Accidental Peccei-Quinn symmetry and composite axions from chiral gauge theories

Alessandro Podo

Based on:

R. Contino, AP and F. Revello — 2112.09635, *JHEP* 04 (2022) 180 AP and F. Revello — 2205.03428, *PRD* 106 (2022) 11

Plan of the talk

- Introduction and motivations
- Models of composite axions
- Anomaly cancellation conditions and their general solution
- Classification of high-quality QCD axion models
- Conclusions

The axion solution to the strong CP problem

- Experimental fact: absence of CP violation in the QCD sector
- ullet Theoretical puzzle: QCD theta angle must be extremely small: $heta < 10^{-10}$

nEDM - PRL 124 (2020) 8, 081803

Axion solution:

Peccei and Quinn, Wilczek, Weinberg (1977) + [...]

- there is a spontaneously broken <u>anomalous</u> $U(1)_{PQ}$ symmetry
- the axion is the Nambu-Goldstone boson associated to this symmetry
- the axion potential generated by QCD effects relaxes heta to 0

$$V(a) = -m_{\pi}^2 f_{\pi}^2 \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2 \left(\frac{a}{2f_a} - \frac{\theta}{2}\right)}$$

- θ is dynamically relaxed to <u>exactly</u> 0

Vafa, Witten (1984)

The axion quality problem

- The $U(1)_{PO}$ symmetry is a global symmetry
- But global symmetries are explicitly broken in quantum gravity
- PQ violating effects generated at the Planck scale could spoil the axion solution

• neutron EDM experiment: $\Delta \theta \lesssim 10^{-10}$

high quality for $f_a \lesssim 10^{12} \, \mathrm{GeV} \quad \longrightarrow \quad \Delta_{PQ} \gtrsim 12$

Some proposed solutions

- Axions in string theory with exponentially small corrections
 - axions and axion-like particles arise naturally in string theory Witten (1984)
 - $\delta V(a) \sim \Lambda_{UV}^4 e^{-S_{UV}} \cos \left(a/f_a + \delta \right)$
 - The size of the breaking effects depends on properties of the UV completion

Kallosh et al. (1995), Svrcek and Witten, Conlon (2006), [...]

- Quantum field theories with fundamental scalar fields, extra-dim, SUSY, etc.
 - see talk by L. di Luzio for an overview of axion models
- Quantum field theories with fundamental fermions and gauge dynamics in 4D

we focus on this class of models

Models of composite axions

•
$$SU(N) \times G_W \times G_{SM}$$

- G_W is a possible gauge group assumed to be weak at Λ_{PQ}
- ψ_i , χ_i are left-handed Weyl fermions
- simplest example:

	SU(N)	$SU(3)_c$	$U(1)_{PQ}$
ψ_1			+1
ψ_2		1	-3
χ_1			+1
χ_2		1	-3

In this example: fermionic mass terms set to zero by hand

Kim - PRD 31 (1985) 1733

can we have accidental (high-quality) PQ symmetry?

Selection rules on PQ violating operators

- Not every PQ violating operator is dangerous!
- A generic PQ violating operator generates a potential only if it has non vanishing matrix element with a state containing axions:

$$\langle \psi_a | \mathcal{O}_{PQ} | 0 \rangle \neq 0$$

 The operator must be an interpolating operator for the axion, with vanishing vectorial charges.

 \mathcal{O}_{PQ} polynomial in $(\psi_r\chi_{ar{r}}),\,(\psi_r\chi_{ar{r}})^*,(\psi_r^\dagger\psi_r)\,\,\mathrm{and}\,\,(\chi_{ar{r}}^\dagger\chi_{ar{r}})$

It can be a composite operator built from the insertion of N local operators

$$d_{ ext{eff}} = \sum_{i=1}^N d_i - 4(N-1)$$
 recently discussed also in Bonnefoy - 2212.00102

