Lattice determination of the spectral function for $D_s \rightarrow l \nu_l \gamma^* ~{\rm decays}$

Giuseppe Gagliardi, INFN Sezione di Roma Tre

R. Frezzotti, V. Lubicz, G. Martinelli, F. Mazzetti, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo

 ${\rm Ne}\Psi$ 23, 16 February 2023, Pisa.

Outline of the talk

Introduction

- Sketch of the problem of the analytic continuation for hadronic amplitudes above kinematical thresholds.
- Spectral density methods as a way-out to the problem.

The HLT method to reconstruct smeared hadronic amplitudes

- Brief description of the method.
- The reconstruction at work in a simple toy model.

Smeared amplitudes for $D_s^{\pm} \rightarrow l'^+ l'^- l^{\pm} \nu_l$ decays

• Proof-of-principle calculation at $a \sim 0.08$ fm.

Off-topic(?): The real photon case, i.e. $D_s \rightarrow l\nu_l\gamma$.

• Full calculation of the axial and vector form factors F_A and F_V .

Introduction

An hadronic amplitude H(E) can be safely extracted on the lattice only for energy E smaller than the energies of all the intermediate states contributing to H(E).

E.g. consider an hadronic amplitude of the form

$$H(E) = \int_0^\infty dt \, e^{iEt} \, C(t), \quad C(t) \equiv \left< 0 \right| T \left\{ J_A(t) J_B(0) \right\} \left| P \right>^{t \ge 0} \sum_{n=0}^\infty C_n \, e^{-iE_n t}$$

with J_A, J_B arbitrary currents and $|P\rangle$ an hadronic state.

If $E < E_n$ safe analytic continuation from Minkowskian to Euclidean space

$$H(E) = \int_{0}^{\infty} dt \, e^{iEt} \, C(t) \stackrel{\tau=it}{=} T \qquad T \qquad \lim_{T \to \infty} \int_{\gamma(T)} dt \, e^{Et} C(t) = 0$$
$$= -i \int_{0}^{\infty} d\tau \, e^{E\tau} \, C(-i\tau) \qquad \qquad T \qquad \operatorname{Re} t$$

General statement of the problem (II)

On a finite lattice, where non-analiticities are absent, we can access $C_E(t) \equiv C(-it) \text{ for } 0 \le t \le T.$

$$H^{T}(E) = -i \int_{0}^{T} dt \, e^{Et} \, C_{E}(t) = -i \sum_{n=0}^{\infty} C_{n} \, \frac{1 - e^{-(E_{n} - E)T}}{E_{n} - E}$$

$$if E < E_n: if E_0 < E:$$

- For E₀ < E dominant T−divergent part of H^T(E) must be subtracted
 ⇒ difficult in presence of statistical errors, problem worsens when many states E_n below energy E.
- Above threshold hadronic amplitudes become complex (for E = E_n).
 How do we get imaginary parts?

Hadronic amplitudes via the spectral representation (I)

The spectral density $\rho(E')$ of the correlator C(t > 0) is defined as

$$\rho(E') = \left\langle 0 \middle| J_A(0) \,\delta(\mathcal{H} - E') \, J_B(0) \middle| P \right\rangle$$

• $\ensuremath{\mathcal{H}}$ is the QCD Hamiltonian. One has

$$C(t) \stackrel{t>0}{=} \int_0^\infty dE' \,\rho(E') \, e^{-iE't}, \qquad C_E(t) \stackrel{t>0}{=} \int_0^\infty dE' \,\rho(E') \, e^{-E't}$$

The hadronic amplitude H(E) can be computed as

$$H(E) = \lim_{\epsilon \to 0} -i \int_0^\infty dE' \,\rho(E') \int_0^\infty dt \, e^{-i(E'-E)t} f(\epsilon,t)$$

- $f(\epsilon, t)$ is any regulator for the time integral, with f(0, t) = 1.
- E.g. $f(\epsilon, t) = \exp(-\epsilon t)$, $\exp(-\epsilon^2 t^2/2)$. Using standard ϵ -prescription:

$$iH(E) = \lim_{\epsilon \to 0} \int_0^\infty dE' \, \frac{\rho(E')}{E' - E - i\epsilon}$$

