Searches for axions & ALPs at B factories

2023 February 17th, NePSi 23 Michael De Nuccio [they/them] (michael.denuccio@ubc.ca)

- B factories
- Axions & ALPs @ B factories
- Recent searches for axions/ALPs

Introduction

- First-generation B factories:
 - **BaBar:** @SLAC, on PEP-II, 1999-2008
 - $\mathscr{L} \approx 420 \text{ fb}^{-1} \approx 0.4 \text{ ab}^{-1}$
 - **Belle:** @KEK, on KEKB, 1999-2010
 - $\mathscr{L} \approx 710 \text{ fb}^{-1} \approx 0.7 \text{ ab}^{-1}$
- Second-generation B factory:
 - **Belle II:** @KEK, on SuperKEKB, 2018-onward
 - 30x instantaneous luminosity (target)
 - $\mathscr{L} \approx 50 \text{ ab}^{-1}$ total luminosity (target)
 - Updated detectors and triggers

Michael De Nuccio

- **B factory:** produce a lot of B mesons
- Asymmetric e^+e^- collider @ $\Upsilon(4S)$ energy = 10.58 GeV

SuperKEKB Collider, Nucl. Instrum. Meth. A 907 (2018) 188

- **B factory:** produce a lot of B mesons
- Asymmetric e^+e^- collider @ $\Upsilon(4S)$ energy = 10.58 GeV
- Why the $\Upsilon(4S)$?
 - Bottomonium: $b\bar{b}$ resonance
 - Just enough mass to decay into two *B* mesons
 - $m(\Upsilon(4S)) = 10.58 \text{ GeV} > 2m(B) = 2 \times 5.28 \text{ GeV} = 10.56 \text{ GeV}$
 - $B\bar{B}$ pair (charged or neutral) almost at rest in the centre-of-mass reference frame

Hoal 12008 (Wikipedia)

- **B factory:** produce a lot of B mesons
- Asymmetric e^+e^- collider @ $\Upsilon(4S)$ energy = 10.58 GeV
- Asymmetric?
 - In beam energy:
 - $E(e^+) = 4 \, \text{GeV}$
 - $E(e^{-}) = 7 \, \text{GeV}$
 - To enhance separation of the two *B* mesons
 - Allows study of time-dependent CP violation

Michael De Nuccio

BaBar & Belle The Physics of the B Factories - Eur. Phys. J. C 74 (2014) 3026

- **B factory:** produce a lot of B mesons
- Asymmetric e^+e^- collider @ $\Upsilon(4S)$ energy = 10.58 GeV
- Why e^+e^- colliders?
 - High signal-over-bkg ratio
 - **Clean environment**
 - Few charged tracks (6~11 vs 300~7000 of e.g. ATLAS)
 - Dedicated triggers for low-multiplicity events (down to 1 particle)
 - Only Belle II and late BaBar
 - Almost-hermetic detector
 - **Initial state is exactly known** \Rightarrow kinematic constraints

Michael De Nuccio

BaBar & Belle The Physics of the B Factories - Eur. Phys. J. C 74 (2014) 3026

units BB Arbitrary 5.0 qq continuum $\tau^+\tau^-$ 0.2 $\mu^+\mu^-(\gamma)$ $\overline{(11)}$ $e^+e^-(\gamma)$ 0.15 ŶΥ 0.1 0.05 10 12 14 6 Number of tracks

Belle II official website

- **B factories** have amazing features for **dark/new physics searches**
 - Clean environment
 - Hermetic detector
 - Initial state is exactly known
 - Low-multiplicity triggers
- Can explore **higher masses** than other classes of axions/ALPs experiments and lower masses than LHC-like experiments
- Despite the nominal focus being B physics, efforts towards **beyond-SM physics**
 - Also about **axions/ALPs**!

SPOILER!

Michael De Nuccio

None of the following searches found any evidence! :(All set **upper limits** (ULs)

Axion-Like Particles in B decays: $B \rightarrow Ka, a \rightarrow \gamma \gamma$

Michael De Nuccio

$ALPs in B decays: B \rightarrow Ka, a \rightarrow \gamma\gamma$

- ALPs: often investigated their coupling to gluon and γ
- Here: **coupling to** W^{\pm}
- $B^{\pm} \to K^{\pm}a, a \to \gamma\gamma$
- Also study non-prompt decay, i.e. lifetime $c\tau \neq 0$
- **First** search for visibly decaying ALPs coming from *B*s
- $\mathscr{L} = 424 \text{ fb}^{-1}$
 - On $\Upsilon(4S)$ resonance
 - 8% used to optimize search strategy, then excluded
- Range: ~ $0.18 < m_a < m_{R^+} m_{K^+} \approx 4.8 \text{ GeV}$

Michael De Nuccio

BaBar Phys. Rev. Lett. 128, 131802 (2022)

(I worked on this during my master!)

