Exclusive $b \rightarrow c \ell v$ modes as windows to New Physics

Damir Bečirević

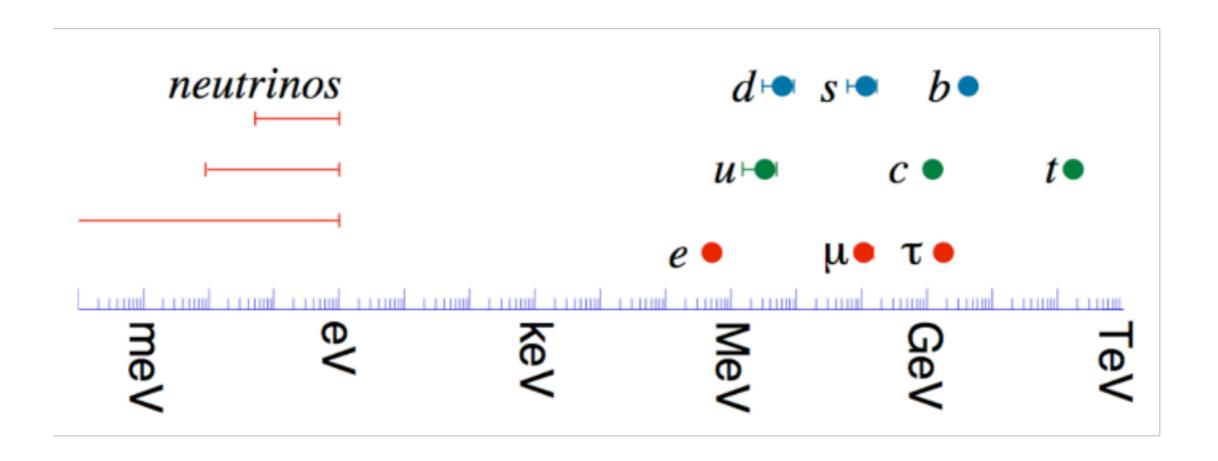
Pôle Théorie, IJCLab CNRS et Université Paris-Saclay

Pisa, February 16, 2023

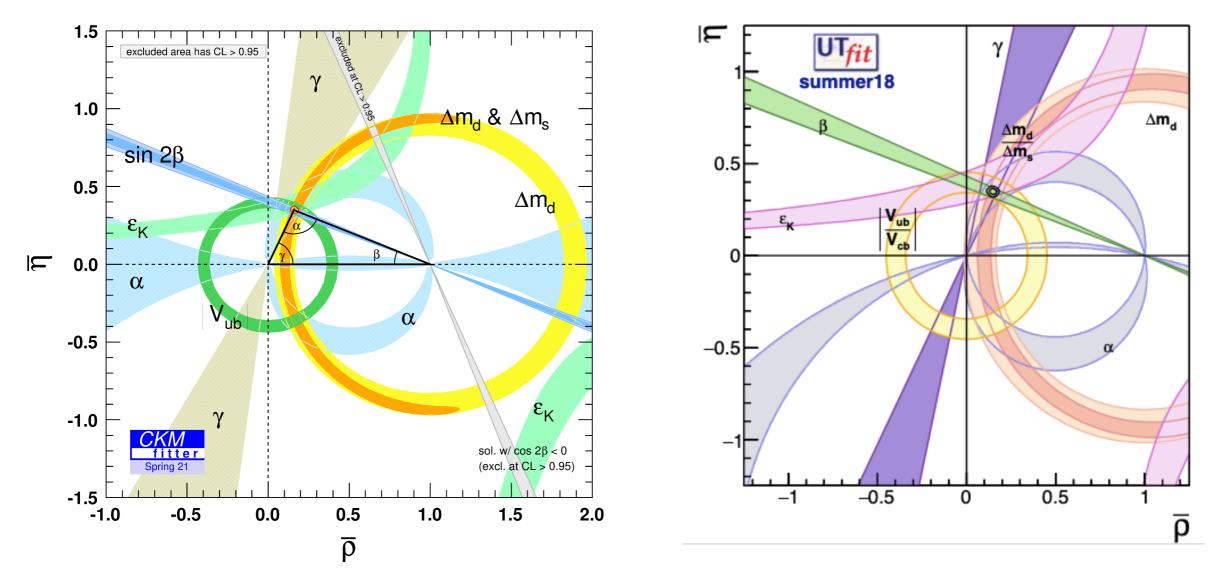
based on works with F. Jaffredo, A. Le Yaouanc, and O. Sumensari

Flavor Physics

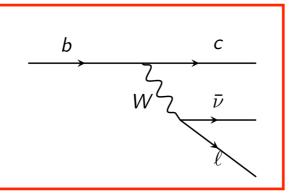
- **×** Why three generations?
- X Why such hierarchy of masses and mixing?
- Why so small CPV phase?