Chiral models with non-abelian factors

• The leading PQ violating effects generated at dimension $\Delta_{PQ} = 3m$

$$\mathcal{O}_{P\mathcal{O}} = (\psi_1 \chi_1)^{m-n} (\bar{\psi}_2 \bar{\chi}_2)^n \qquad n = 0, ..., m \qquad (n \neq m/2)$$

Perturbativity of gauge couplings restricts the possible values of m

- m > 3 seems disfavored Dobrescu PRD 55 (1997) 5826
- More elaborate models with a moose structure have been proposed

Chiral models with an abelian factor

$$SU(N) \times U(1) \times G_{SM}$$

$$\psi_i \sim (\Box, p_i, r_i), \qquad \chi_i \sim (\bar{\Box}, q_i, \bar{r}_i), \qquad i = 1, ..., n_f$$

Harigaya, Nomura '16

- r_i is a (possibly reducible) rep of $G_{
 m SM}$
- p_i and q_i are integer charges for $U(1)_D$ with:

$$p_i \neq -q_i$$
 $(i \neq j)$ chiral charge assignment

 The classification of PQ violating operators requires a knowledge of the U(1) charges

The anomaly cancellation equations

• Local gauge anomalies for U(1) impose non-trivial constraints

$$\begin{cases} \sum_{i=1}^{n_f} (p_i+q_i)T_i=0, & U(1)\times [G_{\rm SM}]^2 & \text{(zero hypercharge for simplicity)} \\ \sum_{i=1}^{n_f} (p_i+q_i)d_i=0, & U(1)\times [SU(N)]^2 \\ \sum_{i=1}^{n_f} (p_i^3+q_i^3)d_i=0, & [U(1)]^3 \end{cases}$$

Dimension of SM rep:

$$d_i = \dim(r_i) = \sum_{\alpha} \dim(r_i^{(\alpha)}), \qquad T_i = \sum_{\alpha} T(r_i^{(\alpha)}),$$

Dynkin index of SM rep:

$$T_i = \sum_{\alpha} T(r_i^{(\alpha)})$$

In fact the same equations apply if: $SU(N) o G_{\text{semisimple}}$, $(\square, \overline{\square}) o (R, \overline{R})$

The anomaly cancellation equations

• Local gauge anomalies for U(1) impose non-trivial constraints

$$\begin{cases} \sum_{i=1}^{n_f} (p_i+q_i)T_i = 0, & U(1)\times [G_{\rm SM}]^2 & \text{(zero hypercharge for simplicity)} \\ \sum_{i=1}^{i=1} (p_i+q_i)d_i = 0, & U(1)\times [SU(N)]^2 \\ \sum_{i=1}^{n_f} (p_i^3+q_i^3)d_i = 0, & [U(1)]^3 \end{cases}$$

- System of polynomial equations over the integers
 - cubic equations: in general it is very hard to find all the integer solutions

The anomaly cancellation equations

ullet Local gauge anomalies for U(1) impose non-trivial constraints

$$\begin{cases} \sum_{i=1}^{n_f} (p_i+q_i)T_i = 0, & U(1)\times [G_{\rm SM}]^2 & \text{(zero hypercharge for simplicity)} \\ \sum_{i=1}^{n_f} (p_i+q_i)d_i = 0, & U(1)\times [SU(N)]^2 \\ \sum_{i=1}^{n_f} (p_i^3+q_i^3)d_i = 0, & [U(1)]^3 \end{cases}$$

- System of polynomial equations over the integers
 - cubic equations: in general it is very hard to find all the integer solutions
 - The case of a pure U(1) gauge theory has been solved recently

Costa, Dobrescu, Fox '19, Allanach, Gripaios, Tooby-Smith '19

General solution for $n_f = 2$

- For $n_f = 2$ and chiral assignments $p_i \neq -q_i$
 - the two linear equations have to be equivalent (so $T_1d_2=T_2d_1$).