Signal:

• 1 track + 2 γ summing to m(B)

Backgrounds:

• $e^+e^- \rightarrow q\bar{q} \ (q = u, d, c, s)$: continuum

Dominant background

•
$$e^+e^- \to B\bar{B}$$

- Peaking, vetoed: $B^{\pm} \to K^{\pm}h^0$, $h^0 \to \gamma\gamma$ ($h^0 = \pi^0, \eta, \eta'$)
- Peaking, small, not modeled: $B^{\pm} \to K^{\pm}\eta_c, \eta_c \to \gamma\gamma$
- **2 BDTs**: vs continuum and vs $B\bar{B}$
 - 13 variables, including event-shape ones
 - For signal: training on combo of m_a to uniform in $m(\gamma\gamma)$

Michael De Nuccio

BaBar Phys. Rev. Lett. 128, 131802 (2022)

- **Peak hunt: fit on m(yy)** of peaking signal over bkg (except π^0, η, η')
 - Signal = KDE (Kernel Density Estimator)
 - Background = 1st-order polynomial + template & resonance peaks
- **Re-performed** the upper limit extraction for **non-zero lifetimes**
 - $cT = 1, 10, 100 \text{ mm} (\implies \text{small mass and coupling})$

- **Peak hunt: fit on m(yy)** of peaking signal over background
- 90% CL UL on g_{aW} : improving previous constraints by >O(100)

Michael De Nuccio

- $e^+e^- \rightarrow \gamma a, a \rightarrow \gamma \gamma$
 - Photophilic ALP
- Parameters: mass \mathbf{m}_a and coupling $\mathbf{g}_{a\gamma\gamma}$
- Pushing to **low masses is difficult**
 - $\gamma\gamma$ from ALP merge & π^0 peak
 - Can be addressed in second iteration
- $\mathscr{L} = 0.445 \text{ fb}^{-1}$
 - Just preliminary data for calibration and tuning
- Range: $0.2 < m_a < 9.7 \text{ GeV}$

Michael De Nuccio

Belle II Phys. Rev. Lett. 125, 161806 (2020)

(this was my PhD research topic!)

• Signal:

3-photon final state, no missing E nor tracks

• **Backgrounds**:

- $e^+e^- \rightarrow \gamma\gamma(\gamma)$
- $e^+e^- \rightarrow ee(\gamma)$

•
$$e^+e^- \rightarrow h^0\gamma$$
, $h^0 \rightarrow \gamma\gamma$ ($h^0 = \pi^0, \eta, \eta'$)

- Selection: multi-dimensional rectangular cut(s)
 - Future possibility: Neural Network particularly for low mass
- Peak hunt over $m^2(\gamma\gamma)$ (or m^2_{recoil}): peaking signal over smooth bkg

Michael De Nuccio

Belle II Phys. Rev. Lett. 125, 161806 (2020)

- Peak hunt over $m^2(\gamma\gamma)$ (or m^2_{recoil}): peaking signal over smooth bkg
- Mass of ALP candidate can be computed in two ways:

Michael De Nuccio

Belle II Phys. Rev. Lett. 125, 161806 (2020)

Better resolution for **low** ALP masses

Diphoton mass

Recoil mass:

3-body system and knowledge of initial state

Better resolution for high ALP masses

- Peak hunt over $m^2(\gamma\gamma)$ (or m^2_{recoil}): peaking signal over smooth bkg
- 1 event \Rightarrow 3 candidates
- Signal events:
 - 1 real ALP \implies peaking component (Crystal Ball)
 - 2 fake combinations \Rightarrow combinatorial component (KDE)

- 95% CL UL on $g_{a\gamma\gamma}$
- Already competitive with **preliminary data** (we now have x1000 data)
- Belle II has a **unique area of sensitivity**

Belle II Phys. Rev. Lett. 125, 161806 (2020)

Heavy QCD axion in $b \rightarrow s$ transitions

- For Peccei-Quinn (or QCD) axions: $m_a f_a \simeq m_\pi f_\pi$ (mass and decay constant) • $f_a \gtrsim O(\text{TeV}) \Leftrightarrow m_a \lesssim O(\text{keV})$ already largely excluded by experiments • $m_a f_a \simeq m_\pi f_\pi$ not necessarily true if m_a has non-QCD contributions
- - Heavy QCD axion: $m_a > m_\pi f_\pi / f_a$
 - Coupling to SM mostly to gluons (2-loop)
- Is being searched for at Belle II
 - Sadly can't show you any results yet, as analysis is ongoing
 - General overview & projections (and stay tuned!)