CKM-ology

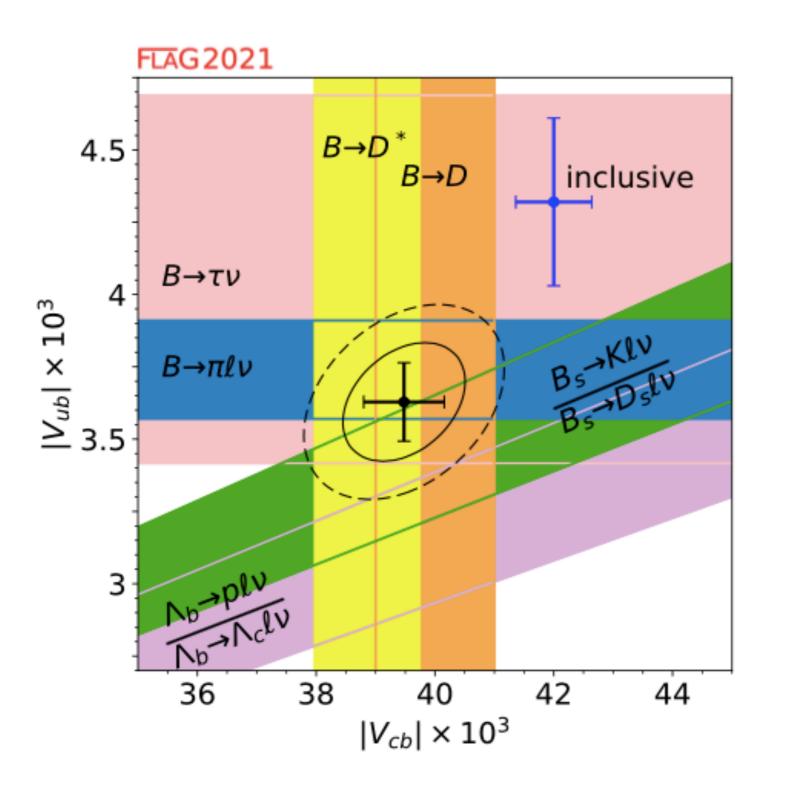


Still open: inclusive v exclusive Vub and Vcb?
 Is Vud well controlled? Vus keeps coming back (EM)...



CKM-ology - Small flavor 'anomaly'

X Still open: inclusive v exclusive V_{ub} and V_{cb}?



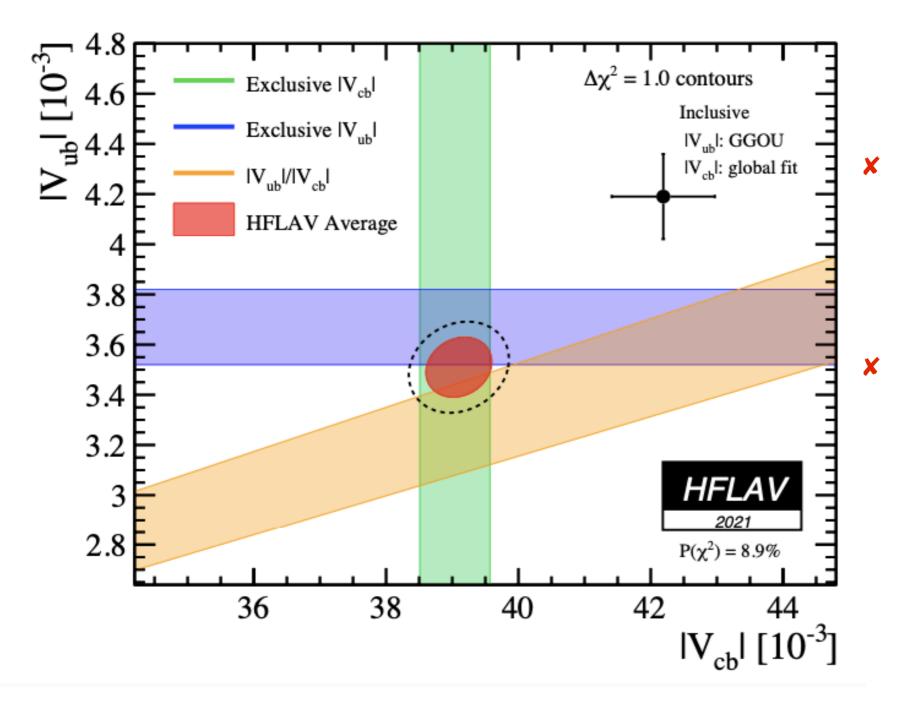
Belle II (excl + incl), LHCb (excl)

- × QCD on very fine lattices B \rightarrow D and B \rightarrow D* at w=1
- Nowadays probed non-zero recoil

2111.09849

CKM-ology - Small flavor 'anomaly'

X Still open: inclusive v exclusive V_{ub} and V_{cb}?