$$\begin{cases} (p_1 + q_1)d_1 + (p_2 + q_2)d_2 = 0 \\ (p_1^3 + q_1^3)d_1 + (p_2^3 + q_2^3)d_2 = 0 \end{cases}$$

- combining the two equations we obtain an homogeneous quadric

$$Q(X, Y, Z) \equiv (d_2^2 - d_1^2)X^2 + 3d_2^2Y^2 - 3d_2^2Z^2 = 0$$

Conic in projective space!

where
$$X = (p_1 + q_1), Y = (p_1 - q_1), Z = (p_2 + q_2)$$

- Integers charges correspond to the zero locus of $\mathit{Q}(\mathit{X},\mathit{Y},\mathit{Z})$ in \mathbb{PQ}^2

General solution for $n_f = 2$

Theorem 1 (see e.g. Mordell):

Given a rational point P on a conic, there are in fact infinitely many rational points and they can all be found as the intersection of a rational line through P and the conic itself.

- In our case P = [0:1:1], and we find:

$$p_{1} = \frac{n}{\mu_{2}} \tilde{p}_{1} = \frac{n}{\mu_{2}} \left[d_{1}^{2} \ell^{2} + d_{2}^{2} (3k^{2} + 6k\ell - \ell^{2}) \right],$$

$$q_{1} = \frac{n}{\mu_{2}} \tilde{q}_{1} = \frac{n}{\mu_{2}} \left[-d_{1}^{2} \ell^{2} + d_{2}^{2} (\ell^{2} + 6k\ell - 3k^{2}) \right], \qquad n, k, \ell \in \mathbb{Z} \setminus \{0\}$$

$$p_{2} = \frac{n}{\mu_{2}} \tilde{p}_{2} = \frac{n}{\mu_{2}} \left[d_{1}^{2} \ell^{2} - 6d_{1} d_{2} k\ell - d_{2}^{2} (3k^{2} + \ell^{2}) \right], \qquad \mu_{2} = \gcd\left(\tilde{p}_{1}, \tilde{p}_{2}, \tilde{q}_{1}, \tilde{q}_{2}\right)$$

$$q_{2} = \frac{n}{\mu_{2}} \tilde{q}_{2} = \frac{n}{\mu_{2}} \left[-d_{1}^{2} \ell^{2} - 6d_{1} d_{2} k\ell + d_{2}^{2} (3k^{2} + \ell^{2}) \right],$$

- In the general case we cannot reduce the system to a quadric.
- However, for our specific system of equations, by using one of the linear equations, we can reduce the system to:
 - a singular cubic hypersurface, with a known rational double point.
 - plus an additional linear equation.

Theorem 2 (see e.g. Mordell):

Given a rational double point P on a cubic hypersurface, there are infinitely many rational points and they can all be found as the intersection of a rational line through P and the cubic itself.

- For $n_{\!f}=\nu$ and chiral assignments $p_i \neq -q_i$
 - first consider the equations

$$\sum_{i=1}^{\nu} (p_i + q_i)d_i = 0, \qquad \Longrightarrow \text{ solve for } q_{\nu}$$

$$\sum_{i=1}^{\nu} (p_i^3 + q_i^3)d_i = 0,$$

- combining the two equations we obtain a cubic in $\mathbb{PQ}^{2\nu-2}$

$$F\left(p_{i},q_{i}\right) = d_{\nu}^{2} \sum_{i=1}^{\nu-1} d_{i} \left(p_{i}^{3} + q_{i}^{3}\right) + d_{\nu}^{3} p_{\nu}^{3} - \left(\sum_{i=1}^{\nu-1} d_{i} \left(p_{i} + q_{i}\right) + d_{\nu} p_{\nu}\right)^{3}.$$

- The point $\Pi_0 = [1:-1:\dots:1:-1:1]$ is a rational double point
- Find all rational points as intersections of cubic and rational lines through Π_0

