New Physics Signals 2023

Highlights from the LHCb experiment

Giulia Tuci, on behalf of the LHCb collaboration Rupert Karls Universitaet Heidelberg giulia.tuci@cern.ch

Pisa, 16/02/2023

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Introduction

- Why 3 generations of fermions?
- Are there other sources of CPV violation?

- Precision measurements to test SM predictions
- Hadronic machines: large $b\overline{b}$ (and $c\overline{c}$) production cross section
 - \rightarrow LHCb experiment: forward spectrometer with excellent vertexing,

tracking and particle identification

Giulia Tuci, 16/02/2023

Highlights from LHCb

Not only a flavour experiment

- LHCb has collected ~3 fb⁻¹ of data in Run1 and ~6 fb⁻¹ of data in Run2
- Designed to study B mesons decays, but rich physics program!

Not only a flavour experiment

- LHCb has collected ~3 fb⁻¹ of data in Run1 and ~6 fb⁻¹ of data in Run2
- Designed to study B mesons decays, but rich physics program!

- This talk: selected measurements on flavour physics. See also:
 - \rightarrow Alice Biolchini, Lepton flavour universality tests in $b \rightarrow s \ell \ell$ decays at LHCb experiment
 - \rightarrow Camille Normand, <u>Bs $\rightarrow \mu\mu\gamma$ decay in the high-q2 region</u>
 - → Lisa Fantini, Lepton number and lepton flavour violation searches in B decays at LHCb

Lepton flavour universality tests

LFU tests in LHCb

- EW couplings to leptons "universal" (the only difference is the mass) in the SM *
- Can be tested in
 - $b \rightarrow c l v$

$$R(D^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)}\tau^+\nu_{\tau})}{\mathscr{B}(B \to D^{(*)}\mu^+\nu_{\mu})}$$

Predicted with a ~1% precision in the SM

 B^+

 K^+

 $b \rightarrow sll$ \rightarrow Covered in <u>Alice's talk</u> !

Sensitive to NP coupling to EW penguin LFU tests theoretically clean

$$R_{\rm H} \left[q_{\rm min}^2, q_{\rm max}^2 \right] = \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \mathrm{d}q^2 \frac{\mathrm{d}\Gamma(B \to H\mu^+\mu^-)}{\mathrm{d}q^2}}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \mathrm{d}q^2 \frac{\mathrm{d}\Gamma(B \to He^+e^-)}{\mathrm{d}q^2}} \ , \ q^2 = m^2(\ell\ell)$$

Highlights from LHCb

 B^+

 W^+

 $\bar{u}, \bar{c}, \bar{t}$

 γ/Z^0

 K^+

LQ

$b \rightarrow c l v$

Until ~ 1 year ago: longstanding 3.3σ effect

Recent update from LHCb! \rightarrow 3.2 σ effect

- First joint measurement of R(D) and R(D*) at a hadron collider
 - Run 1 (2011-2012) dataset
- **\bullet** Experimental challenge: neutrinos \rightarrow no narrow peak to fit

Strategy: make 3D template fits to q², missing mass and lepton energy distributions

R(D^(*))

*

Final result:

- Both precision measurement and inclusive analysis with high statistics
 - > Understanding of background fundamental

 $\mathcal{R}(D^*)=\!\!0.281\pm 0.018\pm 0.024\ \mathcal{R}(D)\!\!=\!\!0.441\pm 0.060\pm 0.066\
ho=-0.43$

Run 2 measurement ongoing

CKM metrology

|V_{cb}| measurement

 Long-standings tension (~3σ)
 between inclusive and exclusive determinations

- At LHCb
 - > $|V_{ub}| / |V_{cb}|$ using Λ^0_b decays
 - > B_{s}^{0} system

$|V_{cb}|$ via $B^0_s \rightarrow D^*_s \mu v$

- Unreconstructed neutrino \rightarrow 2D fit to
 - p₁, correlated with hadron recoil
 (preserves FF information)

Limited by external inputs \rightarrow will benefit from LHCb Run 3 measurement * on fs/fd and any update on $K^+K^-\pi^+$ resonance from Belle II

Measurement of **y** angle

- Accessible studying processes involving only tree-level diagrams
 - ➢ Negligible theoretical uncertainty (<10⁻⁷) JHEP 1401 (2014) 051
 - > Comparison between direct and indirect determination, obtained using unitarity relation \rightarrow sensitive to NP

Measurement of **y** angle

- ♦ Interference between $b \rightarrow c\overline{u}s$ and $b \rightarrow u\overline{c}s$ transitions
- \rightarrow occurs when D⁰ and \overline{D}^0 decay to the same final state
 - \succ CP eigenstates, e.g. D⁰→ K⁺K⁻, D⁰→π⁺π⁻
 - \succ CF or DCS decays, e.g. D⁰→Kπ
 - ▶ self-conjugated 3-body final states, e.g. $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

LHCb-CONF-2022-003

CPV in charm

The charm quark

- Charm transitions are a unique portal for obtaining a novel access to flavor dynamics
 - > complementarity with K^0 and $B^0_{(S)}$
 - ➤ expected CPV in charm $\leq 10^{-3} \rightarrow$ difficult to observe it experimentally