Hadronic amplitudes via the spectral representation (II)

From the knowledge of $\rho(E'),$ the real and imaginary part of iH(E) can be computed:

$$\operatorname{Re} \left[iH(E)\right] = \lim_{\epsilon \to 0} \int_0^\infty dE' \,\rho(E') \,\frac{E' - E}{(E - E')^2 + \epsilon^2} = \operatorname{P.V.} \int_0^\infty dE' \,\frac{\rho(E')}{E' - E}$$
$$\operatorname{Im} \left[iH(E)\right] = \lim_{\epsilon \to 0} \int_0^\infty dE' \,\rho(E') \,\frac{\epsilon}{(E - E')^2 + \epsilon^2} = \pi\rho(E)$$

For $E < E_0$, since $\rho(E) = 0$, Im [iH(E)] = 0 and the P.V. can be dropped:

Re
$$[iH(E)] = \int_{E_0}^{\infty} dE' \rho(E') \underbrace{\int_0^{\infty} dt \, e^{-(E'-E)t}}_{=(E'-E)^{-1} \text{ if } E' < E} = \int_0^{\infty} dt \, e^{Et} \, C_E(t)$$

For $E > E_0$, $\lim \epsilon \to 0$ can be taken only after evaluating the energy integral.

We propose to employ the previous representation to evaluate the smeared amplitudes Re $[iH(E, \epsilon)]$, Im $[iH(E, \epsilon)]$ at finite ϵ , and then take $\lim \epsilon \to 0$.

The HLT method to reconstruct smeared hadronic amplitudes

The problem of numerically-inverting the Laplace transform

The spectral density $\rho(E')$ is related to our lattice input $C_E(t)$ through an inverse Laplace transform:

$$C_E(t) \stackrel{t>0}{=} \int_0^\infty dE' \, e^{-E't} \, \rho(E') \implies \rho(E') = \mathcal{L}^{-1}\{C_E\}(E')$$

- Evaluating L⁻¹ is an ill-posed problem if C_E(t) known only on a finite set of points and with a finite accuracy [typical situation in a lattice calculation].
- Evaluating the convolution of $\rho(E')$ with the $\epsilon-{\rm kernels}$ [what QFT dictates]:

$$K_{\rm Re}(x,\epsilon) = \frac{x}{x^2 + \epsilon^2}, \qquad K_{\rm Im}(x,\epsilon) = \frac{\epsilon}{x^2 + \epsilon^2}$$

is instead a well-posed problem at non-zero ϵ [G. Backus & F. Gilbert 1968].

• The HLT method: find for fixed E and ϵ the best approximation to $K_{\text{Re/Im}}(E' - E, \epsilon)$ in terms of $b_t(E') \equiv \exp(-E't)^*$:

$$K_{\rm Re}(E'-E,\epsilon) \simeq \sum_{t=t_{\rm min}}^{t_{\rm max}} g_{\rm Re}(t,E,\epsilon) \cdot b_t(E'), \quad K_{\rm Im}(E'-E,\epsilon) \simeq \sum_{t=t_{\rm min}}^{t_{\rm max}} g_{\rm Im}(t,E,\epsilon) \cdot b_t(E')$$

in such a way to optimize the balance between systematic and statistical errors [M. Hansen, A. Lupo, N. Tantalo 2019]. (* E', E, ϵ and $t \in \mathbb{N}$ intended now in lattice units!)

