Measurement of the muon Electric Dipole Moment

Bastiano Vitali

PhD Accelerator Physics, Sapienza Università di Roma

Ne Ψ Workshop, Pisa 16/02/2023

Content

- Introduction
- Frozen-spin technique
- Sensitivity
- Precursor
- Systematic effects
- Status (one example)
- Milestones and schedule
- $\rightarrow\,$ Some detail in the backup
 - Choice of the magnet
 - Magnetic pulse
 - Injection

- ...

Introduction

- Cornerstone of the SM is the delicate balance of symmetries and their breaking
- The known CP violation is insufficient to explain the matter-antimatter asymmetry
- EDM violate T and, invoking the CPT-theorem, also CP \rightarrow BSM probes
- BSM hints suggest a flavor structure beyond minimal flavor violation (MFV)
 - In MFV a simple scaling by the ratio m_e/m_μ is predicted for the EDM

- 95% polarized μ^+ beam
- Superconducting shielded injection
- Muon *kicked* in a 'virtual' storage ring Achtung! Spiral injection needed
- Thin electrodes to freeze the spin
- Positron tracking after the decay
- 'Up-down' asymmetry is the observable
- g-2 direct limit ^a $d_{\mu} < 1.8 \times 10^{-19}\,\mathrm{e\,cm}$
 - Stronger indirect limit through d_e
- Aim is $6 \times 10^{-23} \,\text{e\,cm}$ using frozen spin

^aBennett et al.,PRD80(2009)052008

Frozen-spin technique

- MDM and EDM describe the interaction of the spin with EM fields: $\hat{H} = -\mu \hat{\sigma} \cdot B d\hat{\sigma} \cdot E$
- Thomas-BMT equation gives the precession of the spin

$$\Omega = \Omega_0 - \Omega_c = \underbrace{\frac{q}{m} \left[a\mathbf{B} - \frac{a\gamma}{\gamma + 1} (\boldsymbol{\beta} - \mathbf{B}) \boldsymbol{\beta} - \left(a + \frac{1}{1 - \gamma^2}\right) \frac{\boldsymbol{\beta} \times \mathbf{E}}{c} \right]}_{\text{Anomalous procession, } \omega_a = \omega_L - \omega_c} + \underbrace{\frac{\eta q}{2m} \left[\boldsymbol{\beta} \times \mathbf{B} + \frac{\mathbf{E}}{c} - \frac{\gamma c}{\gamma + 1} (\boldsymbol{\beta} - \mathbf{E} \boldsymbol{\beta}) \right]}_{\text{Interaction of EDM and relativistic } \mathbf{E}_{i}, \omega_a}$$

- Taking $\boldsymbol{p} \perp \boldsymbol{B} \perp \boldsymbol{E}$ the equation is simplified
- Anomalous precession term can be set to zero taking $aB = \left(a \frac{1}{\gamma^2 1}\right) \frac{\beta \times E}{c}$

Frozen-spin technique

- If $\eta = 0$ the angle between p and spin is unchanged \rightarrow 'frozen'
- In the presence of an EDM the change in polarization follows

$$rac{\mathrm{d} \boldsymbol{\Pi}}{\mathrm{d} t} = \boldsymbol{\omega}_{e} imes \boldsymbol{\Pi} = rac{2d_{\mu}}{\hbar} \left(eta c imes \boldsymbol{B} + \boldsymbol{E}_{f}
ight) imes \boldsymbol{\Pi}$$

ullet The net result is a vertical build-up of the polarization \rightarrow Direction of the positrons

$$|\Pi(t)| = P(t) = P_0 \sin(\omega_e t) pprox P_0 \omega_e t pprox 2P_0 rac{d_\mu}{\hbar} rac{E_f}{a \gamma^2} t$$

Bring home message

Choosing an orthogonal $p \perp B \perp E$ and the adequate B, E fields the existence of EDM translates in a *time-dependent up-down* polarization which translates in an asymmetry in positrons direction

Let's try to visualize

• From the slope and introducing the mean decay asymmetry A

$$\frac{\mathrm{d}P}{\mathrm{d}d_{\mu}} = \frac{2P_0 E_{\mathrm{f}} t}{a\hbar\gamma^2} \to \sigma(d_{\mu}) = \frac{a\hbar\gamma}{2P_0 E_{\mathrm{f}}\sqrt{N}\tau_{\mu}A}$$

- Two scenarios are considered:
 - the first phase will use surface muons with $p \approx 28 \, {\rm MeV/c}$ from $\pi {\rm E1} \rightarrow \sigma < 3 \times 10^{-21}$
 - the final setup will have higher muon flux and $p = 125 \,{\rm MeV/c}
 ightarrow \sigma < 6 imes 10^{-23}$

Why a Precursor?