- Theoretical predictions challenging:
 - non-perturbative QCD regime (mass c-mesons O(2 GeV))
 - \rightarrow large uncertainties

First observation of CPV in charm

- Difference in CP asymmetries between $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^-$
 - > Need to distinguish between D^0 and \overline{D}^0

$$\mathcal{A}^{CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

$$\mathcal{A}^{raw} \equiv \frac{N_{D^0} - N_{\overline{D}^0}}{N_{D^0} + N_{\overline{D}^0}}$$

PRL 122 (2019) 211803

$$\mathcal{A}^{raw} pprox \mathcal{A}^{CP} + \mathcal{A}^{prod} + \mathcal{A}^{det}$$

First observation of CPV in charm

PRL 122 (2019) 211803

 $D^0 \rightarrow K^+K^-$

SM or not? •

- Large samples needed *
- \rightarrow LHCb: **10⁶ cc** pairs per second in acceptance (Run 2) *

A^{CP} ($D^0 \rightarrow K^+K^-$)

- New in Run 2: two independent ways to cancel nuisance asymmetries
 - $\succ \quad D^0 \to K^{-}\pi^{+}, \ D^{+} \to K^{-}\pi^{+}\pi^{+}, \ D^{+} \to \overline{K}{}^{0}\pi^{+}$
 - $\succ \quad D^0 \to K^{-}\pi^{+}, \ D_{s}^{-+} \to \Phi\pi^{+}, \ D_{s}^{-+} \to \overline{K}{}^{0}K^{+}$
 - > ~40% improvement of σ_{stat}

- Main systematic uncertainties
 - ➤ Kinematic reweighting → reduces also effective yield
 - ➤ Knowledge of detector material → need accurate model in simulation and/or new data-driven approaches

Looking at the future

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018 2018 (6.5 TeV): 2.19 /fb Integrated Recorded Luminosity (1/fb) 9 2017 (6.5+2.51 TeV): 1.71 /fb + 0.10 /fb 2016 (6.5 TeV): 1.67 /fb 2015 (6.5 TeV): 0.33 /fb 8 2012 (4.0 TeV): 2.08 /fb 7E 2011 (3.5 TeV): 1.11 /fb 2010 (3.5 TeV): 0.04 /fb 6 5 LS1 3 0 2010 2011 2012 2013 2014 2015 2016 2017 2018 Year

- Run 1+2
 - ➤ Integrated luminosity 9 fb⁻¹
- Upgrade I
 - ➤ Integrated luminosity ~41 fb⁻¹
- Upgrade II
 - ➢ Integrated luminosity ~250 fb⁻¹

LHCb experiment in Run 3

- 5x increase in instantaneous luminosity
 - From ~1 PV per event, to ~ 5 PVs per event

Highlights from LHCb

First mass peaks

 Currently working hard on understanding new detector and improving calibration and alignment

Giulia Tuci, 16/02/2023

Highlights from LHCb

LHCb Upgrade II

- Pile-up ~40, 200 Tb/s data produced
- To keep same performance, timing needed in some sub-detectors
 - R&D ongoing on new technologies

Final remarks

- LHCb is an ideal lab for measurements in flavour sector
 - Presented a selection of world leading results
 - Not covered today, but LHCb showed capabilities that go well beyond its design (e.g. heavy ions, EW physics)
- Now focusing on Run 3 to acquire a larger dataset
- Started R&D towards an even more capable detector

Backup slides

To solve for full B momentum: approximation + knowledge of PV-SV direction

Highlights from LHCb

Time-integrated CPV: methodology

Difference of decay rate between two CP conjugate states

$$\mathcal{A}^{CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

Quantity measured

$$\mathcal{A}^{raw} \equiv \frac{N_D - N_{\overline{D}}}{N_D + N_{\overline{D}}}$$

Production asymmetry: initial state pp is not CP symmetric

 $\mathcal{A}^{raw} \approx \mathcal{A}^{CP} + \mathcal{A}^{prod} + \mathcal{A}^{det}$ Asymmetric detector acceptance + material interaction different for particles/antiparticles

Mixing (and mixing-induced CPV) in $D^0 \rightarrow K_S^{\ 0} \pi^+ \pi^-$

- Can directly measure alle four mixing and CPV parameters: $x=\Delta m/\Gamma$, $y=\Delta \Gamma/2\Gamma$, q/p, Φ
- Requires time and phase-space dependent analysis
- Model-independent "bin-flip" method
 - Strong phases constrained from CLEO and BESIII

 x_{CP} = (3.97 ± 0.46 ± 0.29) x 10⁻³

 $y_{CP}^{}$ = (4.59 ± 1.20 ± 0.85) x 10⁻³

Prospects

Future prospects (only $D^0 \rightarrow K_s^0 \pi^+ \pi^-$)

Sample (lumi \mathcal{L})	Tag	$\sigma(q/p)$	$\sigma(\phi)$
Run 1–3 (23 fb ⁻¹)	\mathbf{SL}	0.036	2.5°
	Prompt	0.017	0.77°
Run 1–4 (50 fb ⁻¹)	\mathbf{SL}	0.024	1.7°
	Prompt	0.011	0.48°
Run 1–5 (300 fb ⁻¹)	\mathbf{SL}	0.009	0.69°
	Prompt	0.004	0.18°

Physics case for an LHCb Upgrade II