The HLT method

Re
$$[iH(E,\epsilon)] \simeq \sum_{t=t_{\min}}^{t_{\max}} C_E(t) g_{\text{Re}}(t,E,\epsilon)$$
, Im $[iH(E,\epsilon)] \simeq \sum_{t=t_{\min}}^{t_{\max}} C_E(t) g_{\text{Im}}(t,E,\epsilon)$

In the HLT, best coefficients $g_r(t, E, \epsilon)$, $r = \{\text{Re}, \text{Im}\}$, obtained minimizing

$$W_r[\boldsymbol{g}] = (1-\lambda) \frac{A_r[\boldsymbol{g}]}{A_r[\boldsymbol{0}]} + \frac{\lambda}{C_E^2(0)} B[\boldsymbol{g}], \quad \lambda \in [0,1]$$

$$A_{r}[g] = \underbrace{\int_{E_{th}}^{\infty} dE' \left| K_{r}(E' - E, \epsilon) - \sum_{t=t_{\min}}^{t_{\max}} g(t) b_{t}(E') \right|^{2}}_{\text{syst. error on kernel reconstruction}}, \quad B[g] = \sum_{t,t'=t_{\min}}^{t_{\max}} g(t) \underbrace{\operatorname{Cov}_{C_{E}}(t,t')}_{\text{stat. error on Re}[iH(E,\epsilon)], \operatorname{Im}[iH(E,\epsilon)]}_{\text{stat. error on Re}[iH(E,\epsilon)], \operatorname{Im}[iH(E,\epsilon)]}$$

- λ is the trade-off parameter, when $\lambda \simeq 1$ very poor kernel reconstruction.
- For $\lambda \simeq 0$ accurate kernel reconstruction, g(t) typically large in magnitude and oscillating \implies large stat. errors induced on $iH(E,\epsilon)$.
- \implies find the optimal value λ^* where stat. and syst. are balanced and results stable under variations of $\lambda \sim \lambda^*$.

The reconstruction at work in a toy-model without errors

Two-resonances model:

$$\rho(E) = \frac{1}{\pi} \sum_{n=1,2} \frac{\Gamma_n}{(E - E_n)^2 + \Gamma_n^2}, \qquad E_1 = 0.10, \ \Gamma_1 = 5 \cdot 10^{-3} E_2 = 0.15, \ \Gamma_2 = 10^{-2}$$

- We computed $C_E(t)$ with extended machine precision for $t = 1, \ldots, 200$.
- $H(E, \epsilon)$ reconstructed from $C_E(t)$ using the HLT method with B[g] = 0.

The reconstruction at work in a toy-model without errors

Two-resonances model:

$$\rho(E) = \frac{1}{\pi} \sum_{n=1,2} \frac{\Gamma_n}{(E - E_n)^2 + \Gamma_n^2}, \qquad E_1 = 0.10, \ \Gamma_1 = 5 \cdot 10^{-3} E_2 = 0.15, \ \Gamma_2 = 10^{-2}$$

- We computed $C_E(t)$ with extended machine precision for $t = 1, \ldots, 200$.
- $H(E,\epsilon)$ reconstructed from $C_E(t)$ using the HLT method with B[g] = 0.

Smeared amplitudes for $D_s^\pm ightarrow l'^+ l'^- l^\pm u_l$ decays

Relevant Feynman diagrams for the process

The $P^+ \equiv \bar{D}\gamma^5 U \rightarrow l'^+ l'^- l^+ \nu_l$ decays

- Diagram (b) is perturbative, only QCD input is decay constant f_P .
- Diagram (a) is non-perturbative. Virtual photon γ* emitted from either a U-type or a D-type quark line. For P⁺ = D⁺_s: U = c, D = s.

Non-perturbative QCD contribution encoded in the hadronic tensor $H_W^{\mu\nu}(k, \boldsymbol{p}) = \int d^4x \, e^{ik \cdot x} \left\langle 0 \left| T[J_{\rm em}^{\mu}(x) J_W^{\nu}(0)] \right| P(\boldsymbol{p}) \right\rangle, \quad W = V, A$

• $k = (E_{\gamma}, k)$ is photon 4-momentum, p is P-meson 3-momentum.

• We neglect SU(3)-vanishing quark-line disconnected diagrams.

