## The landscape of QCD axion models

$$
\begin{gathered}
\mathrm{Ne} \Psi 2023 \text { - Pisa - I } 7.02 .2023 \\
\text { Luca Di Luzio }
\end{gathered}
$$

## INFN <br> PADOVA

Università
degli Studi di Padova


Dipartimento di Fisica e Astronomia "Galileo Galilei"

## In 10 years from now?

$f_{a}[\mathrm{GeV}]$
$\begin{array}{lllllllllllll}10^{19} & 10^{18} & 10^{17} & 10^{16} & 10^{15} & 10^{14} & 10^{13} & 10^{12} & 10^{11} & 10^{10} & 10^{9} & 10^{8} & 10^{7}\end{array}$

[LDL, Giannotti, Nardi,Visinelli 2003.0 I I 00 (Phys. Rept.)]
\& An experimental opportunity


## In 10 years from now?



Strong CP problem

$$
\delta \mathcal{L}_{\mathrm{QCD}}=\theta \frac{g_{s}^{2}}{32 \pi^{2}} G \tilde{G} \quad|\theta| \lesssim 10^{-10}
$$

promote $\theta$ to a dynamical field, which washes-out CP violation in QCD


$$
\theta \rightarrow \frac{a}{f_{a}} \quad \text { with } \quad\langle a\rangle=0
$$

Dark Matter
misalignment + topological defects

[Raffelt]

$\ddot{a}+3 H \dot{a}+m_{a}^{2}(T) f_{a} \sin \left(\frac{a}{f_{a}}\right)=0$

## PQ mechanism

- Assume a new spin-0 boson with a pseudo-shift symmetry $a \rightarrow a+\alpha f_{a}$
broken by $\quad \frac{a}{f_{a}} \frac{g_{s}^{2}}{32 \pi^{2}} G \tilde{G} \quad E(0) \leq E(\langle a\rangle) \quad[$ Vafa-Witten, PRL 53 (I984)]


## PQ mechanism

- Assume a new spin-0 boson with a pseudo-shift symmetry $a \rightarrow a+\alpha f_{a}$
broken by $\quad \frac{a}{f_{a}} \frac{g_{s}^{2}}{32 \pi^{2}} G \tilde{G}$


$$
\begin{aligned}
\theta_{\mathrm{eff}}=\frac{\langle a\rangle}{f_{a}} \quad e^{-V_{4} E\left(\theta_{\mathrm{eff}}\right)} & =\int \mathcal{D} \varphi e^{-S_{0}+i \theta_{\mathrm{eff}} \int G \tilde{G}} \\
& =\left|\int \mathcal{D} \varphi e^{-S_{0}+i \theta_{\mathrm{eff}} \int G \tilde{G}}\right| \\
& \leq \int \mathcal{D} \varphi\left|e^{-S_{0}+i \theta_{\mathrm{eff}} \int G \tilde{G}}\right|=e^{-V_{4} E(0)}
\end{aligned}
$$

## PQ mechanism

- Assume a new spin-0 boson with a pseudo-shift symmetry $a \rightarrow a+\alpha f_{a}$
broken by $\quad \frac{a}{f_{a}} \frac{g_{s}^{2}}{32 \pi^{2}} G \tilde{G}$


$$
\begin{aligned}
\theta_{\mathrm{eff}}=\frac{\langle a\rangle}{f_{a}} \quad e^{-V_{4} E\left(\theta_{\mathrm{eff}}\right)} & =\int \mathcal{D} \varphi e^{-S_{0}+i \theta_{\mathrm{eff}} \int G \tilde{G}} \\
& =\left|\int \mathcal{D} \varphi e^{-S_{0}+i \theta_{\mathrm{eff}} \int G \tilde{G}}\right| \\
& \leq \int \mathcal{D} \varphi\left|e^{-S_{0}+i \theta_{\mathrm{eff}} \int G \tilde{G}}\right|=e^{-V_{4} E(0)}
\end{aligned}
$$

- Does the axion really relax to zero ?

$$
\mathcal{D} \varphi \equiv d A_{\mu}^{a} \operatorname{det}(\not D+M)
$$

path-integral measure positive definite only for a vector-like theory (e.g. QCD) does not apply to the SM !