• Setting $\nu=n_f$ for notational convenience, we find

$$p_{i} = \frac{n}{\mu_{\nu}} \tilde{p}_{1} = \frac{n}{\mu_{\nu}} \left[A_{2} - A_{1} \ell_{i} \right],$$

$$q_{i} = \frac{n}{\mu_{\nu}} \tilde{q}_{1} = \frac{n}{\mu_{\nu}} \left[-A_{2} - A_{1} m_{i} \right],$$

$$p_{\nu} = \frac{n}{\mu_{\nu}} \tilde{p}_{\nu} = \frac{n}{\mu_{\nu}} \left[A_{2} - A_{1} \ell_{\nu} \right],$$

$$q_{\nu} = \frac{n}{\mu_{\nu}} \tilde{q}_{\nu} = \frac{n}{\mu_{\nu}} \left[-A_{2} + \frac{A_{1}}{d_{\nu}} \left(\sum_{i=1}^{\nu-1} d_{i} (\ell_{i} + m_{i}) + d_{\nu} \ell_{\nu} \right) \right],$$

- charges parametrized by a set of arbitrary integers subject to a linear constraint:

$$\sum_{i=1}^{\nu-1} D_{i\nu}(\ell_i + m_i) = 0. \qquad \qquad \ell_i, m_i, n \in \mathbb{Z}$$

where $D_{ij}=d_iT_i-d_iT_i$, $\mu_{\nu}=\gcd(\tilde{p}_1,\ldots,\tilde{q}_{\nu})$, A_I are polynomials in (\mathcal{E}_i,m_i)

$$A_{1} = 3d_{\nu}^{2} \sum_{i=1}^{\nu-1} d_{i}(\ell_{i}^{2} - m_{i}^{2}) + 3d_{\nu}^{3} \ell_{\nu}^{2} - 3d_{\nu} \left(\sum_{i=1}^{\nu-1} d_{i}(\ell_{i} + m_{i}) + d_{\nu} \ell_{\nu} \right)^{2},$$

$$A_{2} = d_{\nu}^{2} \sum_{i=1}^{\nu-1} d_{i}(\ell_{i}^{3} + m_{i}^{3}) + d_{\nu}^{3} \ell_{3}^{3} - \left(\sum_{i=1}^{\nu-1} d_{i}(\ell_{i} + m_{i}) + d_{\nu} \ell_{\nu} \right)^{3}.$$

• The analysis is valid for *arbitrary* semi-simple compact $G \times G_{\rm SM}$ with new fermions vector-like under $G \times G_{\rm SM}$:

$$\psi_i = (R, p_i, r_i), \qquad \chi_i = (\overline{R}, q_i, \overline{r}_i) \qquad i = 1, \dots, n_f$$

 G_{SM} : SM gauge group or a semi-simple extension

- ullet The theory is chiral but the infrared dynamics is controlled by the vector-like G
- Assignment of SM hypercharge can be included straightforwardly

Back to composite axion models

- the knowledge of the U(1) charges allows us to identify the form of the gauge invariant PQ violating local operators that generate a potential.
 - For $\nu = 2$ and $\nu = 3$ the gauge invariance of PQ violating operators of the form:

$$\mathcal{O}_{\mathcal{PQ}} = (\psi_1 \chi_1)^{\kappa_1} \dots (\psi_{\nu} \chi_{\nu})^{\kappa_{\nu}}$$

is independent from the charge assignments — depends only on SM representations

Single insertions can be easily characterised useful for phenomenology

- The effect of multiple insertions depends on the specific charges.
 - we are still able to find charge assignments with the desired (maximal) level of PQ protection

Models with $n_f = 3$

	$\mathrm{SU}(N_{\mathrm{DC}})$	$\mathrm{U}(1)_\mathrm{D}$	G_{SM}	$U(1)_{PQ}$
ψ_1		p_1	r_1	α
ψ_2		p_2	r_2	β
ψ_3		p_3	r_3	γ
χ_1		q_1	$ar{r}_1$	α
χ_2		q_2	$ar{r}_2$	β
χ_3		q_3	\bar{r}_3	γ