Threshold problem at large virtualities k^2

$$H_{W}^{\mu\nu}(k,0) = \int_{-\infty}^{\infty} dt \, e^{iE_{\gamma}t} \left\langle 0 \left| T[J_{\rm em}^{\mu}(t,k)J_{W}^{\nu}(0)] \right| P(\mathbf{0}) \right\rangle = \\ = \underbrace{\int_{-\infty}^{0} dt \, e^{iE_{\gamma}t} \left\langle 0 \left| J_{W}^{\nu}(0)J_{\rm em}^{\mu}(t,k) \right| P(\mathbf{0}) \right\rangle}_{H_{W,1}^{\mu\nu}(k)} + \underbrace{\int_{0}^{\infty} dt \, e^{iE_{\gamma}t} \left\langle 0 \left| J_{\rm em}^{\mu}(t,k)J_{W}^{\nu}(0) \right| P(\mathbf{0}) \right\rangle}_{H_{W,2}^{\mu\nu}(k)}$$

Inserting a complete set of states between the two currents:

$$\begin{split} H^{\mu\nu}_{W,1}(k) &= -i \sum_{r} \frac{\langle 0 | J^{\nu}_{W}(0) | r \rangle \langle r | J^{\mu}_{\rm em}(\mathbf{k}) | P(\mathbf{0}) \rangle}{E_{r} + E_{\gamma} - M_{P} - i\epsilon}, \quad \mathbf{p}_{r} = -\mathbf{k}, \quad |r\rangle = \bar{D}\gamma^{\nu}U, \ \bar{D}\gamma^{\nu}\gamma^{5}U \\ H^{\mu\nu}_{W,2}(k) &= -i \sum_{n} \frac{\langle 0 | J^{\mu}_{\rm em}(\mathbf{k}) | n \rangle \langle n | J^{\nu}_{W}(0) | P(\mathbf{0}) \rangle}{E_{n} - E_{\gamma} - i\epsilon}, \quad \mathbf{p}_{n} = +\mathbf{k}, \quad |n\rangle = \bar{D}\gamma^{\mu}D, \ \bar{U}\gamma^{\mu}U \end{split}$$

1

- 1st TO: $E_r \geq \sqrt{M_P^2 + |m{k}|^2} \implies E_r + E_\gamma M_P \geq 0$
- 2nd TO: $E_n E_\gamma < 0$ if $\sqrt{k^2} > M_n$ [mass of the vector state $|n\rangle$]

Threshold at:
$$\sqrt{k_{th}^2} = \min(M_{V_U}, M_{V_D}) \implies E_{\gamma, th} = \sqrt{k_{th}^2 + |\mathbf{k}|^2}.$$

 M_{V_f} is the mass of the lightest $\bar{f}\gamma^{\mu}f$ state. For $P^+ = D_s^+$, $M_{V_s} = M_{\phi}$, $M_{V_c} = M_{J/\Psi}$.¹⁰

The hadronic tensor from Euclidean lattice correlators

 $H^{\mu\nu}_W$ can be extracted from the following Euclidean three-point function evaluated on a $L^3\times T$ lattice:

 $M_W^{\mu\nu}(t, t_W, \boldsymbol{k}) \equiv T \langle J_{\text{em}}^{\mu}(t + t_W, \boldsymbol{k}) \ J_W^{\nu}(t_W) \ \hat{P}(0) \rangle_{LT}$

- \hat{P} is an interpolator for the $P^+(\mathbf{0})$ meson, inserted at Euclidean time 0.
- Weak current placed at a fixed Euclidean time t_W .
- To ensure ground-state dominance, t_W must be chosen sufficiently large.
- We employ local weak current J_W and local/conserved e.m. current J_{em} .

Up to a normalization factor $\mathcal{N}(t_W)$ and finite- t_W corrections:

$$C_{W,1}^{\mu\nu}(t,\boldsymbol{k}) \equiv \langle 0 \left| J_W^{\nu}(0) \right| J_{\text{em}}^{\mu}(t,\boldsymbol{k}) \left| P(\mathbf{0}) \right\rangle \stackrel{t \leq 0}{=} \frac{1}{\mathcal{N}(t_W)} M_W^{\mu\nu}(\boldsymbol{k},t,t_W)$$

$$C_{W,2}^{\mu\nu}(t,\boldsymbol{k}) \equiv \langle 0 \left| J_{\text{em}}^{\mu}(t,\boldsymbol{k}) \; J_{W}^{\nu}(0) \right| P(\boldsymbol{0}) \rangle \stackrel{t \ge 0}{=} \frac{1}{\mathcal{N}(t_{W})} M_{W}^{\mu\nu}(\boldsymbol{k},t,t_{W})$$