## PQ mechanism

- Assume a new spin-0 boson with a pseudo-shift symmetry $a \rightarrow a+\alpha f_{a}$
broken by $\quad \frac{a}{f_{a}} \frac{g_{s}^{2}}{32 \pi^{2}} G \tilde{G}$


$$
\theta_{\mathrm{eff}}=\frac{\langle a\rangle}{f_{a}}
$$

$$
e^{-V_{4} E\left(\theta_{\text {eff }}\right)}=\int \mathcal{D} \varphi e^{-S_{0}+i \theta_{\text {eff }} \int G \tilde{G}}
$$

$$
=\left|\int \mathcal{D} \varphi e^{-S_{0}+i \theta_{\text {eff }} \int G \tilde{G}}\right|
$$

$$
\leq \int \mathcal{D} \varphi\left|e^{-S_{0}+i \theta_{\text {eff }} \int G \tilde{G}}\right|=e^{-V_{4} E(0)}
$$

- Does the axion really relax to zero ?

$$
\longrightarrow \quad \theta_{\text {eff }} \sim G_{F}^{2} f_{\pi}^{4} j_{\mathrm{CKM}} \approx 10^{-18}
$$

$P Q$ mechanism works accidentally in the SM!

$$
j_{\text {СKM }}=\operatorname{Im} V_{u d} V_{c d}^{*} V_{c s} V_{u s}^{*} \approx 10^{-5}
$$

## PQ mechanism

- Assume a new spin-0 boson with a pseudo-shift symmetry $a \rightarrow a+\alpha f_{a}$
broken by $\quad \frac{a}{f_{a}} \frac{g_{s}^{2}}{32 \pi^{2}} G \tilde{G}$

- its origin can be traced back to a global $\mathrm{U}(\mathrm{I}) \mathrm{PQ}$
[Peccei, Quinn '77,Weinberg '78, Wilczek '78]

1. spontaneously broken (axion is the associated pNGB)
2. QCD anomalous


$$
\partial^{\mu} J_{\mu}^{P Q}=\frac{N \alpha_{s}}{4 \pi} G \cdot \tilde{G}
$$

## Axion properties [model-indep.]

- Consequences of $\frac{a}{f_{a}} \frac{g_{s}^{2}}{32 \pi^{2}} G \tilde{G}$
I. axion mass

$$
-\frac{a}{-}-\frac{a}{-} \frac{\Lambda_{\mathrm{QCD}}^{4}}{f_{a}^{2}}
$$

$$
m_{a} \sim \Lambda_{\mathrm{QCD}}^{2} / f_{a}
$$

$$
m_{a}=5.691(51) \mu \mathrm{eV} \frac{10^{12} \mathrm{GeV}}{f_{a}}
$$

[Gorghetto, Villadoro, I 8 I 2.01008 (NNLO chiPT)
Bonati, D'Elia, Mariti, Martinelli, Mesiti, Negro, Sanfilippo, Villadoro, I 5 | 2.06746 (Iattice) Borsanyi et al, I 606.07494 (lattice)]

## Axion properties [model-indep.]

- Consequences of $\frac{a}{f_{a}} \frac{g_{s}^{2}}{32 \pi^{2}} G \tilde{G}$
2.'model-independent' axion couplings to photons, nucleons, electrons, ...