- We classify the models that satisfy the following conditions:
 - anomaly cancellation
 - confining SU(N) dynamics (bound on the multiplicity of fermions)
 - perturbativity of the SM couplings up to M_{Pl} (no low-scale Landau poles)

Models with $n_f = 3$

	$\mathrm{SU}(N_{\mathrm{DC}})$	$\mathrm{U}(1)_\mathrm{D}$	G_{SM}	$U(1)_{PQ}$
ψ_1		p_1	r_1	α
ψ_2		p_2	r_2	β
ψ_3		p_3	r_3	γ
χ_1		q_1	$ar{r}_1$	α
χ_2		q_2	$ar{r}_2$	β
χ_3		q_3	$ar{r}_3$	γ

• The PQ violating **local** operators depend **only** on the choice of SM reps

$$\mathcal{O}_{PQ} = (\psi_1 \chi_1)^{\kappa_1} (\psi_2 \chi_2)^{\kappa_2} (\psi_3 \chi_3)^{\kappa_3}$$

Multiple insertions of local operators depend on charges

Classification with irreducible SM reps

G_{SM}	r_1	r_2	r_3	$\Delta_{PQ}^{ m max}$	$N_{ m DC}$	$f_a^{ m min}$
$\mathrm{SU}(5)_{\mathrm{GUT}}$	1	$\bar{5}$	10	12	$4,5,\ldots,11$	$4\cdot 10^8{ m GeV}$
	1	$ar{f 5}$	15	15	6,7	$10^{11}\mathrm{GeV}$
	1	10	15	18	7	$10^{12}\mathrm{GeV}$
$\mathrm{SU}(3)_c$	1	3	6	12	$3,4,\ldots,9$	$4\cdot 10^8{ m GeV}$
	8	3	6	15	5	$5\cdot 10^{11}\mathrm{GeV}$
	1	3	8	15	$3,4,\ldots,7$	$10^9{ m GeV}$
	1	6	8	12	4,5	$10^{11}\mathrm{GeV}$

- PQ symmetry can be protected up to dim 18
- With the explicit solution we were able to prove that such charge assignments exist

Classification with irreducible SM reps

$\mathbf{G}_{\mathbf{SM}}$	$\mid r_1 \mid$	r_2	r_3	$\Delta_{PQ}^{ m max}$	$N_{ m DC}$	f_a^{\min}
$\mathrm{SU}(5)_{\mathrm{GUT}}$	1	$\bar{5}$	10	12	$4,5,\ldots,11$	$4\cdot 10^8{ m GeV}$
	1	$ar{f 5}$	15	15	6,7	$10^{11}\mathrm{GeV}$
	1	10	15	18	7	$10^{12}\mathrm{GeV}$
		•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
$\mathrm{SU}(3)_c$	1	3	6	12	$3,4,\ldots,9$	$4\cdot 10^8{ m GeV}$
$\mathrm{SU}(3)_c$	1 8	3 3	6 6	$\begin{array}{c c} 12 \\ 15 \end{array}$	$3,4,\ldots,9$	$4\cdot 10^8\mathrm{GeV}$ $5\cdot 10^{11}\mathrm{GeV}$
$\mathrm{SU}(3)_c$	ļ 					•

We classified all the high-quality charge assignments with charges $|p_i|, |q_i| \leq 10$

In order to do so we need to check if multiple insertions can induce PQ violating effects

High quality axion - explicit GUT model

Robust model: high quality irrespectively of GUT scalar sector

dim 12 PQ violating operator:
$$\mathcal{O}_1 = \psi_2 \chi_2 (\psi_3 \chi_3)^3$$

Phenomenological features

- The number of light NGBs is $n_{irr} 2$
 - n_{irr} is the number of irreps in the set $\{\psi_i\}$
 - 1 axion + possibly additional ultralight scalars
- Models with GUT dynamics:

additional parametrically light GUT states: $\delta m_{\tilde{a}}^2 \sim \frac{g_5^2}{16\pi^2} \frac{\Lambda_{PQ}^2}{M_{GVW}^2}$