- $\bullet~$ Challenging experiment $\rightarrow~$ Precursor
- Proof of concept(s):
 - Magnet uniformity
 - Muon tagging insertion
 - Injection magnetic shielding
 - Kicker and muon orbit stability
 - Positron tracking
 - Fine-tuning with g-2 measurement
 - ...debug
- Develop symmetries in the apparatus to reduce the systematics

Basically we need to demonstrate muons get to the right orbit: insertion and positron tracking

Systematics

- Many effects lead to a real or apparent precession of the spin around the radial axis
 - Non-zero average longitudinal E-field
 - Presence of time-variable radial B-field
 - Electric field misalignments
 - Resonance between radial and longitudinal E-fields
 - Cyclotron and betatron oscillations beating and/or resonances
 - Early to late variation of of the positron detection efficiency
 - ...
- This requires a detailed study of the Thomas-BMT and crosscheck with the Geant4 spin-tracking package

Systematics: summary

Systematic effect	Constraints	Phase I		Phase II	
		Expected value	Syst. $(\times 10^{-21} e \cdot cm)$	Expected) value	Syst. $(\times 10^{-23} e \cdot cm)$
Cone shaped electrodes (longitudinal E-field)	Up-down asymmetry in the electrode shape	$\Delta_R < 30 \ \mu m$	0.75	$\Delta_R < 7 \ \mu { m m}$	1.5
Electrode local smoothness (longitudinal E-field)	Local longitudinal electrode smoothness	$\delta_R < 3~\mu{\rm m}$	0.75	$\delta_R < 0.7~\mu{\rm m}$	1.5
Residual B-field from kick	Decay time of kicker field	< 50 ns	$< 10^{-2}$	< 50 ns	0.5
Net current flowing muon orbit area	Wiring of electronics inside the orbit	< 10 mA	$< 10^{-2}$	< 10 mA	0.3
Early-to-late detection efficiency change	Shielding and cooling of detectors	_		_	
Resonant geometrical phase accumulation	Misalignment of central axes	$\begin{array}{l} {\rm Pitch} < 1 \ {\rm mrad} \\ {\rm Offset} < 2 \ {\rm mm} \end{array}$	2×10^{-2}	$\begin{array}{l} {\rm Pitch} < 1 \ {\rm mrad} \\ {\rm Offset} < 2 \ {\rm mm} \end{array}$	0.15
TOTAL			1.1		2.2

Status

- Many items are still under development
 - Magnet choice
 - Injection channel
 - Magnetic kicker
 - Beam monitoring
 - Entrance trigger
 - Positron tracker
 - ...
- ... but we are making a lot of progress!

Bastiano Vitali

Entrance

We need something to trigger the magnetic kick

- Thin 'gate' scintillator as trigger and a thicker 'telescope' as veto
- Geant4 and musrSim simulations
- Two prototypes of the 'telescope' with different specs were tested in Oct. 2022

Bring home message

The entrance scintillator is used as trigger but needs to preserve the qualities of the beam

- Thinner than 100 μm
 - \rightarrow Reduce multiple scattering
- Read with and of 2/4 sides
 - \rightarrow Low th. and suppress thermal noise

Milestones

- Top-level tasks and milestones:
 - M1 Demonstration of off-axis injection
 - M2 Muon selection and generation of trigger
 - M3 Application of pulsed magnetic field and measurement of eddy-currents
 - M4 Stopping of muons and detection of (g-2)-precession
 - M5 Adjust electric field by tuning
 - (g-2)-precession to zero
 - M6 Data-taking in muon EDM mode

- Tasks for Phase-II:
 - Conceptional design
 - Technical design
 - Purchasing and production

We plan an engineering run of 100 days, followed by a data production run of 200 days to accomplish a statistical sensitivity of better than $\sigma \leq 6 \times 10^{-23}$

'Short' term schedule

Thank you and thanks to the collaboration!

M. Giovannozzi CERN: Beams Department, Esphanado des Particules 1, 1211 Meyrin, Switzerland M. Hoferichter UB: University of Derm, Bern, Switzerland G. Hiller UD: University of Dortmund, Dortmund, Germany R. Apolleby, I. Bailey

CI: Cockcroft Institute, Dursbury, United Kingdom C. Chavez Barajas, T. Bowcock, J. Price, N. Rompotis, T. Teubner, G. Venanzoni, J. Vossebeld UL: University of Liverpool. United Kingdom