$$
\begin{aligned}
& C_{\gamma}=-1.92(4) \\
& C_{p}=-0.47(3) \quad C_{n}=-0.02(3) \quad C_{e}=-7.8(2) \times 10^{-6} \log \left(\frac{f_{a}}{m_{e}}\right) \\
& \mathcal{L}_{a} \supset \frac{\alpha}{8 \pi} \frac{C_{\gamma}}{f_{a}} a F_{\mu \nu} \tilde{F}^{\mu \nu}+\frac{C_{f}}{2 f_{a}} \partial_{\mu} a \bar{f} \gamma^{\mu} \gamma_{5} f \quad(f=p, n, e)
\end{aligned}
$$

[Grilli di Cortona, Hardy, Vega, Villadoro, I 5 I I . 02867
Lu, Du, Guo, Meißner, Vonk, 2003.0I 625
Choi, Im, Kim, Seong, 2106.058 I 6]

## Axion properties [model-indep.]

- Consequences of $\frac{a}{f_{a}} \frac{g_{s}^{2}}{32 \pi^{2}} G \tilde{G}$

3. EFT breaks down at energies of order $\mathrm{f}_{\mathrm{a}}$
$\rightarrow$ UV completion can drastically affect low-energy axion properties !

## Axion properties [model-dep.]

## l. Axion-photon



$$
\partial^{\mu} J_{\mu}^{P Q}=\frac{N \alpha_{s}}{4 \pi} G \cdot \tilde{G}+\frac{E \alpha}{4 \pi} F \cdot \tilde{F}
$$

$C_{\gamma}=E / N-1.92(4)$

model-independent
depends on UV completion


## Axion properties [model-dep.]

2. Axion-SM fermions

$C_{i j}^{V, A} \propto\left(V_{\psi}^{\dagger} \mathrm{PQ}_{\psi} V_{\psi}\right)_{i j} \quad$ (PQ as a flavour symmetry ?)
[Robert Ziegler, La Thuile' 19]

flavour-violating axion coupling
enhance/suppress $C_{\text {p,n,e }}$
for $C_{i}=\left\{C_{\gamma}, C_{e}, C_{N}, C_{s d}^{V}, C_{b s}^{V}\right\}=1$
flavour beats astrophysics !

## Axion properties [model-dep.]

2. Axion-SM fermions

flavour-violating axion coupling
enhance/suppress $C_{p, n, e}$
[LDL, Mescia, Nardi, Panci, Ziegler, $1712.04940+1907.06575$ "Astrophobic Axions"]


## Axion properties [model-dep.]

3. CP-violating axions
$\mathcal{L} \supset g_{a N}^{S} a \bar{N} N+g_{a f}^{P} \bar{f} \bar{f} i \gamma_{5} f \quad g_{a N}^{S} \sim \frac{f_{\pi}}{f_{a}} \theta_{\text {eff }}$

from UV sources of CP-violation e.g. $\mathcal{O}_{\mathrm{CPV}}=(\bar{u} u)\left(\bar{d} i \gamma_{5} d\right)$
[Barbieri, Romanino, Strumia hep-ph/9605368
Pospelov hep-ph/970743I
Bigazzi, Cotrone, Jarvinen, Kiritsis I906. I 2 I 32
Bertolini, LDL, Nesti 2006. I 2508
Okawa, Pospelov, Ritz, 2 I I . 08040
Dekens, de Vries, Shain, 2203. I I 230]

$$
\begin{aligned}
V(a) & \simeq \frac{1}{2} \frac{a^{2}}{f_{a}^{2}} \underbrace{\langle G \tilde{G}, G \tilde{G}\rangle}_{\chi}+\frac{a}{f_{a}} \underbrace{\left\langle G \tilde{G}, \mathcal{O}_{\mathrm{CPV}}\right\rangle}_{\chi^{\prime}} \quad \theta_{\mathrm{eff}} \equiv \frac{\langle a\rangle}{f_{a}}=-\frac{\chi^{\prime}}{\chi} \\
& { }^{a}-\mathrm{QCD}-{ }^{a}+{ }_{-}^{a}-\mathrm{QCD} * \mathcal{O}_{\mathrm{CPV}}
\end{aligned}
$$