- The properties of all the (pseudo)-NGBs can be studied in detail systematically using an effective chiral lagrangian
- Cosmological species:
 - the QCD axion can be a component of dark matter
 - all the light scalars can constitute a component of dark radiation

QCD axion low energy couplings

- Axion low energy couplings
 - well-predicted but not distinctive low energy couplings

see talk by G. Villadoro

common to "hadronic axion" models

$$m_a = 5.70(7) \left(\frac{10^{12} \,\text{GeV}}{f_a} \right) \,\mu\text{eV},$$

$$g_{a\gamma\gamma} = \frac{\alpha_{em}}{2\pi f_a} \left(\frac{E}{N} - 1.92(4) \right),\,$$

$$c_p = -0.47(3), \quad c_n = -0.02(3),$$

GUT models have fixed E/N = 8/3

Grilli di Cortona, Hardy, Vega, Villadoro - JHEP 05 (2016) 104

Cosmological evolution

- Cosmological evolution:
 - PQ breaking after the end of inflation is disfavored for composite models
 - accidentally stable heavy resonances + domain walls

- PQ broken during inflation

→ axion populated with misalignment mechanism (possibly DM)

- in the GUT scenario, parametrically light metastable NGBs

$$\delta m_{\tilde{a}}^2 \sim \frac{g_5^2}{16\pi^2} \frac{\Lambda_{PQ}^4}{M_{\text{GUT}}^2}$$

Summary

Anomaly cancellation

• General solution for the U(1) charges: $G \times U(1) \times G_{\mathrm{SM}}$

with *new* fermions vector-like under $G \times G_{\mathrm{SM}}$

High-quality axion:

- Chiral gauge theory with dynamical generation of scales
- Strong CP solved by the QCD axion
- PQ is an high quality accidental symmetry through gauge protection
- Possibly DM
- Compatibility with SU(5) unified dynamics

Bonus

Chiral models with non-abelian factors — SU(5)

		SU(N)	SU(m)	$SU(5)_{GUT}$	$U(1)_{PQ}$
	ψ_1		m		+1
3 ×	ψ_2		m	1	- 1
$m \times$	χ_1		1		+1
$3m \times$	χ_2		1	1	- 1

__ GUT extension

The leading PQ violating effect comes from a double insertion

$$\mathcal{O}_1 = \psi_1 \psi_2 \chi_1^2 \Sigma$$

$$\mathcal{O}_2 = \psi_1 \psi_2 \chi_2^2 \Sigma^{\dagger}$$

$$\mathcal{O}_1 = \psi_1 \psi_2 \chi_1^2 \Sigma$$
 , $\mathcal{O}_2 = \psi_1 \psi_2 \chi_2^2 \Sigma^{\dagger}$ Σ is the GUT scalar \square

The axion potential is generated at the level of dimension 10

$$\mathcal{O}_{\mathcal{PQ}} = \mathcal{O}_1 \mathcal{O}_2$$

$$\mathcal{O}_{PQ} = \mathcal{O}_1 \mathcal{O}_2 \quad , \qquad d_{eff} = 7 + 7 - 4 = 10$$

An attractive model that doesn't work

	$\mathrm{SU}(\mathrm{N_{DC}})$	SO(10) _L	SO(10) _R
ψ		16	1
χ		1	16

 $SO(10) \times SO(10)$ breaking to $SU(5) \times U(1)$

•				I
	$\mathrm{SU}(\mathrm{N}_{\mathrm{DC}})$	$\mathrm{U}(1)_\mathrm{D}$	$\mathrm{SU}(5)_{\mathrm{GUT}}$	$U(1)_{PQ}$
ψ_1		+5	1	+5
ψ_2		- 3	$ar{f 5}$	+1
ψ_3		+1	10	-1
2 /	 =	. ~	-1	
χ_1		+5q	1	+5
χ_2		-3q	5	+1
χ_3		+ <i>q</i>	$\overline{f 10}$	-1