Lattice, best way to go $B \rightarrow D$ at various small *w*, but for w accessible from LQCD, a huge phase space suppression Experimentally appealing $B \rightarrow D^*$ (also Luke theorem)

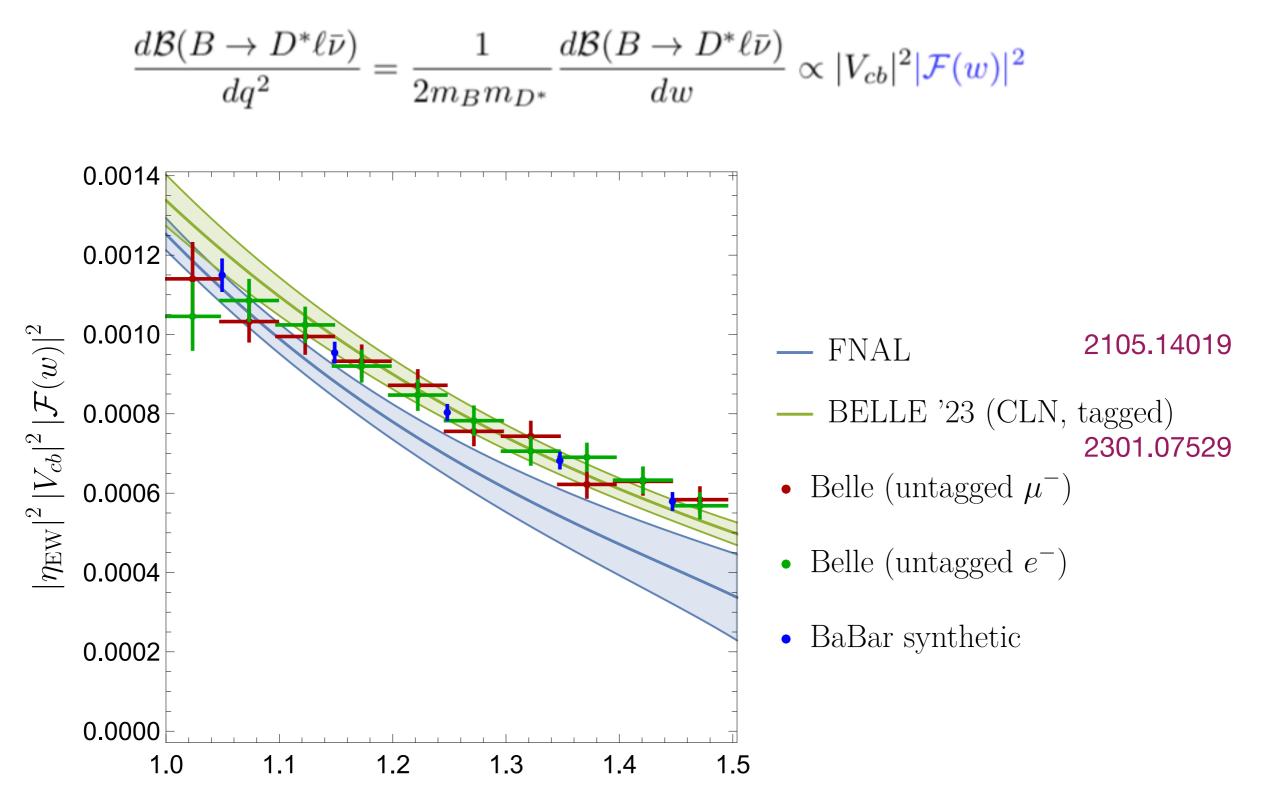
2206.07501

CLN or BGL or...

$$\begin{aligned} \frac{d\Gamma(\overline{B} \to D^* \ell^- \overline{\nu}_{\ell})}{dw} &= \frac{G_F^2 m_{D^*}^3}{48\pi^3} (m_B - m_{D^*})^2 \chi(w) \eta_{EW}^2 \mathcal{F}^2(w) |V_{cb}|^2 \\ \chi(w) \mathcal{F}^2(w) &= \frac{h_{A_1}^2(w)}{\sqrt{w^2 - 1}} (w+1)^2 \left\{ 2 \left[\frac{1 - 2wr + r^2}{(1 - r)^2} \right] \left[1 + \frac{R_1^2(w) \frac{w - 1}{w + 1}}{w + 1} \right] + \left[1 + (1 - \frac{R_2(w)}{1 - r}) \frac{w - 1}{1 - r} \right]^2 \right\} \\ q^2 &= m_B^2 + m_{D^*}^2 - 2m_B m_{D^*} w & r = m_{D^*} / m_B \\ h_{A_1}(w) &= h_{A_1}(1) \left[1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right] \\ R_1(w) &= R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2 & \text{CLN} & 9712417 \\ R_2(w) &= R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2 & \text{BGL} & 9705252 \\ these should be fit too and not fixed as in CLS \end{aligned}$$