## Axion properties [model-dep.]

3. CP-violating axions
$\mathcal{L} \supset g_{a N}^{S} a \bar{N} N+g_{a f}^{P} a \bar{f} i \gamma_{5} f \quad g_{a N}^{S} \sim \frac{f_{\pi}}{f_{a}} \theta_{\text {eff }}$
[Moody,Wilczek PRD30 (1984)]

+ from UV sources of CP-violation

New macroscopic forces from non-relativistic potentials


## Axion properties [model-dep.]

3. CP-violating axions
$\mathcal{L} \supset g_{a N}^{S} a \bar{N} N+g_{a f}^{P} a \bar{f} i \gamma_{5} f \quad g_{a N}^{S} \sim \frac{f_{\pi}}{f_{a}} \theta_{\text {eff }}$

+ from UV sources of CP-violation


## Benchmark axion models

- global U(I)PQ (QCD anomalous + spontaneously broken)

$$
U(1)_{\mathrm{PQ}} \times S U(3)_{c}^{2}
$$



SM fermions


BSM fermions


2Higgs
PQWW
[Peccei, Quinn '77,
Weinberg '78, Wilczek '78]
$f_{a} \sim v \quad$ ruled out


DFSZ
[Zhitnitsky '80,
Dine, Fischler, Srednicki '8I]

Higgs+Singlet

KSVZ
[Kim '79,
Shifman, Vainshtein, Zakharov '80]
$f_{a} \gg v$ "Invisible" axion (phase of singlet field)

## Benchmark axion models

- global U(I)PQ (QCD anomalous + spontaneously broken)

$$
U(1)_{\mathrm{PQ}} \times S U(3)_{c}^{2}
$$



SM fermions


BSM fermions


DFSZ
$C_{\gamma}=E / N-1.92(4)$

$$
\begin{aligned}
& E / N=8 / 3 \\
& C_{p, n, e}(\beta) \sim \mathcal{O}(1)
\end{aligned}
$$

$$
C_{p} \simeq-0.5
$$

$$
C_{n, e} \simeq 0
$$

(also no flavour and CP-violating effects)

## Axions beyond benchmarks


enhance Wilson coefficient for fixed $m_{a}$
[LDL, Mescia, Nardi I 610.07593 + I705.05370
Farina, Pappadopulo, Rompineve, Tesi 1611.09855
Agrawal, Fan, Reece, Wang I709.06085
Darme', LDL, Giannotti, Nardi 20 I 0.15846
Ringwald, Sokolov 2 I 04.02574]
$c / f_{a}$
suppress axion mass for fixed $f_{a}$
[Hook I 802. I 0093,
LDL, Gavela, Quilez, Ringwald 2102.000 I 2 $+2102.01082]$

QCD axion parameter space much larger than what traditionally thought

## Axion-Photon



## Enhancing $g_{a r}$

$$
g_{a \gamma}=\frac{\alpha}{2 \pi} \frac{C_{a \gamma}}{f_{a}} \quad C_{a \gamma}=E / N-1.92(4) \quad \partial^{\mu} J_{\mu}^{P Q}=\frac{N \alpha_{s}}{4 \pi} G \cdot \tilde{G}+\frac{E \alpha}{4 \pi} F \cdot \tilde{F}
$$



## Enhancing $g_{a r}$

$$
g_{a \gamma}=\frac{\alpha}{2 \pi} \frac{C_{a \gamma}}{f_{a}} \quad C_{a \gamma}=E / N-1.92(4) \quad \partial^{\mu} J_{\mu}^{P Q}=\frac{N \alpha_{s}}{4 \pi} G \cdot \tilde{G}+\frac{E \alpha}{4 \pi} F \cdot \tilde{F}
$$