Proof-of-principle calculation for $P = D_s$

We evaluated $M_W^{\mu\nu}(t, t_W, \mathbf{k})$ on a single $N_f = 2 + 1 + 1$ Wilson-clover twisted-mass ETMC gauge ensemble at the physical point

Ensemble	$a [\mathrm{fm}]$	L/a	T/a	t_W/a	$N_{\rm confs}$	$N_{\rm sources}$
cB211.072.64	0.079	64	128	22 [25*]	302	4

*Analyzed with limited statistics, only used to check ground-state isolation (Backup).

- **k** along z-axis, simulated $x_{\gamma} \equiv 2|\mathbf{k}|/M_{D_s} : 0.2, 0.5, 0.7.$
- Implemented k , -k average \implies effective noise reduction at small x_{γ} .
- Analyzed separately the s- and c-quark contrib. to $C_{W,1}^{\mu\nu}$ and $C_{W,2}^{\mu\nu}$.
- Threshold problems only in s-quark contrib. C^{μν;s}_{W,2} for √k² > M_φ.

From $C_{W;2}^{\mu\nu;s}$, we evaluate the smeared amplitudes employing the HLT method

$$\operatorname{Re/Im}\left[iH_{W,2}^{\mu\nu;s}(E_{\gamma},\boldsymbol{k},\epsilon)\right] = \int_{0}^{\infty} dE' \,\rho_{W,2}^{\mu\nu;s}(E',\boldsymbol{k}) \,K_{\operatorname{Re/Im}}(E'-E_{\gamma},\epsilon)$$

$$C_{W,2}^{\mu\nu;s}(t,\mathbf{k}) = \int_0^\infty dE' \,\rho_{W,2}^{\mu\nu;s}(E',\mathbf{k}) \,e^{-E't}$$
 12

Kernels adopted $x \equiv a(E - E_{\gamma})$ [tend to previous kernels in the limit $a \to 0$]: $K_{\text{Re}}(x, a\epsilon) = \frac{2e^{-x}\sinh(x/2)}{4\sinh^2(x/2) + (a\epsilon)^2}, \qquad K_{\text{Im}}(x, a\epsilon) = \frac{(a\epsilon)e^{-x}}{4\sinh^2(x/2) + (a\epsilon)^2}$

Kernels adopted $x \equiv a(E - E_{\gamma})$ [tend to previous kernels in the limit $a \to 0$]: $K_{\text{Re}}(x, a\epsilon) = \frac{2e^{-x}\sinh(x/2)}{4\sinh^2(x/2) + (a\epsilon)^2}, \qquad K_{\text{Im}}(x, a\epsilon) = \frac{(a\epsilon)e^{-x}}{4\sinh^2(x/2) + (a\epsilon)^2}$

Kernels adopted $x \equiv a(E - E_{\gamma})$ [tend to previous kernels in the limit $a \to 0$]: $K_{\text{Re}}(x, a\epsilon) = \frac{2e^{-x}\sinh(x/2)}{4\sinh^2(x/2) + (a\epsilon)^2}, \qquad K_{\text{Im}}(x, a\epsilon) = \frac{(a\epsilon)e^{-x}}{4\sinh^2(x/2) + (a\epsilon)^2}$

Kernels adopted $x \equiv a(E - E_{\gamma})$ [tend to previous kernels in the limit $a \to 0$]: $K_{\text{Re}}(x, a\epsilon) = \frac{2e^{-x}\sinh(x/2)}{4\sinh^2(x/2) + (a\epsilon)^2}, \qquad K_{\text{Im}}(x, a\epsilon) = \frac{(a\epsilon)e^{-x}}{4\sinh^2(x/2) + (a\epsilon)^2}$