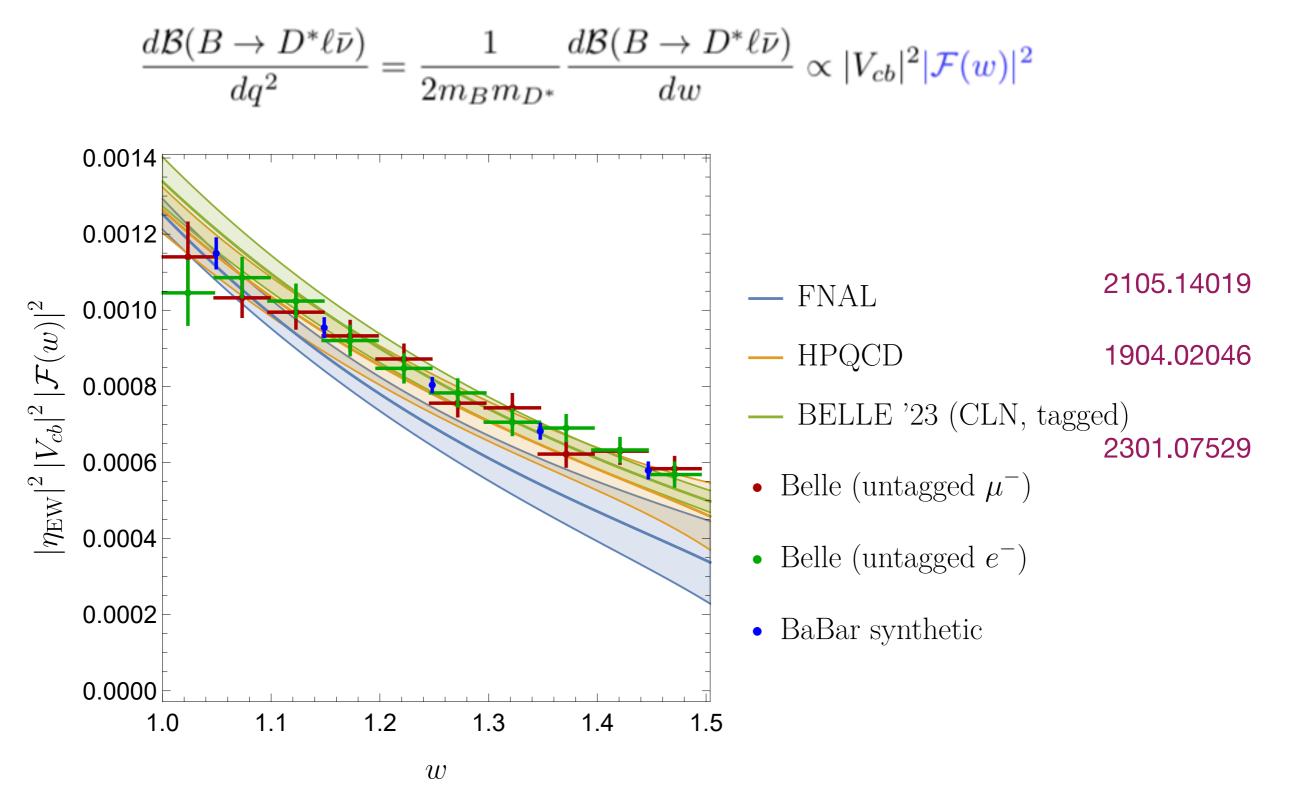
Exp data fit very well with CLN, but eventually [with ever better precision]
 BGL should be the ultimate choice, if you decide to follow this route...