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \left(\frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}\right) + \frac{1}{2} (\partial_\mu a)^2 - \frac{m_a^2}{2} da^{\mu\nu}$$

Chakraborty, Kraus, Loladze, Okui, Tobioka Phys. Rev. Lett. 104, 055036 (2021)

- For $f_a \sim O(\text{TeV})$, $m_a \lesssim 400$ MeV already explored (and excluded, obv)
- For $m_a \gtrsim 400$ MeV, poorly/not explored
- **Promising channel** to explore this region is $B^+ \to K^+ a$
- Axion decay under study in Belle II: $a \rightarrow \eta \pi^+ \pi^-$
- Range: $0.7 \leq m_a \leq 3 \text{ GeV}$

- Colored regions: recast from PDG and previous searches at Belle and BaBar
- Projections for 50 ab⁻¹ @ Belle II by extrapolating bkg from BaBar search and requiring signal < 2 std dev

Chakraborty, Kraus, Loladze, Okui, Tobioka Phys. Rev. Lett. 104, 055036 (2021)

Michael De Nuccio

Search for ALPs with e⁺e⁻ beams at KEK Linac

- Fixed-target experiment: "halfway" between dump experiments and colliders
 - Explore shorter lifetimes than the former, but longer than the latter
- e^{\pm} onto tungsten target \rightarrow Bremsstrahlung $\gamma \rightarrow$ Primakoff conversion into ALPs → ALP decays into $\gamma\gamma \rightarrow$ detect these two photons
- Under approval procedure

Ishikawa, Sakaki, Takubo <u>https://arxiv.org/pdf/2107.06431.pdf</u>

Search of ALPs with eter beams at KEK Linac

- Two experimental setups explored:
 - Setup 1 (almost-zero bkg): 2 m shield, 1 m decay volume, 4 GeV e^+ beam
 - Setup 2 (non-zero bkg): 20 cm shield, hollow shield, sweeping magnet, 7 GeV e^- beam
- Both can explore uncharted regions; Setup 2 has competition not even from planned exps

Ishikawa, Sakaki, Takubo <u>https://arxiv.org/pdf/2107.06431.pdf</u>

- Axions and ALPs searches at B factories are a relatively new territory
- But we are already competitive at "intermediate" masses
 - ALPs coupling to W
 - Photophilic ALPs
 - Heavy QCD axions
 - Fixed target
 - (and more)
- 0.1~10 GeV is our domain
- Stay tuned for more results!

ries are a relatively new territory "intermediate" masses

Left plot from: Dolan, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg, JHEP 1712 (2017) 094

ALPs in B decays: **B** \rightarrow **Ka**, **a** $\rightarrow \gamma\gamma$

Michael De Nuccio

Phys. Rev. Lett. 128, 131802 (2022)

MC validation

Check goodness of MC simulation and reconstruction

- 10% preliminary random unblinding
- Simulated extraction with radiative Bhabha
- Sideband in $m_{\chi\chi\chi}$
- Studies on 2-y events & radiative Bhabha

Heavy QCD axion in $b \rightarrow s$ transitions

- exclusive final states a \rightarrow 3 π , $\phi\phi$, KK π , and $\eta\pi\pi$, use a paper to calculate corresp branching fractions for axion decay, data-driven approach
 - $a \rightarrow 3\pi$: Belle analysis of B->K omega, recasted
 - $B \rightarrow K\phi\phi$: BABAR, 2 sigma max above data seen per bin (and axions width much smaller than bin) $B \rightarrow Ka(\rightarrow KK\pi)$: BaBar, as before but per 2 bins because bins smaller than before; eff and cuts corrections
- a→ηππ: as above (same babar article, same approach), except mass cut (just took weakest and extend) projections for B2, for $a \rightarrow \eta \pi \pi$ and $a \rightarrow 3\pi$ searches
 - extrapolate continuum bkg from babar analysis above, then require signal < 2 std dev
 - as above, but with the Belle's a \rightarrow 3n bkg

Searches for Higgs/ALPs at BaBar

- https://inspirehep.net/files/0ee7332fb6d26302eb8359d0db1ee85e
- Generic searches for scalar into invisible/tautau/mumu

Michael De Nuccio