An attractive model that doesn't work

SO(10) \times SO(10) breaking to SU(5) \times U(1)

	$\mathrm{SU}(\mathrm{N}_{\mathrm{DC}})$	$U(1)_D$	$\mathrm{SU}(5)_{\mathrm{GUT}}$	$U(1)_{PQ}$
ψ_1		+5	1	+5
ψ_2		-3	$ar{f 5}$	+1
ψ_3		+1	10	-1
χ_1		+5 <i>q</i>	1	+5
χ_2		-3q	5	+1
χ_3		+q	$\overline{f 10}$	-1

dim 6 PQ violating operators:

$$O_L = \psi_1 \psi_2 (\psi_3^*)^2$$

$$O_R = \chi_1 \chi_2 (\chi_3^*)^2$$

single insertions are innocuous but a double insertion ${\cal O}_L{\cal O}_R$ generates a potential for the axion

$$d_{\text{eff}} = 12 - 4 = 8$$

Models with $n_f = 2$

	$\mathrm{SU}(N_{\mathrm{DC}})$	$\mathrm{U}(1)_\mathrm{D}$	G_{SM}
ψ_1		p_1	r_1
ψ_2		p_2	r_2
χ_1		q_1	$ar{r}_1$
χ_2		q_2	$ar{r}_2$

Models with $n_f = 2$

- We classify the models that satisfy the following conditions:
 - anomaly cancellation
 - confining SU(N) dynamics (bound on the multiplicity of fermions)
 - perturbativity of the SM couplings up to M_{Pl} (no low-scale Landau poles)
- From the explicit solutions for the U(1) charges
 - PQ violating local operators that generate a potential have the form:

$$O_{\mathcal{PQ}} = (\psi_1 \chi_1)^{\kappa_1} (\psi_2 \chi_2)^{\kappa_2}$$

$$\Delta_{\mathcal{PQ}} = 3(d_1 + d_2)/\gcd(d_1, d_2)$$

$$\kappa_i = d_i/\gcd(d_1, d_2)$$

General classification for $n_f = 2$

G_{SM}	$ r_1 $	r_2	d_1	d_2		Δ_{pQ}
$\mathrm{SU}(3)_{\mathrm{c}}$	$(3 \oplus m1)$	$(3 \oplus m 1)$	3+m	3+m	$1 \le m \le 23$	6
	$(3 \oplus m1)$	$2({f 3}\oplus m{f 1})$	3+m	2(3+m)	$1 \le m \le 8$	9
	$(3 \oplus m1)$	$3({f 3}\oplus m{f 1})$	3+m	3(3 + m)	$1 \le m \le 3$	12
	$2\left(3\oplus m1 ight)$	$2({f 3}\oplus m{f 1})$	2(3+m)	2(3+m)	$1 \le m \le 3$	6
	$({\bf 3}\oplus {\bf 1})$	$4({f 3}\oplus{f 1})$	4	16		15
	$2({f 3}\oplus{f 1})$	$3(3\oplus1)$	8	12		15
$\mathrm{SU}(5)_{\mathrm{GUT}}$	$({f 5} \oplus m {f 1})$	$({f 5} \oplus m {f 1})$	5+m	5+m	$1 \le m \le 21$	6
	$({f 5} \oplus m {f 1})$	$2({f 5}\oplus m{f 1})$	3+m	2(3+m)	$1 \le m \le 6$	9
	$({f 5}\oplus {f 1})$	$3({f 5}\oplus {f 1})$	6	18		12
	$2({f 5}\oplus{f 1})$	$2({f 5}\oplus{f 1})$	12	12		6
	5	$(10 \oplus 51)$	5	15		12

• Using the explicit solutions we are able to easily find charge assignments with no PQ violating effects below Δ_{PQ}