We still do not have a control over hadronic uncertainties with



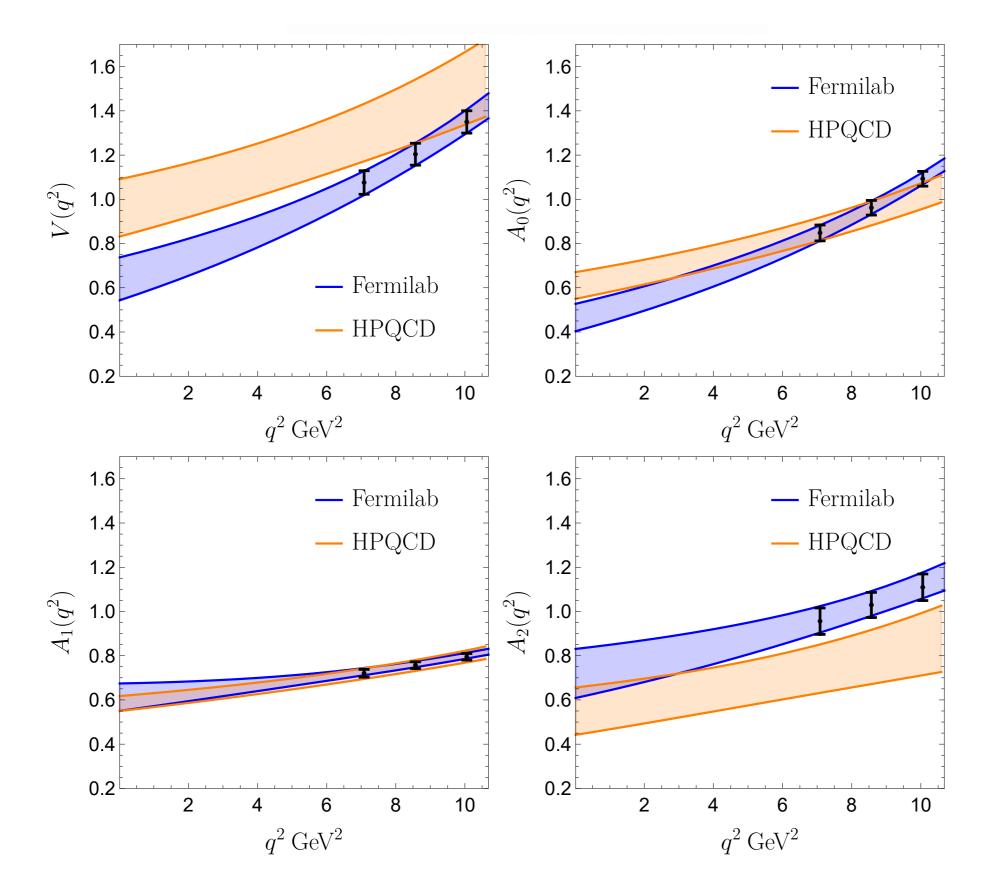
w

We still do not have a control over hadronic uncertainties with



• Assuming with HPQCD that $\mathcal{F}(w)^{B_s \to D_s^*} = \mathcal{F}(w)^{B \to D^*}$

 $B \to D^* \ell \bar{\nu}$



2105.11433 2105.14019

$$B \to D^* \ell \bar{\nu}$$

Do we understand well $B \to D^*$ at w=1?

 $\mathcal{F}(1) = 0.906(4)(12)$ ($N_{\rm f} = 2 + 1$) 1403.0635

 $\mathcal{F}(1) = 0.895(10)(24)$ ($N_{\rm f} = 2 + 1 + 1$) 1711.1103

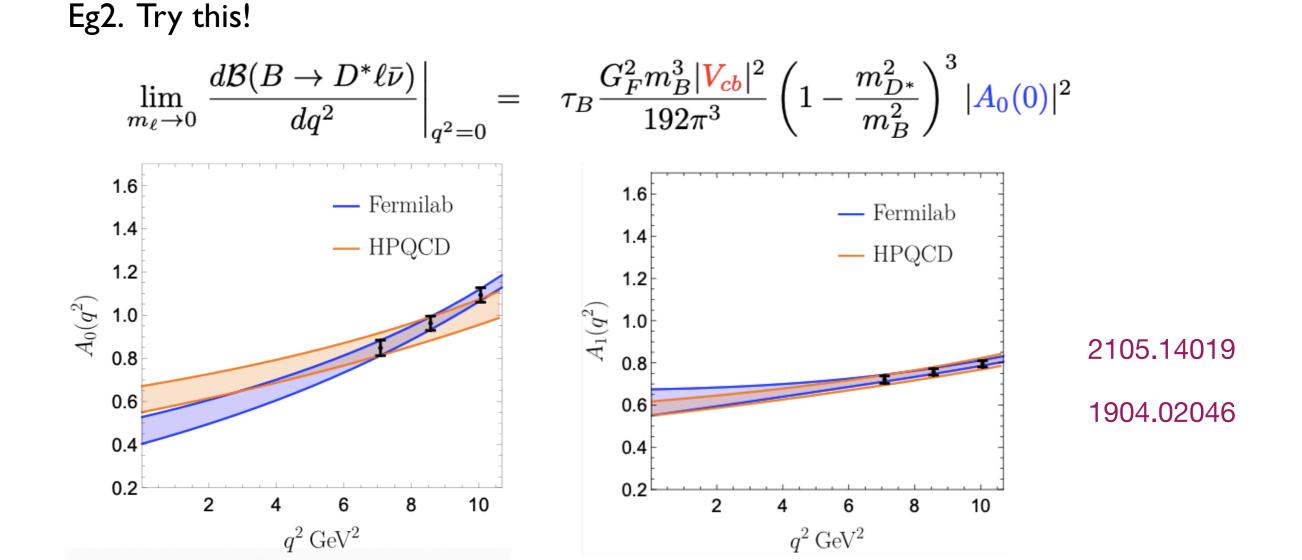
- The value of $\mathcal{F}(1)$ seems to be too large when comparing the exclusive and inclusive semileptonics at w = 1.
- As if all the other B → D(n) semileptonic modes were 1206.2296 tiny or negligible - "oversaturation".
- Since $|V_{cb}|\mathcal{F}(1)$ comes from fit with exp. data, a lower $\mathcal{F}(1)$ would lead to larger $|V_{cb}|$.
- Necessary to double check with $B \to D\ell\nu$.
- Lattice results for $\mathcal{F}(1)$ with different regularization would be highly welcome.

