Nonresonant Searches for Axion-Like Particles in Vector Boson Scattering Processes at the LHC

Jonathan Machado Rodríguez Universidad Autónoma de Madrid - Instituto de Física Teórica

Based on: J. Bonilla, I. Brivio, J. Machado-Rodríguez, J. F. de Trocóniz J. High Energ. Phys. 2022, 113 (2022) [**2202.03450**]

ifl

NePSi 2023 - Pisa, 17th February 2023

Axion-Like Particles

- Axion-Like Particles (or ALPs) are **neutral pseudo scalar** pseudo Goldston Bosons
- Effective Field Theory (EFT) consistent with SM gauge and CP symmetries

• Either shift-invariant and/or anomalous couplings interactions

• ALP interactions with SM particles have a **derivative character**: they grow with momentum

Axion-Like Particles

$$\mathscr{L}_{ALP} \supset -c_{\tilde{B}} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu} - c_{\tilde{W}} \frac{a}{f_a} W^i_{\mu\nu} \tilde{W}^{i\mu\nu} - c_{\tilde{G}} \frac{a}{f_a} G^A_{\mu\nu} \tilde{G}^{A\mu\nu}$$

- Classical searches: ALP couplings to gluons and photons
- ALP couplings to **EWK bosons**: WW, ZZ, and $Z\gamma$
- Depend on two parameters
- ALP-gauge interactions at ATLAS and CMS:
 - Mono-X
 - Resonant
 - New idea: nonresonant ALP searches

$$\begin{cases} g_{a\gamma\gamma} = \frac{4}{f_a} (s_{\theta}^2 c_{\widetilde{W}} + c_{\theta}^2 c_{\widetilde{B}}) \\ g_{a\gamma Z} = \frac{4}{f_a} s_{2\theta} (c_{\widetilde{W}} - c_{\widetilde{B}}) \\ g_{aZZ} = \frac{4}{f_a} (c_{\theta}^2 c_{\widetilde{W}} + s_{\theta}^2 c_{\widetilde{B}}) \\ g_{aWW} = \frac{4}{f_a} c_{\widetilde{W}} \quad \theta: \text{Weinberg angle} \end{cases}$$
Imposed by gauge invariance

Axion-Like Particles

$$\mathscr{L}_{ALP} \supset -\underbrace{c_{\tilde{B}}}_{f_a}^{a} B_{\mu\nu} \tilde{B}^{\mu\nu} - \underbrace{c_{\tilde{W}}}_{f_a}^{a} W^{i}_{\mu\nu} \tilde{W}^{i\mu\nu} - c_{\tilde{G}} \frac{a}{f_a} G^A_{\mu\nu} \tilde{G}^{A\mu\nu}$$

 $c_{ ilde W}$

• Classical searches: ALP couplings to gluons and photons

@LO

 $c_{ ilde{B}}$)

- ALP couplings to **EWK bosons**: WW, ZZ, and $Z\gamma$
- Depend on two parameters •
- ALP-gauge interactions at ATLAS and CMS:
 - Mono-X
 - Resonant
 - New idea: nonresonant ALP searches

$$\begin{cases} g_{a\gamma\gamma} = \frac{4}{f_a} (s_{\theta}^2 c_{\widetilde{W}} + c_{\theta}^2 c_{\widetilde{B}}) \\ g_{a\gamma Z} = \frac{4}{f_a} s_{2\theta} (c_{\widetilde{W}} - c_{\widetilde{B}}) \\ g_{aZZ} = \frac{4}{f_a} (c_{\theta}^2 c_{\widetilde{W}} + s_{\theta}^2 c_{\widetilde{B}}) \\ g_{aWW} = \frac{4}{f_a} c_{\widetilde{W}} \qquad \theta: \text{Weinberg angle} \end{cases}$$

Imposed by gauge invariance

A Novel Approach: Nonresonant ALP-mediated diboson production

- M.B. Gavela, J.M. No, V. Sanz and J.F. de Trocóniz [1905.12953]
- ALP acts as a very off-shell mediator $\implies m_a^2 \ll \hat{s}$

• Signals independent of ALP mass m_a and its decay width Γ_a up to $m_a \lesssim 100$ GeV: allows to explore large areas in the paramater space

• Suppression from \hat{s} compensated by derivative character of ALP interactions

A Novel Approach: Nonresonant ALP-mediated diboson production

- Reinterpreation of CMS analyses:
 - $gg \rightarrow ZZ$ (CMS-B2G-17-013)
 - $gg \rightarrow \gamma \gamma$ (CMS-EXO-17-017)
- Sensitive to (ALP coupling to gluons x ALP coupling to EWK diboson)

