ; s}\left(E^{\prime}, \boldsymbol{k}\right) e^{-E^{\prime} t}
\end{aligned}
$$

Vector part of the hadronic tensor [H_{V} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\mathrm{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\mathrm{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Vector part of the hadronic tensor [H_{V} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\mathrm{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\operatorname{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Vector part of the hadronic tensor [H_{V} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\operatorname{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\operatorname{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Vector part of the hadronic tensor [H_{V} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\mathrm{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\operatorname{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Vector part of the hadronic tensor [H_{V} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\mathrm{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\mathrm{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Vector part of the hadronic tensor [H_{V} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\operatorname{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\operatorname{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Axial part of the hadronic tensor [H_{A} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\mathrm{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\mathrm{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Axial part of the hadronic tensor [H_{A} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\operatorname{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\operatorname{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Axial part of the hadronic tensor [H_{A} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\operatorname{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\operatorname{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Axial part of the hadronic tensor [H_{A} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\operatorname{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\operatorname{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Axial part of the hadronic tensor [H_{A} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\operatorname{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\operatorname{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Axial part of the hadronic tensor [H_{A} given in lattice units]

Kernels adopted $x \equiv a\left(E-E_{\gamma}\right)$ [tend to previous kernels in the limit $a \rightarrow 0$]:

$$
K_{\operatorname{Re}}(x, a \epsilon)=\frac{2 e^{-x} \sinh (x / 2)}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}, \quad K_{\operatorname{Im}}(x, a \epsilon)=\frac{(a \epsilon) e^{-x}}{4 \sinh ^{2}(x / 2)+(a \epsilon)^{2}}
$$

Dependence on $x_{\gamma} \equiv 2|\boldsymbol{k}| / M_{D_{s}}$

- From $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}\right)$ at different \boldsymbol{k} (covering the physical interval $\left.x_{\gamma} \in[0,1]\right)$ one can obtain the total decay rate $\Gamma\left[D_{s} \rightarrow \bar{l}^{\prime} l^{\prime} l \nu_{l}\right]$ [G.G. et al, arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}, \epsilon\right)$, and then extrapolate to vanishing ϵ.

Dependence on $x_{\gamma} \equiv 2|\boldsymbol{k}| / M_{D_{s}}$

- From $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}\right)$ at different \boldsymbol{k} (covering the physical interval $x_{\gamma} \in[0,1]$) one can obtain the total decay rate $\Gamma\left[D_{s} \rightarrow \bar{l}^{\prime} l^{\prime} l \nu_{l}\right]$ [G.G. et al, arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}, \epsilon\right)$, and then extrapolate to vanishing ϵ.

Dependence on $x_{\gamma} \equiv 2|\boldsymbol{k}| / M_{D_{s}}$

- From $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}\right)$ at different \boldsymbol{k} (covering the physical interval $\left.x_{\gamma} \in[0,1]\right)$ one can obtain the total decay rate $\Gamma\left[D_{s} \rightarrow \bar{l}^{\prime} l^{\prime} l \nu_{l}\right]$ [G.G. et al, arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}, \epsilon\right)$, and then extrapolate to vanishing ϵ.

Dependence on $x_{\gamma} \equiv 2|\boldsymbol{k}| / M_{D_{s}}$

- From $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}\right)$ at different \boldsymbol{k} (covering the physical interval $\left.x_{\gamma} \in[0,1]\right)$ one can obtain the total decay rate $\Gamma\left[D_{s} \rightarrow \bar{l}^{\prime} l^{\prime} l \nu_{l}\right]$ [G.G. et al, arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}, \epsilon\right)$, and then extrapolate to vanishing ϵ.

Dependence on $x_{\gamma} \equiv 2|\boldsymbol{k}| / M_{D_{s}}$

- From $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}\right)$ at different \boldsymbol{k} (covering the physical interval $\left.x_{\gamma} \in[0,1]\right)$ one can obtain the total decay rate $\Gamma\left[D_{s} \rightarrow \bar{l}^{\prime} l^{\prime} l \nu_{l}\right]$ [G.G. et al, arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}, \epsilon\right)$, and then extrapolate to vanishing ϵ.

Dependence on $x_{\gamma} \equiv 2|\boldsymbol{k}| / M_{D_{s}}$

- From $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}\right)$ at different \boldsymbol{k} (covering the physical interval $x_{\gamma} \in[0,1]$) one can obtain the total decay rate $\Gamma\left[D_{s} \rightarrow \bar{l}^{\prime} l^{\prime} l \nu_{l}\right]$ [G.G. et al, arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_{W}^{\mu \nu}\left(x_{k}, \boldsymbol{k}, \epsilon\right)$, and then extrapolate to vanishing ϵ.