Side remark: Never ending problem |V_{cb}|

There is no canonical way/parametrization that would lead to reliable $|V_{cb}|$.

Never forget that we need dynamical QCD information! Changing variables ain't gonna do it! At least TRY various options - and cross check!

Eg1. Can we measure the slowly varying scalar helicity amplitude? (!)



Side remark: Never ending problem IV_{cb}I

$$\lim_{m_{\ell} \to 0} \left. \frac{d\mathcal{B}(B \to D^* \ell \bar{\nu})}{dq^2} \right|_{q^2 = 0} = \tau_B \frac{G_F^2 m_B^3 |V_{cb}|^2}{192\pi^3} \left(1 - \frac{m_{D^*}^2}{m_B^2} \right)^3 |A_0(0)|^2$$

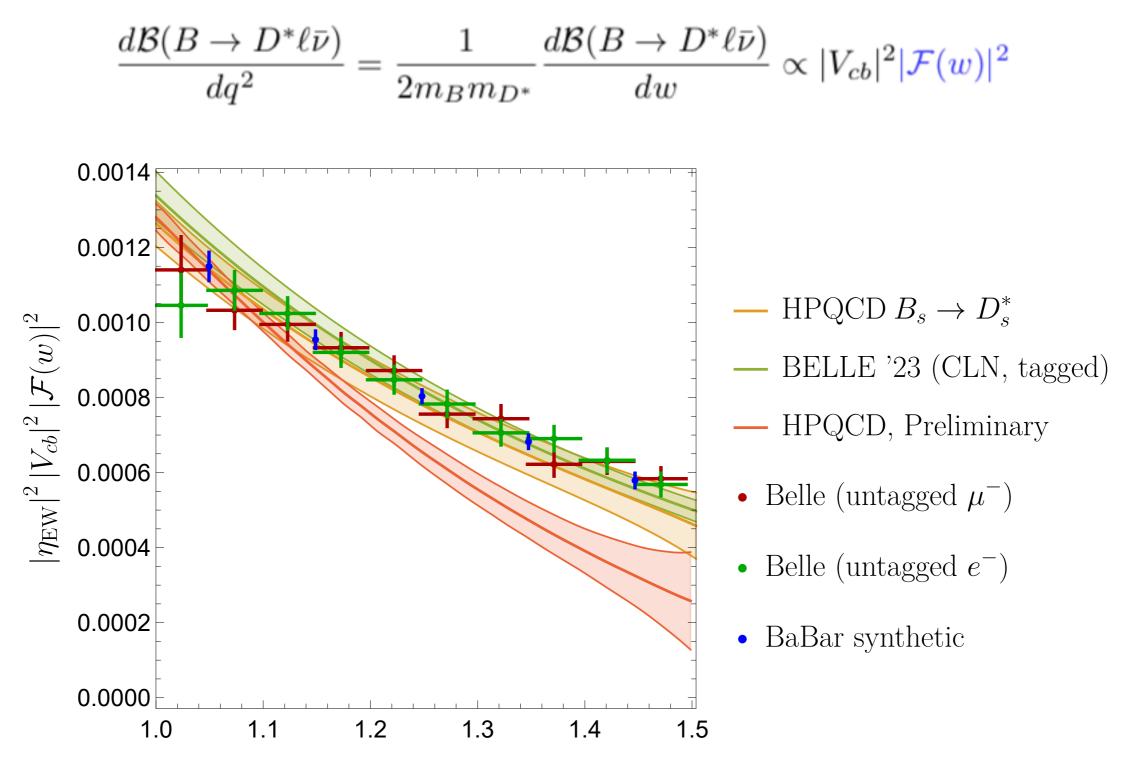
•
$$A_0(0) = 0.47(6)^{\text{FNAL}}, 0.61(6)^{\text{HPQCD}}, 0.78(23)^{\text{``LCSR''}}$$
 0809.0222