Kernels adopted $x \equiv a(E - E_{\gamma})$ [tend to previous kernels in the limit $a \to 0$]: $K_{\text{Re}}(x, a\epsilon) = \frac{2e^{-x}\sinh(x/2)}{4\sinh^2(x/2) + (a\epsilon)^2}, \qquad K_{\text{Im}}(x, a\epsilon) = \frac{(a\epsilon)e^{-x}}{4\sinh^2(x/2) + (a\epsilon)^2}$

Kernels adopted $x \equiv a(E - E_{\gamma})$ [tend to previous kernels in the limit $a \to 0$]: $K_{\text{Re}}(x, a\epsilon) = \frac{2e^{-x}\sinh(x/2)}{4\sinh^2(x/2) + (a\epsilon)^2}, \qquad K_{\text{Im}}(x, a\epsilon) = \frac{(a\epsilon)e^{-x}}{4\sinh^2(x/2) + (a\epsilon)^2}$

Kernels adopted $x \equiv a(E - E_{\gamma})$ [tend to previous kernels in the limit $a \to 0$]: $K_{\text{Re}}(x, a\epsilon) = \frac{2e^{-x}\sinh(x/2)}{4\sinh^2(x/2) + (a\epsilon)^2}, \qquad K_{\text{Im}}(x, a\epsilon) = \frac{(a\epsilon)e^{-x}}{4\sinh^2(x/2) + (a\epsilon)^2}$

Kernels adopted $x \equiv a(E - E_{\gamma})$ [tend to previous kernels in the limit $a \to 0$]: $K_{\text{Re}}(x, a\epsilon) = \frac{2e^{-x}\sinh(x/2)}{4\sinh^2(x/2) + (a\epsilon)^2}, \qquad K_{\text{Im}}(x, a\epsilon) = \frac{(a\epsilon)e^{-x}}{4\sinh^2(x/2) + (a\epsilon)^2}$

 $\epsilon/M_{D_{o}} = 0.30$, semi-transparent bands are predictions from ϕ -meson pole dominance

- From $H_{W}^{\mu\nu}(x_k, k)$ at different k (covering the physical interval $x_{\gamma} \in [0, 1]$) one can obtain the total decay rate $\Gamma[D_s \rightarrow \bar{l}' l' l \nu_l]$ [G.G. et al, arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_W^{\mu\nu}(x_k, k, \epsilon)$, and then extrapolate to vanishing ϵ .

 $\epsilon/M_{D_{o}} = 0.25$, semi-transparent bands are predictions from ϕ -meson pole dominance

- From $H_{W}^{\mu\nu}(x_k, k)$ at different k (covering the physical interval $x_{\gamma} \in [0, 1]$) one can obtain the total decay rate $\Gamma[D_s \rightarrow \bar{l}' l' l \nu_l]$ [G.G. et al, arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_W^{\mu\nu}(x_k, k, \epsilon)$, and then extrapolate to vanishing ϵ .

- From $H_W^{\mu\nu}(x_k,k)$ at different k (covering the physical interval $x_{\gamma} \in [0,1]$) one can obtain the total decay rate $\Gamma[D_s \rightarrow \bar{l}' l' l \nu_l]$ [G.G. et al, arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_W^{\mu\nu}(x_k, \mathbf{k}, \epsilon)$, and then extrapolate to vanishing ϵ .

- From $H_W^{\mu\nu}(x_k, k)$ at different k (covering the physical interval $x_{\gamma} \in [0, 1]$) one can obtain the total decay rate $\Gamma[D_s \to \overline{l'}l' l\nu_l]$ [G.G. et al, arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_W^{\mu\nu}(x_k, k, \epsilon)$, and then extrapolate to vanishing ϵ .

- From $H_W^{\mu\nu}(x_k, k)$ at different k (covering the physical interval $x_{\gamma} \in [0, 1]$) one can obtain the total decay rate $\Gamma[D_s \to \overline{l}' l' l \nu_l]$ [G.G. et al, arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_W^{\mu\nu}(x_k, \mathbf{k}, \epsilon)$, and then extrapolate to vanishing ϵ .