A quick update on $D_{s} \rightarrow \ell \nu_{\ell} \gamma$ [real γ]

Form factors decomposition of $H_{W}^{\mu \nu}$

The hadronic tensor $H_{W}^{\mu \nu}$ can be decomposed in term of scalar form factors as

$$
\begin{aligned}
H_{W}^{\mu \nu}(k, \boldsymbol{p}) & \equiv H_{\mathrm{SD}}^{\mu \nu}(k, \boldsymbol{p})+H_{\mathrm{pt}}^{\mu \nu}(k, \boldsymbol{p}) \\
& =\frac{H_{1}}{M_{P}}\left[k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right]+\frac{H_{2}}{M_{P}} \frac{\left[\left(p \cdot k-k^{2}\right) k^{\mu}-k^{2}(p-k)^{\mu}\right]}{(p-k)^{2}-M_{P}^{2}}(p-k)^{\nu} \\
& -i \frac{F_{V}}{M_{P}} \varepsilon^{\mu \nu \gamma \beta} k_{\gamma} p_{\beta}+\frac{F_{A}}{M_{P}}\left[\left(p \cdot k-k^{2}\right) g^{\mu \nu}-(p-k)^{\mu} k^{\nu}\right]+H_{\mathrm{pt}}^{\mu \nu}(k, \boldsymbol{p}) \\
H_{\mathrm{pt}}^{\mu \nu}(k, \boldsymbol{p}) & \equiv f_{P}\left[g^{\mu \nu}+\frac{(2 p-k)^{\mu}(p-k)^{\nu}}{2 p \cdot k-k^{2}}\right]
\end{aligned}
$$

- M_{P}, f_{P} are mass and decay constant of the meson P.
- $H_{S D}^{\mu \nu}$ is the structure-dependent contribution written in terms of three axial form factors H_{1}, H_{2}, F_{A}, and the vector form factor F_{V}.
- Only F_{A} and F_{V} are relevant for $P \rightarrow l \nu_{l} \gamma$. No threshold problems $\left(k^{2}=0\right)$.
- In the P-meson rest frame and with k along z-axis:

$$
F_{V}\left(x_{\gamma}\right) \propto H_{V}^{12}(k, 0), \quad F_{A}\left(x_{\gamma}\right) \propto H_{A}^{11}(k, 0)-\underbrace{H_{A}^{11}(0,0)}_{\text {point-like subtraction }}
$$

Simulation details

ensemble	β	V / a^{4}	$a(\mathrm{fm})$	$M_{\pi}(\mathrm{MeV})$	$L(\mathrm{fm})$
cA211.12.48	1.726	$48^{3} \cdot 96$	$0.09075(54)$	$174.5(1.1)$	4.36
cB211.072.64	1.778	$64^{3} \cdot 128$	$0.07957(13)$	$140.2(0.2)$	5.09
cC211.060.80	1.836	$80^{3} \cdot 160$	$0.06821(13)$	$136.7(0.2)$	5.46
cD211.054.96	1.900	$96^{3} \cdot 192$	$0.05692(12)$	$140.8(0.2)$	5.46

- Analyzed $\mathcal{O}(100)$ gauge configurations per ensemble (four β considered).
- Spanned the entire kinematical range of $x_{\gamma} \in[0,1]$.

- a^{2} (orange) and $a^{2}+a^{4}$ (blue) extrapolation.
- No sign of a^{4} cut-off effects.

Continuum extrapolated results

- Sensibly improved the accuracy w.r.t. our previous work.
- Results are still preliminary, very good control on systematics due to continuum extrapolation, but other sources of systematic errors under study.
- Currently we are performing simulations on a $L^{3} \times T$ lattice with $L \sim 7 \mathrm{fm}$ and $T=2 L$, to study both finite $-T$ and finite-volume effects.
- Recently Giusti et al [arXiv:2302.01298] performed a calculation of F_{V} and F_{A} on a single RBC/UKQCD ensemble over whole kinematical range. When continuum extrapolated results will be available, interesting comparisons can be made.

Conclusions

- We propose a new method to extract hadronic amplitudes above kinematical thresholds, based on spectral density techniques.
- In our approach, the problem of analytic continuation is bypassed by evaluating, via spectral reconstruction, hadronic amplitudes $H(E, \epsilon)$ smeared over a finite-energy interval ϵ, and then taking $\lim \epsilon \rightarrow 0$.
- We performed a pilot-study on a single ETMC ensemble, computing the hadronic tensor $H_{W}^{\mu \nu}(E, \epsilon)$ relative to $P \rightarrow \overline{l^{\prime}} l^{\prime} l \nu_{l}$ decays (below and above threshold(s)) for $\epsilon \in[100-600] \mathrm{MeV}$, using the HLT method.