• Use HFLAV results with e.g. CLN: $R_2(1) = 0.853(17) \Rightarrow R_2(w_{\text{max}})$ 2206.07501

$$\frac{A_0(0)}{A_1(0)}\Big|_{\rm HFLAV}^{\rm CLN} = 1.087(14) \rightarrow A_0(0) = 0.64(4)^{\rm FNAL}, 0.66(7)^{\rm HPQCD}, 0.79(22)^{\text{``LCSR''}}$$

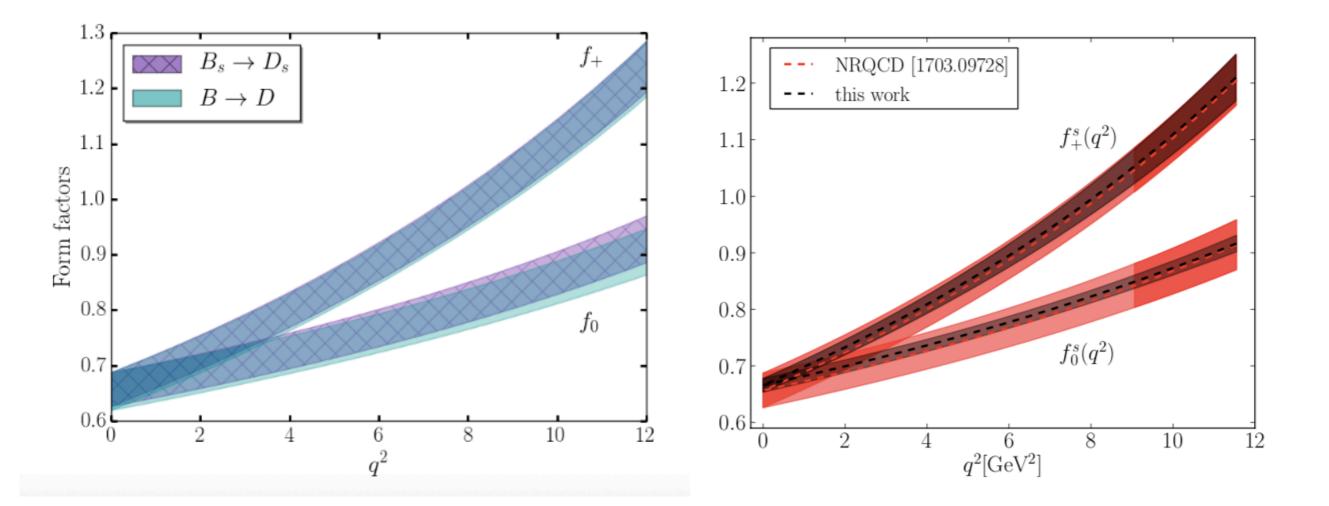
• Use measured $\mathcal{B}(B \to D\pi^{\pm})$ and $\mathcal{B}(B \to D^*\pi^{\pm})$ to either check whether or not $a_1^{D\pi} = a_1^{D^*\pi}$ or to extract $A_0(m_{\pi}^2)/f_0(m_{\pi}^2)$ More in the paper to come.

Recent preliminary lattice [SPECTATOR quark mass dependence!]... How can we understand that?