 $g_{agg} \times g_{aVV}$

- Cross-sections large enough to constrain significantly the theoretical models using Run 2 data.
- Dedicated ALP search at CMS: $gg \rightarrow a^* \rightarrow ZZ/ZH$ (CMS-B2G-20-013)

A Novel Approach: Nonresonant ALP-mediated diboson production

J. Machado-Rodríguez

• Vector Boson Scattering (VBS): $q_1q_2 \rightarrow V'_1V'_2q'_1q'_2$

 $V'_1V'_2 = ZZ, Z\gamma, W^{\pm}\gamma, WZ, W^{\pm}W^{\pm}$

• VBS limits on ALP couplings to vector boson independently of the gluon coupling

 $\longrightarrow c_{\tilde{B}} c_{\tilde{W}} \sim 2$ parameters

• Nonresonant ALP: independent of ALP mass m_a and its decay width up to $m_a \lesssim 100 \text{ GeV}$

• Vector Boson Scattering (VBS): $q_1q_2 \rightarrow V'_1V'_2q'_1q'_2$

 $V'_1V'_2 = ZZ, Z\gamma, W^{\pm}\gamma, WZ, W^{\pm}W^{\pm}$

• VBS limits on ALP couplings to vector boson independently of the gluon coupling

 $\longrightarrow c_{\tilde{B}} c_{\tilde{W}} \gtrsim 2$ parameters

• Nonresonant ALP: independent of ALP mass m_a and its decay width up to $m_a \lesssim 100 \text{ GeV}$

 $M_{q'1q'2} > 120 {
m ~GeV}$

Why VBS?

• Vector Boson Scattering (VBS): $q_1q_2 \rightarrow V'_1V'_2q'_1q'_2$

 $V'_1V'_2 = ZZ, Z\gamma, W^{\pm}\gamma, WZ, W^{\pm}W^{\pm}$

• VBS limits on ALP couplings to vector boson independently of the gluon coupling

 $\longrightarrow c_{\tilde{B}} c_{\tilde{W}} \gtrsim 2$ parameters

• Nonresonant ALP: independent of ALP mass m_a and its decay width up to $m_a \lesssim 100 \text{ GeV}$

Why VBS?

• Vector Boson Scattering (VBS): $q_1q_2 \rightarrow V'_1V'_2q'_1q'_2$

 $V'_1V'_2 = ZZ, Z\gamma, W^{\pm}\gamma, WZ, W^{\pm}W^{\pm}$

- VBS limits on ALP couplings to vector boson independently of the gluon coupling
 - $\longrightarrow c_{\tilde{B}} c_{\tilde{W}} c_{\tilde{K}}$
- Nonresonant ALP: independent of ALP mass m_a and its decay width up to m_a ≤ 100 GeV _____

Why VBS?

- ATLAS/CMS Run 2 measurements: first comparison to data, calibration of simulation tools and calculation of educated predictions for higher luminosities.
- **Reinterpretation of five CMS VBS analyses** with lepton/photon final states:
 - ZZ: CMS-SMP-20-01
 - W[±] W[±] and WZ: CMS-SMP-19-012
- Z*γ*: CMS-SMP-20-016
- W*γ*: CMS-SMP-19-008
- Look at high energy deviations in the tail of the transverse momentum/mass spectra
- Selections cuts, data and backgrounds in the CMS papers
- **Generation of ALP VBS**: MadGraph_aMC@NLO + Pythia8 + Delphes3

- Compare EWK SM VBS expected yields from the CMS simulation and ours

Channel	Obs.	Lum. $[fb^{-1}]$	Selection Criteria	ρ
ZZ	M_{ZZ}	137	$M_{jj} > 100 { m GeV}$	0.8 ± 0.1
$Z\gamma$	$M_{Z\gamma}$	137	$M_{jj} > 500 { m GeV}, \Delta \eta_{jj} > 2.5, p_T^{\gamma} > 120 { m GeV}$	1.4 ± 0.2
$W^{\pm}\gamma$	$M_{W\gamma}$	35.9^{*}	$M_{jj} > 800{ m GeV},\Delta\eta_{jj} > 2.5,p_T^\gamma > 100{ m GeV}$	3.1 ± 0.5
$W^{\pm}Z$	M_{WZ}^T	137	$M_{jj} > 500 \mathrm{GeV}, \Delta\eta_{jj} > 2.5$	1.5 ± 0.4
$W^{\pm}W^{\pm}$	M_{WW}^T	137	$M_{jj} > 500 \mathrm{GeV}, \Delta\eta_{jj} > 2.5$	1.3 ± 0.2

Table 3. Summary of the CMS VBS analyses: the diboson mass observable, the integrated luminosity, the most important selection criteria and the normalization scale factor ρ .