To-do list

- Evaluate differential decay rate $\partial \Gamma\left[D_{s} \rightarrow \bar{l}^{\prime} l^{\prime} l \nu_{l}\right] / d|\boldsymbol{k}|$ using smeared hadronic tensor and study ϵ-dependence of $d \Gamma / d|\boldsymbol{k}|$.
- Try to use model calculations as a preconditioner to milden ϵ-dependence: $H(E)=H_{\text {model }}(E, 0)+\lim _{\epsilon \rightarrow 0}\left[H(E, \epsilon)-H_{\text {model }}(E, \epsilon)\right]$.
- Increase number of simulated photon momenta \boldsymbol{k}, extend calculation to finer lattice spacings. Try $P=K$, in the future $P=D, B$?

A thank you slide

Thank you for your attention!

Backup

Controlling systematic errors

Stability analysis to find the optimal value of the trade-off parameter $\lambda=\lambda^{*}$
Below threshold $x_{k}<x_{k, t h} \simeq 0.52$ [No loss of precision at small $\left.A[g]\right]$

- Rightmost vertical line corresponds to $\lambda=\lambda^{*}$. Difference w.r.t. value corresponding to leftmost line added as a systematic when significant.
- Reconstruction becomes poorer increasing x_{k} above threshold and/or decreasing ϵ, as expected.

Controlling systematic errors

Stability analysis to find the optimal value of the trade-off parameter $\lambda=\lambda^{*}$
Slightly above threshold $x_{k} \gtrsim x_{k, t h} \simeq 0.52$

- Rightmost vertical line corresponds to $\lambda=\lambda^{*}$. Difference w.r.t. value corresponding to leftmost line added as a systematic when significant.
- Reconstruction becomes poorer increasing x_{k} above threshold and/or decreasing ϵ, as expected.

Controlling systematic errors

Stability analysis to find the optimal value of the trade-off parameter $\lambda=\lambda^{*}$

- Rightmost vertical line corresponds to $\lambda=\lambda^{*}$. Difference w.r.t. value corresponding to leftmost line added as a systematic when significant.
- Reconstruction becomes poorer increasing x_{k} above threshold and/or decreasing ϵ, as expected.

Local vs conserved electromagnetic current

H_{V} is given in lattice units

Local vs conserved electromagnetic current

H_{V} is given in lattice units

Local vs conserved electromagnetic current

H_{V} is given in lattice units

Checking ground-state isolation

H_{V} is given in lattice units

Checking ground-state isolation

H_{V} is given in lattice units

Checking ground-state isolation

H_{V} is given in lattice units

Dependence on $E_{t h}$

H_{V} is given in lattice units

Dependence on $E_{t h}$

H_{V} is given in lattice units

Dependence on $E_{t h}$

H_{V} is given in lattice units

Pole model fits to F_{A} and F_{V} for real photon emission

- If single-pole model employed to describe $F_{W}, W=\{V, A\}$:

$$
F_{W}\left(x_{\gamma}\right)=\frac{C_{W}}{2 E_{\text {pole }}^{W}\left(E_{\text {pole }}^{W}+E_{\gamma}-M_{D_{s}}\right)}, \quad E_{\text {pole }}^{W}=\sqrt{\left(M_{\text {pole }}^{W}\right)^{2}+\boldsymbol{k}^{2}}
$$

with $C_{W}, M_{\text {pole }}^{W}$ fit parameters, we get:

$$
\begin{array}{ll}
M_{\text {pole }}^{A}=2840(74) \mathrm{MeV}, & \text { expected: } M_{D_{s 1}}=2460 \mathrm{MeV} \\
M_{\text {pole }}^{V}=2197(28) \mathrm{MeV}, & \text { expected: } M_{D_{s}^{*}}=2112 \mathrm{MeV}
\end{array}
$$

- Pole position closer to physical nearest resonance in vector channel. Coupling C_{V} related to $g_{D_{s}^{*} \rightarrow D_{s} \gamma}$ coupling.
- From single-pole fit, we get $g_{D_{s}^{*} \rightarrow D_{s} \gamma}=0.13(1)$.
- Can be compared with direct lattice calculation $\left(g_{D_{s}^{*} \rightarrow D_{s} \gamma}=0.11(2)\right)$ [HPQCD Coll., 2014], and prediction from light-cone sum rule $\left(g_{D_{s}^{*} \rightarrow D_{s} \gamma}=0.60(19)\right)$ [Pullin and Zwicky, 2021].

[^0]: *Analyzed with limited statistics, only used to check ground-state isolation (Backup).