General classification for $n_f = 2$

G_{SM}	$ig r_1$	r_2	d_1	d_2		Δ_{PQ}
$\mathrm{SU}(3)_{\mathrm{c}}$	$(3 \oplus m1)$	$(3 \oplus m 1)$	3+m	3+m	$1 \le m \le 23$	6
	$(3 \oplus m 1)$	$2\left(3\oplus m1 ight)$	3+m	2(3+m)	$1 \le m \le 8$	9
	$(3 \oplus m1)$	$3({f 3}\oplus m{f 1})$	3+m	3(3+m)	$1 \le m \le 3$	12
	$2\left(3\oplus m1 ight)$	$2\left(3\oplus m1 ight)$	2(3+m)	2(3+m)	$1 \le m \le 3$	6
	$(3\oplus1)$	$4({f 3}\oplus{f 1})$	4	16		15
	$2({f 3}\oplus{f 1})$	$3(3\oplus1)$	8	12		15
$\mathrm{SU}(5)_{\mathrm{GUT}}$	$({f 5} \oplus m {f 1})$	$({f 5} \oplus m {f 1})$	5+m	5+m	$1 \le m \le 21$	6
	$({f 5} \oplus m {f 1})$	$2({f 5}\oplus m{f 1})$	3+m	2(3+m)	$1 \le m \le 6$	9
	$({\bf 5}\oplus {\bf 1})$	$3({f 5}\oplus {f 1})$	6	18		12
	$2({f 5}\oplus{f 1})$	$2({f 5}\oplus{f 1})$	12	12		6
	5	$(10 \oplus 51)$	5	15		12

• Using the explicit solutions we are able to easily find charge assignments with no PQ violating effects below Δ_{PQ}

Consider a massless vector-like theory

$\mathrm{SU}(\mathrm{N_{DC}})$			
ψ_1			
ψ_2			
χ_1			
χ_2			

Symmetry Breaking Pattern:

$$SU(2) \times SU(2) \times U(1)_V \longrightarrow SU(2)_V \times U(1)_V$$

spontaneous

and consider the weak gauging of a subgroup $\,U(1)_{D}\,$

Symmetry Breaking Pattern:

$$\begin{split} SU(2) \times SU(2) \times U(1)_V &\longrightarrow SU(2)_V \times U(1)_V \\ & \xrightarrow{\text{explicit}} & U(1)_{3V} \times U(1)_V \end{split}$$

 $m U(1)_D$ acquires a mass from the bilinear condensate $\,m_{\gamma_D} \sim f \,e_D$

chiral fermions should come in complete GUT multiplets

Contino, AP, Revello - JHEP 02 (2021) 091

one (combination) of the two singlets has anomalous couplings to SM

$$ightharpoonup$$
 axion-like particle $\delta m_{\tilde{a}}^2 \sim \frac{g_{
m GUT}^2}{16\pi^2} \frac{\Lambda_{
m DC}^4}{M_{
m GUT}^2}$ $ightharpoonup$ not QCD axion

GUT contribution

Models with 2 or more different G_{SM} reps have an axion

	$\mathrm{SU}(\mathrm{N}_{\mathrm{DC}})$	$U(1)_D$	$SU(5)_{GUT}$
$\overline{\psi_1}$		+1	$\square \oplus 1$
ψ_2		-1	$\square \oplus 1$
χ_1		-a	$\overline{\square} \oplus 1$
χ_2		+a	$\overline{\square} \oplus 1$

- 2 light Goldstone bosons
 - one anomalous
 - one exact

massless scalar up to UV effects

Some open questions

- We found all the charge assignments such that local gauge anomalies cancel
 - what about global (non-perturbative) anomalies?
- Are there more efficient ways to classify charge assignments such that operators with a given property (e.g. PQ violating operators)
 are forbidden up to a given dimension?
- Do all the consistent charge assignments admit an embedding in string theory?
- Observational distinctive signatures from pseudo-NGB?