- Pheno preferred hadronic axions

1. Q-fermions short lived (no coloured relics)
2. No Landau poles below Planck
$\Rightarrow E / N \in[5 / 3,44 / 3]$
[LDL, Mescia, Nardi 1610.07593$]$

## Enhancing $g_{a r}$

$$
g_{a \gamma}=\frac{\alpha}{2 \pi} \frac{C_{a \gamma}}{f_{a}} \quad C_{a \gamma}=E / N-1.92(4) \quad \partial^{\mu} J_{\mu}^{P Q}=\frac{N \alpha_{s}}{4 \pi} G \cdot \tilde{G}+\frac{E \alpha}{4 \pi} F \cdot \tilde{F}
$$

$$
f_{a}[\mathrm{GeV}]
$$

- Pheno preferred hadronic axions
- More Q's ? [LDL, Mescia, Nardi I705.05370]
$E / N<170 / 3$ (perturbativity)
$g_{a \gamma} \rightarrow 0$
["such a cancellation is immoral, but not unnatural",
D. B. Kaplan, NPB260 (1985)]
- Going above $\mathrm{E} / \mathrm{N}=170 / 3$ ?
- boost global charge (clockwork) $\rightarrow$ backup slides
- be agnostic, E/N is a free parameter


## Enhancing $g_{a r}$

$$
\alpha<
$$

$$
g_{a \gamma}=\frac{\alpha}{2 \pi} \frac{C_{a \gamma}}{f_{a}} \quad C_{a \gamma}=E / N-1.92(4)
$$

[LDL, Giannotti, Nardi, Visinelli 2003.0 I I 00 (Phys. Rept.)]

$$
f_{a}[\mathrm{GeV}]
$$



1. exp.s have just started to constrain E/N from above
2. $E / N \sim 1.92$ appears as a tuned region in theory space

## Suppressing $m_{a}$

- Standard QCD axion
[DiVecchia, Veneziano, NPBI7I (1980)
Leutwyler, Smilga, PRD46 (I992)
Grilli di Cortona, Hardy, Vega, Villadoro, I 5 | I . 02867 ]

$$
\frac{a}{f_{a}} \frac{\alpha_{s}}{8 \pi} G \tilde{G} \quad V(a)=-m_{\pi}^{2} f_{\pi}^{2} \sqrt{1-\frac{4 m_{u} m_{d}}{\left(m_{u}+m_{d}\right)^{2}} \sin ^{2}\left(\frac{a}{2 f_{a}}\right)}
$$



## Suppressing $m_{a}$

- $Z_{2}$ axion: mirror world

$$
\begin{aligned}
& \mathrm{SM} \longleftrightarrow \mathrm{SM}^{\prime} \\
& a \longrightarrow a+\pi f_{a}
\end{aligned} \quad \mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\mathrm{SM}^{\prime}}+\frac{\alpha_{s}}{8 \pi}\left(\frac{a}{f_{a}}-\theta\right) G \widetilde{G}+\frac{\alpha_{s}}{8 \pi}\left(\frac{a}{f_{a}}-\theta+\pi\right) G^{\prime} \widetilde{G}^{\prime}
$$


$\rightarrow$ axion mass is suppressed but minimum in $\pi / 2$

## Suppressing $m_{a}$

- $Z_{N}$ axion: N mirror worlds [Hook 1802.10093]

$$
\begin{aligned}
& \mathrm{SM}_{k} \longrightarrow \mathrm{SM}_{k+1(\bmod \mathcal{N})} \\
& a \longrightarrow a+\frac{2 \pi k}{\mathcal{N}} f_{a}
\end{aligned}
$$


the axion $\left(\theta_{a} \equiv a / f_{a}\right)$ realizes the $Z_{N}$ symmetry non-linearly