- From $H_W^{\mu\nu}(x_k, k)$ at different k (covering the physical interval $x_{\gamma} \in [0, 1]$) one can obtain the total decay rate $\Gamma[D_s \to \overline{l'}l'l\nu_l]$ [G.G. et al. arXiv:2202.03833].
- We plan to evaluate the decay rates $\Gamma(\epsilon)$ using the smeared $H_W^{\mu\nu}(x_k, \mathbf{k}, \epsilon)$, and then extrapolate to vanishing ϵ .

A quick update on $D_s \rightarrow \ell \nu_\ell \gamma$ [real γ]

Form factors decomposition of $H_W^{\mu\nu}$

The hadronic tensor $H_W^{\mu\nu}$ can be decomposed in term of scalar form factors as

$$\begin{split} H_W^{\mu\nu}(k,p) &\equiv H_{\rm SD}^{\mu\nu}(k,p) + H_{\rm pt}^{\mu\nu}(k,p) \\ &= \frac{H_1}{M_P} \left[k^2 g^{\mu\nu} - k^\mu k^\nu \right] + \frac{H_2}{M_P} \frac{\left[(p \cdot k - k^2) k^\mu - k^2 (p - k)^\mu \right]}{(p - k)^2 - M_P^2} (p - k)^\nu \\ &- i \frac{F_V}{M_P} \varepsilon^{\mu\nu\gamma\beta} k_\gamma p_\beta + \frac{F_A}{M_P} \left[(p \cdot k - k^2) g^{\mu\nu} - (p - k)^\mu k^\nu \right] + H_{\rm pt}^{\mu\nu}(k,p) \; . \\ H_{\rm pt}^{\mu\nu}(k,p) &\equiv f_P \left[g^{\mu\nu} + \frac{(2p - k)^\mu (p - k)^\nu}{2p \cdot k - k^2} \right] \end{split}$$

- M_P, f_P are mass and decay constant of the meson P.
- $H_{SD}^{\mu\nu}$ is the structure-dependent contribution written in terms of three axial form factors H_1, H_2, F_A , and the vector form factor F_V .
- Only F_A and F_V are relevant for $P \to l\nu_l \gamma$. No threshold problems $(k^2 = 0)$.
- In the P-meson rest frame and with k along z-axis:

$$F_V(x_\gamma) \propto H_V^{12}(k,0), \qquad F_A(x_\gamma) \propto H_A^{11}(k,0) - H_A^{11}(0,0)$$

point-like subtraction

Simulation details

ensemble	β	V/a^4	a (fm)	M_{π} (MeV)	L (fm)
cA211.12.48	1.726	$48^{3} \cdot 96$	0.09075(54)	174.5(1.1)	4.36
cB211.072.64	1.778	$64^{3} \cdot 128$	0.07957(13)	140.2(0.2)	5.09
cC211.060.80	1.836	$80^{3} \cdot 160$	0.06821(13)	136.7(0.2)	5.46
cD211.054.96	1.900	$96^{3} \cdot 192$	0.05692(12)	140.8(0.2)	5.46

- Analyzed $\mathcal{O}(100)$ gauge configurations per ensemble (four β considered).
- Spanned the entire kinematical range of x_γ ∈ [0, 1].

- a² (orange) and
 a² + a⁴ (blue)
 extrapolation.
- No sign of a⁴ cut-off effects.

Continuum extrapolated results [Preliminary]

Sensibly improved the accuracy w.r.t. our previous work.

- Results are still preliminary, very good control on systematics due to continuum extrapolation, but other sources of systematic errors under study.
- Currently we are performing simulations on a L³ × T lattice with L ~ 7 fm and T = 2L, to study both finite-T and finite-volume effects.
- Recently Giusti et al [arXiv:2302.01298] performed a calculation of F_V and F_A on a single RBC/UKQCD ensemble over whole kinematical range. When continuum extrapolated results will be available, interesting comparisons can be made.