> R Chislett, G. Hesketh UCL: University College London, London, United Kingdom

N. Berger, M. Köppel¹, A. Kozlinsky, M. Müller¹, F. Wauters UMK: University of Mainz - Kernphysik, Mainz, Germany

A. Keshavarzi, M. Lancaster UM: University of Manchester, Manchester, United Kingdom

F. Trillaud UNAM: Universidad Nacional Autonma de Mexico, Mexico City, Mexico

B. Märkisch **TUM:** Technical University Munich, Munich, Germany

A. Baldini, F Cei, L. Galli, M. Grassi, D. Nicolò, A. Papa, G. Signorelli, B. Vitali INFN-P: INFN and University of Pisa, Pisa, Italy

> G. Cavoto, F. Renga, C. Voena UR: University and INFN of Roma, Roma, Italy

C. Chen, T. Hu¹, K.S. Khaw, J.K. Ng¹, G.M. Wong¹, Y. Zeng¹ SJTU: Shanghai Jiao Tong University and Tsung-Dao Lee Institute, Shanghai, China

A. Adelmann, C. Calzolaio, R. Chakraborty, M. Daum, A. Doinaki¹, C. Dutsov, W. Erdmann, T. Hume¹, M. Hidebrandt, H. C. Kastil, K. Knecht, L. Morvaj, D. Reggiani, A. Rehman, P. Schmidt-Wellenburg² **Psi**: Paul Scherrer Institut, Villigen, Switzerland

> K. Kirch³, M. Sakurai^{1,5} ETHZ: ETH Zürich, Switzerland

L. Caminada⁵, A. Crivellin⁵ UZ: University of Zürich, Zürich, Switzerland

Backup: EDM history and muEDM potential

Backup: Sensitivity

	$\pi \mathbf{E1}$	$\mu \mathbf{E1}$
Muon flux (μ^+/s)	4×10^6	1.2×10^8
Channel transmission	0.03	0.005
Injection efficiency	0.017	0.60
Muon storage rate $(1/s)$	2×10^3	360×10^3
Gamma factor γ	1.04	1.56
e^+ detection rate (1/s)	500	90×10^3
Detections per 200 days	8.64×10^9	1.5×10^{12}
Mean decay asymmetry A	0.3	0.3
Initial polarization P_0	0.95	0.95
Sensitivity in one year $(e \cdot cm)$	${<}3\times10^{-21}$	$< 6 \times 10^{-23}$

Backup: Magnet(s)

- Injection and stable orbit require deep knowledge of the B field
 - ANSYS simulations
 - B field mapping
 - Lenght/width of the bore
- Strenght and shape of the weakly focusing field is cardinal
- Two options for Phase I

	\mathbf{PSC}	Ben
Max B-Field /T	5	4
Persistent mode	yes	no
Solenoid length /mm	1000	650
Bore diameter /mm	200	300
Time trigger to pulse $/ns$	145	na

3.3

Backup: Magnetic pulse

The muons would spiral through the whole system \rightarrow Magnetic pulse needed to store them

- Quadrupole to balance the longitudinal B created with counterpropagating circular coils
- Triggered by the entrance detector
- Needs to be fast and precise
 - Quick reaction from the trigger
 - Fast rising time
 - Short pulse lenght
 - Pulse ringing 'small as possible'

Preamp

10 ns

10 ns

discrimina

Bastiano Vitali

Backup: Magnetic pulse circuit

First prototype of the coils was built and is under study Here a preliminary LTspice design of the pulse circuit

Backup: Injection

- Superconducting shielding for injection
 - Current induced if $T < T_c$ when ramping the magnet
 - Nb-Ti/Nb/Cu and HTS shielding
 - Simulations and tests are ongoing
- Symmetric injection(s) to cancel/reduce some of the systematics

Backup: The insertion system in GEANT4

Backup: The insertion system in GEANT4

• Simulated both momenta varying the thickness of the gate

28MeV_10k/fEdep

28MeV 10k/fEdep

To assess a stable muon orbit we need to detect and trace back the positrons

- Slightly ifferent shape of the tracks for the two phases of the experiment
- We are not interested in all the positrons some bring more information than others
- Scintillating transverse fibers for the longitudinal position (up/down spiral) + silicon strip detectors/fibers

Backup: Figure of merits

MDM on the left, EDM on the right. Normalized positron energy spectrum (Red), Asymmetry α (Blue dashed), $\alpha^2 N$ (Green dot-dashed) and $\alpha \sqrt{(N)}$ (Purple)

Optical photons x position

Backup: SciFi prototype

Backup: Positron tracking

- μ^+ orbit's radius $\approx 3 \text{ cm} (28 \text{ MeV})$
- e⁺ radius of similar size [25,82] MeV
 - Mainly 'backward' tangent decay due to the beam polarization
- Required resolution \sim mm
- Straw-tubes and/or SciFi scintillator

t [ns]

Backup: 'Long' term schedule