$$
\begin{aligned}
\mathcal{L}=\sum_{k=0}^{\mathcal{N}-1}\left[\mathcal{L}_{\mathrm{SM}_{k}}+\frac{\alpha_{s}}{8 \pi}\left(\theta_{a}+\frac{2 \pi k}{\mathcal{N}}\right) G_{k} \widetilde{G}_{k}\right] & \text { [LDL, Gavela, Quilez, Ringwald } 2102.000 \text { । 2] } \\
V_{\mathcal{N}}\left(\theta_{a}\right)=-m_{\pi}^{2} f_{\pi}^{2} \sum_{k=0}^{\mathcal{N}-1} \sqrt{1-\frac{4 z}{(1+z)^{2}} \sin ^{2}\left(\frac{\theta_{a}}{2}+\frac{\pi k}{\mathcal{N}}\right)} & z \equiv \frac{m_{u}}{m_{d}} \sim 1 / 2 \\
\simeq \frac{m_{\pi}^{2} f_{\pi}^{2}}{\sqrt{\pi}} \sqrt{\frac{1-z}{1+z}} \mathcal{N}^{-1 / 2}(-1)^{\mathcal{N}} z^{\mathcal{N}} \cos \left(\mathcal{N} \theta_{a}\right) & \begin{array}{l}
\text { axion potential exponentially } \\
\\
\text { suppressed at large } N
\end{array}
\end{aligned}
$$

## Suppressing $m_{a}$

- $Z_{N}$ axion: N mirror worlds [Hook 1802. 10093]

$$
\begin{aligned}
& \mathrm{SM}_{k} \longrightarrow \mathrm{SM}_{k+1(\bmod \mathcal{N})} \\
& a \longrightarrow a+\frac{2 \pi k}{\mathcal{N}} f_{a},
\end{aligned}
$$


e.g. $Z_{3}$ axion

[LDL, Gavela, Quilez, Ringwald 2 I 02.000 I 2]
$N$ needs to be odd in order to have a minimum in zero
(strong CP problem is solved with I /N probability)

## Suppressing $m_{a}$

- $Z_{N}$ axion: $N$ mirror worlds
[LDL, Gavela, Quilez, Ringwald 2102.00012 + 2 | 02.0 I 082]



## Conclusions

- Take home message
axion properties are $\underline{\cup V \text { dependent }}$
I. enhanced/suppressed axion couplings

2. modified $m_{a}-f_{a}$ relation
3. flavour violating axions
4. CP-violating axions
if an "axion-like particle" will be ever discovered away from the canonical QCD window, it might still have something to do with strong CP violation

## Backup slides

## A photo- and electro-philic Axion ?

- Consider a DFSZ-like construction with $2+\mathrm{n}$ Higgs doublets + a SM singlet $\Phi$

$$
\begin{gathered}
\mathcal{L}_{Y}=Y_{u} \bar{Q}_{L} u_{R} H_{u}+Y_{d} \bar{Q}_{L} d_{R} H_{d}+Y_{e} \bar{L}_{L} e_{R} H_{e} \\
\frac{E}{N}=\frac{\frac{4}{3} \mathcal{X}\left(H_{u}\right)+\frac{1}{3} \mathcal{X}\left(H_{d}\right)+\mathcal{X}\left(H_{e}\right)}{\frac{1}{2} \mathcal{X}\left(H_{u}\right)+\frac{1}{2} \mathcal{X}\left(H_{d}\right)} \quad g_{a e}=\frac{\mathcal{X}\left(H_{e}\right)}{2 N} \frac{m_{e}}{f_{a}}
\end{gathered}
$$

naively, a large PQ charge for $\mathrm{H}_{\mathrm{e}}$ would make the job... but, enhanced global symmetry

$$
U(1)^{n+3} \rightarrow U(1)_{\mathrm{PQ}} \times U(1)_{Y}
$$

must be explicitly broken in the scalar potential via non-trivial invariants (e.g. $H_{u} H_{d} \Phi^{2}$ )
non-trivial constraints on PQ charges