Conclusions

- We propose a new method to extract hadronic amplitudes above kinematical thresholds, based on spectral density techniques.
- In our approach, the problem of analytic continuation is bypassed by evaluating, via spectral reconstruction, hadronic amplitudes H(E, ε) smeared over a finite-energy interval ε, and then taking lim ε → 0.
- We performed a pilot-study on a single ETMC ensemble, computing the hadronic tensor $H_W^{\mu\nu}(E,\epsilon)$ relative to $P \rightarrow \overline{l'}l'l\nu_l$ decays (below and above threshold(s)) for $\epsilon \in [100 600]$ MeV, using the HLT method.

To-do list

- Evaluate differential decay rate ∂Γ[D_s → l
 ⁻l'l'lν_l]/d|k| using smeared hadronic tensor and study ε-dependence of dΓ/d|k|.
- Try to use model calculations as a preconditioner to milden ϵ -dependence: $H(E) = H_{\text{model}}(E, 0) + \lim_{\epsilon \to 0} [H(E, \epsilon) - H_{\text{model}}(E, \epsilon)].$
- Increase number of simulated photon momenta k, extend calculation to finer lattice spacings. Try P = K, in the future P = D, B?

Thank you for your attention!

Backup

Controlling systematic errors

Stability analysis to find the optimal value of the trade-off parameter $\lambda = \lambda^*$

Below threshold $x_k < x_{k,th} \simeq 0.52$ [No loss of precision at small A[g]]

$$x_{\gamma} \equiv \frac{2|\vec{k}|}{M} = 0.2, \quad x_{L} \equiv \frac{\sqrt{k^{2}}}{M} = 0.18$$

- Rightmost vertical line corresponds to λ = λ*. Difference w.r.t. value corresponding to leftmost line added as a systematic when significant.
- Reconstruction becomes poorer increasing x_k above threshold and/or decreasing ε, as expected.

Controlling systematic errors

Stability analysis to find the optimal value of the trade-off parameter $\lambda = \lambda^*$

- Rightmost vertical line corresponds to λ = λ*. Difference w.r.t. value corresponding to leftmost line added as a systematic when significant.
- Reconstruction becomes poorer increasing x_k above threshold and/or decreasing ε, as expected.

Controlling systematic errors

Stability analysis to find the optimal value of the trade-off parameter $\lambda = \lambda^*$

- Rightmost vertical line corresponds to λ = λ*. Difference w.r.t. value corresponding to leftmost line added as a systematic when significant.
- Reconstruction becomes poorer increasing x_k above threshold and/or decreasing ε, as expected.

Local vs conserved electromagnetic current

Local vs conserved electromagnetic current

Local vs conserved electromagnetic current

Checking ground-state isolation

Checking ground-state isolation

Checking ground-state isolation

Dependence on E_{th}

Dependence on E_{th}

Dependence on E_{th}

Pole model fits to F_A and F_V for real photon emission

• If single-pole model employed to describe $F_W, W = \{V, A\}$:

$$F_W(x_{\gamma}) = \frac{C_W}{2E_{pole}^W \left(E_{pole}^W + E_{\gamma} - M_{D_s}\right)}, \quad E_{pole}^W = \sqrt{(M_{pole}^W)^2 + k^2}$$

with C_W, M_{pole}^W fit parameters, we get:

$$M_{pole}^{A} = 2840 \ (74) \text{ MeV}, \quad \text{expected: } M_{D_{s1}} = 2460 \text{ MeV}$$

 $M_{pole}^{V} = 2197 \ (28) \text{ MeV}, \quad \text{expected: } M_{D_{s}^{*}} = 2112 \text{ MeV}$

- Pole position closer to physical nearest resonance in vector channel. Coupling C_V related to g<sub>D^{*}_s→D_sγ coupling.
 </sub>
- From single-pole fit, we get $g_{D_s^* \to D_s \gamma} = 0.13(1)$.
- Can be compared with direct lattice calculation $(g_{D_s^* \to D_s \gamma} = 0.11(2))$ [HPQCD coll., 2014], and prediction from light-cone sum rule $(g_{D_s^* \to D_s \gamma} = 0.60(19))$ [Pullin and Zwicky, 2021].