J. Machado-Rodríguez

- ~20 % signal systematics: PDFs + renormalization and factorization scales + MadGraph@aMC
- **Background uncertainties** from CMS analyses
- Consistency of the ALP EFT and estimation of the impact of the highest-energy bins
 upper cut on diboson mass M_{vv}
- Two benchmarks:
 - $M_{vv} < 2 \text{ TeV}: \sim 85 \%$ efficiency
 - $M_{vv} < 4 \text{ TeV}: >99 \%$ efficiency

	$oldsymbol{c}_{ ilde{oldsymbol{W}}} = oldsymbol{c}_{ ilde{oldsymbol{B}}}$ signal / interf. [fb]	Photophobic signal / interf. [fb]	Expected Lepton Events	Int. lum. $[fb^{-1}]$
ZZ	42.4 / -13.5	$18.5 \ / \ -9.3$	9.3 / -3.2	137
WZ	$18.4 \ / \ 1.7$	$23.9 \; / \;$ -0.14	$4.2 \ / \ 0.05$	137
$W^{\pm}W^{\pm}$	16.0 / -4.0	16.0 / -4.0	18 / -5.5	137
$W\gamma$	$28.7 \ / \ 4.3$	$5.4 \ / \ 1.7$	$3.6 \ / \ -0.04$	35.9
$Z\gamma$	$11.1 \ / \ 0.3$	20.9 / -9.1	$15.1\ /\ 0.07$	137

	$egin{aligned} oldsymbol{c}_{ ilde{oldsymbol{W}}} &= oldsymbol{c}_{ ilde{oldsymbol{B}}} \ ext{signal} \ / \ ext{interf.} \ ext{[fb]} \end{aligned}$	Photophobic signal / interf. [fb]	Expected Lepton Events	Int. lum. $[fb^{-1}]$
ZZ	42.4 / -13.5	$18.5 \ / \ -9.3$	9.3 / -3.2	137
WZ	$18.4 \ / \ 1.7$	$23.9 \ / \ -0.14$	$4.2 \ / \ 0.05$	137
$W^{\pm}W^{\pm}$	16.0 / -4.0	16.0 / -4.0	$18 \; / \; -5.5$	137
$W\gamma$	$28.7 \; / \; 4.3$	$5.4 \ / \ 1.7$	$3.6 \ / \ -0.04$	35.9
$Z\gamma$	11.1 / 0.3	20.9 / -9.1	$15.1\ /\ 0.07$	137
	$g_{a\gamma Z}=0$			

	$c_{ ilde{W}} = c_{ ilde{B}}$ signal / interf. [fb]	Photophobic signal / interf. [fb]	Expected Lepton Events	Int. lum. $[fb^{-1}]$
ZZ	42.4 / -13.5	18.5 / -9.3	9.3 / -3.2	137
WZ	$18.4 \ / \ 1.7$	$23.9 \; / \;$ -0.14	$4.2\;/\;0.05$	137
$W^{\pm}W^{\pm}$	16.0 / -4.0	16.0 / -4.0	$18\ /\ extsf{-5.5}$	137
$W\gamma$	$28.7 \ / \ 4.3$	$5.4\ /\ 1.7$	$3.6 \ / \ ext{-0.04}$	35.9
$Z\gamma$	11.1 / 0.3	20.9 / -9.1	$15.1 \ / \ 0.07$	137
	$g_{a\gamma Z}=0$	$g_{a\gamma\gamma}=0$		

- Maximum likelihood fit of signal and background to the diboson invariant/transverse masses
- No excess found with respect to SM expectations
- Current limits with CMS Run 2 data and projected limits at Run 3 and HL-LHC in the ALP $(c_{\widetilde{W}}, c_{\widetilde{B}})$ parameter space

• **Diff. cross-sections are parameterized** in the $(c_{\widetilde{W}}, c_{\widetilde{B}})$ plane with quartic / quadratic **polynomials** for pure signal / interference ALP components.

• MadGraph5_aMC@NLO reweighting tool for the generation at different points in the $(c_{\widetilde{W}}, c_{\widetilde{B}})$ plane:

$$g_{a\gamma Z} = 0$$
 $p_0 = (1, 1), \quad p_1 = (0, 2), \quad p_2 = (1, 0),$
 $p_3 = (1, -1), \quad p_4 = (1, -0.305), \quad p_5 = (1, -3.279)$ $g_{aZZ} = 0$

J. Machado-Rodríguez

Results: comparison to existing bounds

Limits are very competitive and probe previously unexplored regions of the param. space 10^{2} 10² Triboson (LHC) 10 10 Mono-W (LHC) $|g_{a WW}|$ [TeV⁻¹] $|g_{aZZ}|$ [TeV⁻¹ Mono-Z (LHC) Nonresonant ggF (CMS Nonresonant ggF (LHC) Rare Meson Decays 10⁻¹ 10^{-1} Nonresonant VBS (this work) Nonresonant VBS (this work) 10⁻² 10^{-2}_{-3} 10⁻² 10² 10² 10^{-2} 10⁻¹ 10-1 10 10³ 10 10³ m_a [GeV] m_a [GeV]