## A photo- and electro-philic Axion ?

- Consider a DFSZ-like construction with $2+n$ Higgs doublets + a SM singlet $\Phi$ clockwork-like scenarios allow to consistently boost E/N [LDL, Mescia, Nardi I705.05370]

$$
\begin{gathered}
\frac{E}{N}=\frac{\frac{4}{3} \mathcal{X}\left(H_{u}\right)+\frac{1}{3} \mathcal{X}\left(H_{d}\right)+\mathcal{X}\left(H_{e}\right)}{\frac{1}{2} \mathcal{X}\left(H_{u}\right)+\frac{1}{2} \mathcal{X}\left(H_{d}\right)} g_{a e}=\frac{\mathcal{X}\left(H_{e}\right)}{2 N} \frac{m_{e}}{f_{a}} \\
\left(H_{k} H_{k-1}^{*}\right)\left(H_{k-1}^{*} H_{d}^{*}\right) \quad E / N \sim 2^{n+1} \\
\left(H_{e} H_{n}\right)\left(H_{n} H_{d}\right) \quad \text { } \begin{array}{l}
\text { [Gee also Farina et al. I6।।.09855, } \\
\text { for KSVZ clockwork] }
\end{array} \\
\begin{array}{l}
\text { f(Hice, McCullough] } \left.H_{e}\right)=2^{n+1}\left(1-\frac{v_{e}^{2}}{v^{2}}\right)-\sum_{k=2}^{n} 2^{k} \frac{v_{k}^{2}}{v^{2}}
\end{array}
\end{gathered}
$$

## How to tell which mechanism?

CASPEr-Electric could disentangle enhanced coupling vs. suppressed mass


## CASPEr-Electric

- Cosmic Axion Spin Precession Experiment
[Graham, Rajendran 1306.6088, Budker+ $\underline{\text { I306.6089, }}$,
Jackson Kimball+ I71I.08999]
Axion DM field induces an oscillating nEDM

$$
\begin{aligned}
& \mathcal{L} \supset-\frac{i}{2} \underbrace{g_{d} a} \bar{n} \sigma_{\mu \nu} \gamma_{5} n F^{\mu \nu} \\
& d_{n}(t)=g_{d} \frac{\sqrt{2 \rho_{\mathrm{DM}}}}{m_{a}} \cos \left(m_{a} t\right)
\end{aligned}
$$

... which is detected via NMR techniques


## CPV axion \& long-range forces

- New CP violation in the UV can source a scalar axion-nucleon coupling

$$
\frac{f_{\pi}}{2} \frac{a^{2}}{f_{a}^{2}} \bar{N} N \longrightarrow \bar{g}_{a N} a \bar{N} N \quad \bar{g}_{a N} \sim \frac{f_{\pi}}{f_{a}} \theta_{\mathrm{eff}} \quad \theta_{\mathrm{eff}}=\frac{\langle a\rangle}{f_{a}} \neq 0
$$

[Moody, Wilczek PRD30 (1984)]

$$
\frac{1}{2} \frac{a^{2}}{f_{a}^{2}} \underbrace{\langle G \tilde{G}, G \tilde{G}\rangle}_{\chi}+\frac{a}{f_{a}} \underbrace{\left\langle G \tilde{G}, \mathcal{O}_{\mathrm{CPV}}\right\rangle}_{\chi^{\prime}} \quad \frac{\langle a\rangle}{f_{a}}=-\frac{\chi^{\prime}}{\chi}
$$

## CPV axion \& long-range forces

- New CP violation in the UV can source a scalar axion-nucleon coupling

$$
\frac{f_{\pi}}{2} \frac{a^{2}}{f_{a}^{2}} \bar{N} N \longrightarrow \bar{g}_{a N} a \bar{N} N \quad \bar{g}_{a N} \sim \frac{f_{\pi}}{f_{a}} \theta_{\mathrm{eff}} \quad \theta_{\mathrm{eff}}=\frac{\langle a\rangle}{f_{a}} \neq 0
$$