J. Machado-Rodríguez

Results: comparison to existing bounds

- **Red:** this work
- Green: no assumptions
 - **Light blue:** nonresonant ggF. Depend on the coupling to gluons and asume $g_{agg} = 1 \text{ TeV}^{-1}$
- **Dark blue:** gluon dominance, i.e., $g_{agg} \gg g_{aV_1V_2}$
- **Orange:** $BR(a \rightarrow \gamma \gamma) = 1$
- Grey: more elaborate assumptions on the EWK sector

Conclusions

- Access to EWK couplings independently of the gluons
- Current limits (CMS Run 2 data) and projected limits (Run 3 and HL)
- Limits **independent** of the **ALP mass and decay width** ($m_a \leq 100 \text{ GeV}$)
- Limits are very competitive and probe previously unexplored regions of the param. space
- Great opportunity for **dedicated ALP searches** at Run 3 and HL-LHC

J. High Energ. Phys. 2022, 113 (2022) ArXiv: 2202.03450

Conclusions

- Access to EWK couplings independently of the gluons
- Current limits (CMS Run 2 data) and projected limits (Run 3 and HL)
- Limits **independent** of the **ALP mass and decay width** ($m_a \leq 100 \text{ GeV}$)
- Limits are very competitive and probe previously unexplored regions of the param. space
- Great opportunity for **dedicated ALP searches** at Run 3 and HL-LHC

J. High Energ. Phys. 2022, 113 (2022) ArXiv: 2202.03450

J. Machado-Rodríguez

Thank you!

J. Machado-Rodríguez

Lagrangian and physical couplings

J. Machado-Rodríguez

Kinematic cuts

- Generation cuts: $p_T(q'_{1,2}) > 20 \text{ GeV}, \quad \eta(q'_{1,2}) < 6, \qquad \Delta R(q'_1q'_2) > 0.1, \quad M_{q'_1q'_2} > 120 \text{ GeV}$ $p_T(\gamma) > 10 \text{ GeV}, \qquad \eta(\gamma) < 2.5, \quad \Delta R(\gamma q'_{1,2}) > 0.4,$
- Selection cuts:

Channel	Obs.	Lum. $[fb^{-1}]$	Selection Criteria	ρ
ZZ	M_{ZZ}	137	$M_{jj} > 100 { m GeV}$	0.8 ± 0.1
$Z\gamma$	$M_{Z\gamma}$	137	$M_{jj} > 500 { m GeV}, \Delta \eta_{jj} > 2.5, p_T^{\gamma} > 120 { m GeV}$	1.4 ± 0.2
$W^{\pm}\gamma$	$M_{W\gamma}$	35.9	$M_{jj} > 800 { m GeV}, \Delta \eta_{jj} > 2.5, p_T^{\gamma} > 100 { m GeV}$	3.1 ± 0.5
$W^{\pm}Z$	M_{WZ}^T	137	$M_{jj} > 500 \mathrm{GeV}, \Delta\eta_{jj} > 2.5$	1.5 ± 0.4
$W^{\pm}W^{\pm}$	M_{WW}^T	137	$M_{jj} > 500 \mathrm{GeV}, \Delta\eta_{jj} > 2.5$	1.3 ± 0.2

Table 3. Summary of the CMS VBS analyses: the diboson mass observable, the integrated luminosity, the most important selection criteria and the normalization scale factor ρ .

J. Machado-Rodríguez

Branching fractions and selection efficiencies

Analysis	ZZ	$Z\gamma$	$W^{\pm}\gamma$	$W^{\pm}Z$	$W^{\pm}W^{\pm}$
Branching fraction	0.45%	6.7%	22%	1.5%	4.8%
Efficiency	35.7%	14.0%	1.6%	11.3%	17.0%

Table 4. Summary of branching fractions and selection efficiencies for each VBS channel. The efficiencies are relative to the simulated events in which the W and Z bosons decay to electrons or muons.

Diboson mass upper cuts

Contribution from gluons

- Same-sign WW, WZ, W γ : ALP QCD absent at tree level
- ZZ and $Z\gamma$: ALP QCD strongly reduced
 - Consistency with previous nonresonant limits [1905.12953], [2106.10085], [2111.13669]
 - VBS selection cuts
 - Large diboson masses
 - For the tested region of the ALP parameter space, the theoretical prediction is dominated by ALP VBS
- Conservative: QCD ALP is positive with a subdominant contribution from its interference with EWK ALP

 y_2

VBS $pp \rightarrow V_1 V_2 jj$ LO diagrams.

J. Mach

Results: comparison to existing bounds

J. Machado-Rodríguez