[Moody,Wilczek PRD30 (1984)]


## A new master formula

- Moody-Wilczek formula

$$
\bar{g}_{a N}=\frac{1}{2} \frac{\bar{\theta}_{\text {eff }}}{f_{a}} \frac{m_{u} m_{d}}{m_{u}+m_{d}}\langle N| \bar{u} u+\bar{d} d|N\rangle \simeq \frac{1}{2} \bar{\theta}_{\text {eff }}\left(\frac{17 \mathrm{MeV}}{f_{a}}\right)
$$

- From bary-meson chiral Lagrangian
$\bar{g}_{a n, p} \simeq \frac{4 B_{0} m_{u} m_{d}}{f_{a}\left(m_{u}+m_{d}\right)}\left[ \pm\left(b_{D}+b_{F}\right) \frac{\left\langle\pi^{0}\right\rangle}{F_{\pi}}+\frac{b_{D}-3 b_{F}}{\sqrt{3}} \frac{\left\langle\eta_{8}\right\rangle}{F_{\pi}}-\sqrt{\frac{2}{3}}\left(3 b_{0}+2 b_{D}\right) \frac{\left\langle\eta_{0}\right\rangle}{F_{\pi}}-\left(b_{0}+\left(b_{D}+b_{F}\right) \frac{m_{u, d}}{m_{d}+m_{u}}\right) \bar{\theta}_{\text {eff }}\right]$
meson tadpoles
iso-spin breaking
MW missed a factor 1/2


## An application: Left-Right

- Low-scale (PQ)Left-Right with P-parity

4-quark op. from $W_{R}$ exchange
chiral representation

$$
\mathcal{O}_{1}^{u d}=(\bar{u} u)\left(\bar{d} i \gamma_{5} d\right)
$$



$$
c_{3}\left(U_{11}^{\dagger} U_{22}-U_{11} U_{22}^{\dagger}\right)
$$

$$
U=\exp \left[\frac{2 i}{\sqrt{6} F_{0}} \eta_{0} I+\frac{2 i}{F_{\pi}} \Pi\right]
$$

$$
\begin{aligned}
\frac{\left\langle\pi^{0}\right\rangle}{F_{\pi}} & \simeq \frac{G_{F}}{\sqrt{2}} \mathcal{C}_{1}^{[u d]} \frac{c_{3}}{B_{0} F_{\pi}^{2}} \frac{m_{u}+m_{d}+4 m_{s}}{m_{u} m_{d}+m_{d} m_{s}+m_{s} m_{u}} \\
\frac{\left\langle\eta_{8}\right\rangle}{F_{\pi}} & \simeq \frac{G_{F}}{\sqrt{2}} \mathcal{C}_{1}^{[u d]} \frac{\sqrt{3} c_{3}}{B_{0} F_{\pi}^{2}} \frac{m_{d}-m_{u}}{m_{u} m_{d}+m_{d} m_{s}+m_{s} m_{u}} \\
\theta_{\text {eff }} & \simeq \frac{G_{F}}{\sqrt{2}} \mathcal{C}_{1}^{[u d]} \frac{2 c_{3}}{B_{0} F_{\pi}^{2}} \frac{m_{d}-m_{u}}{m_{u} m_{d}}
\end{aligned}
$$

## An application: Left-Right

- Low-scale (PQ)Left-Right with P-parity
[Bertolini, LDL, Nesti 2006.I2508 PRLI 26 (202I)]

4 CPV observables $\left(\varepsilon, \varepsilon^{\prime}, d_{n}, \bar{g}_{a N}\right)$ function of a single phase $\alpha$
$\langle\Phi\rangle=\operatorname{diag}\left\{v_{1}, e^{i \alpha} v_{2}\right\}$


## CP-violating axions

- Rethinking the axion as a portal to UV sources of CP-violation

strong CP problem or strong CP opportunity ?