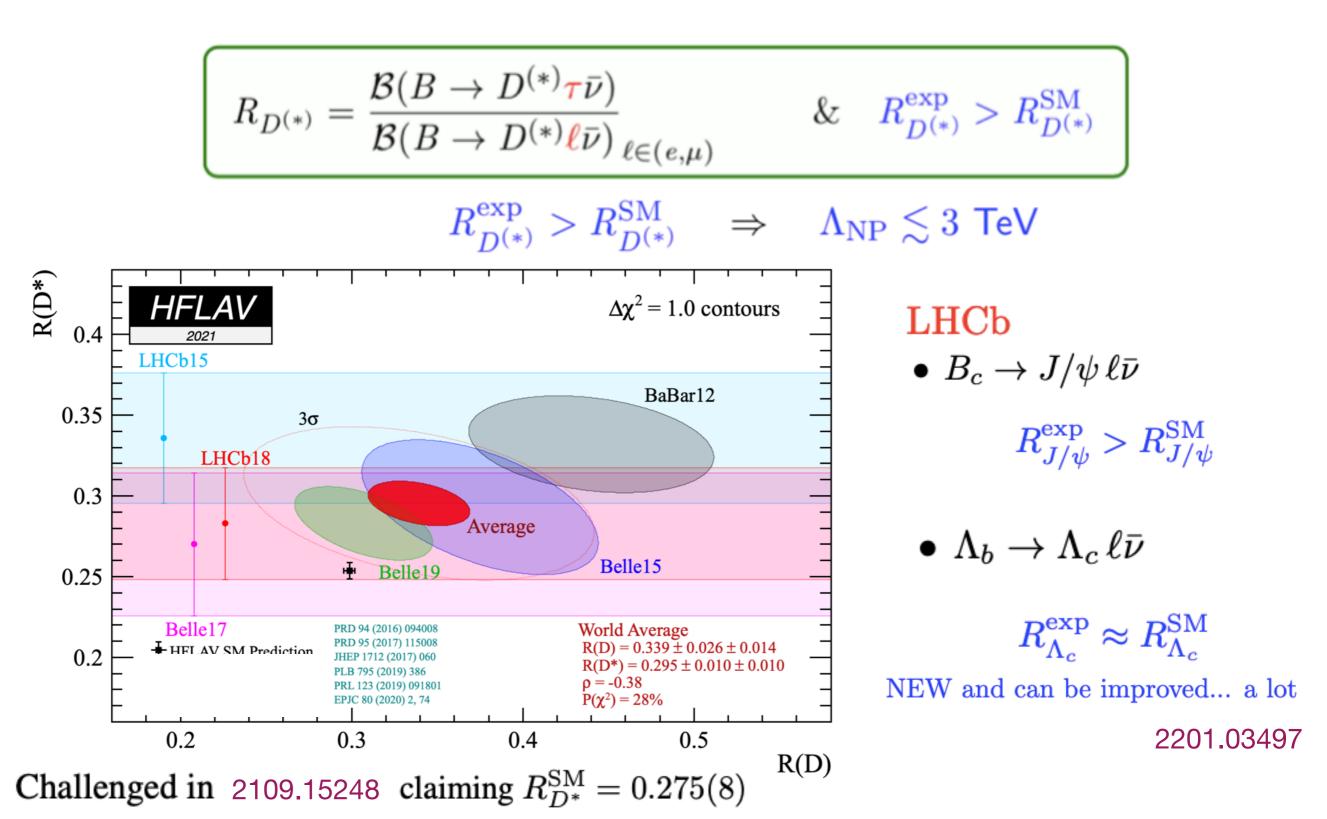


w

when compared to this?



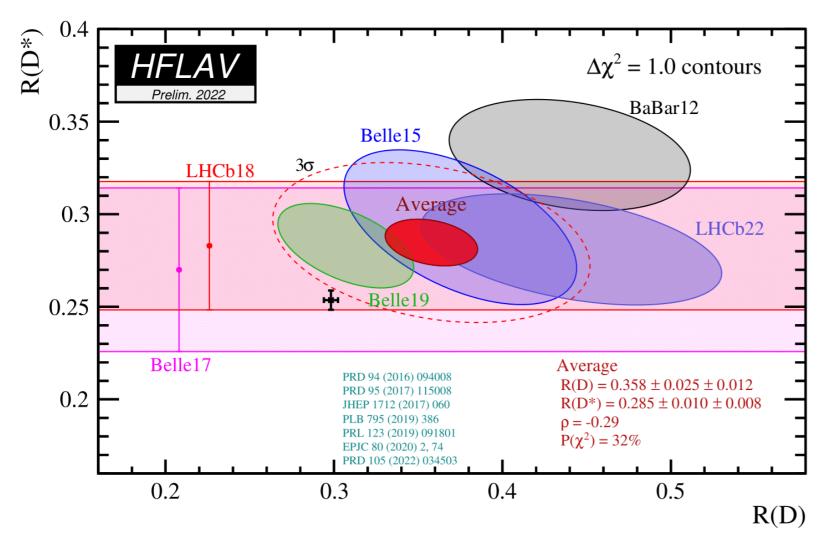
Hint of LFUV ['scare' or 'joy'] possibility to study NP effects



Hint of LFUV ['scare' or 'joy'] possibility to study NP effects

$$\left(\begin{array}{c} R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \boldsymbol{\tau} \bar{\nu})}{\mathcal{B}(B \to D^{(*)} \boldsymbol{\ell} \bar{\nu})}_{\boldsymbol{\ell} \in (e, \mu)} & \& \quad R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{\mathrm{SM}} \end{array}\right)$$

2302.02886

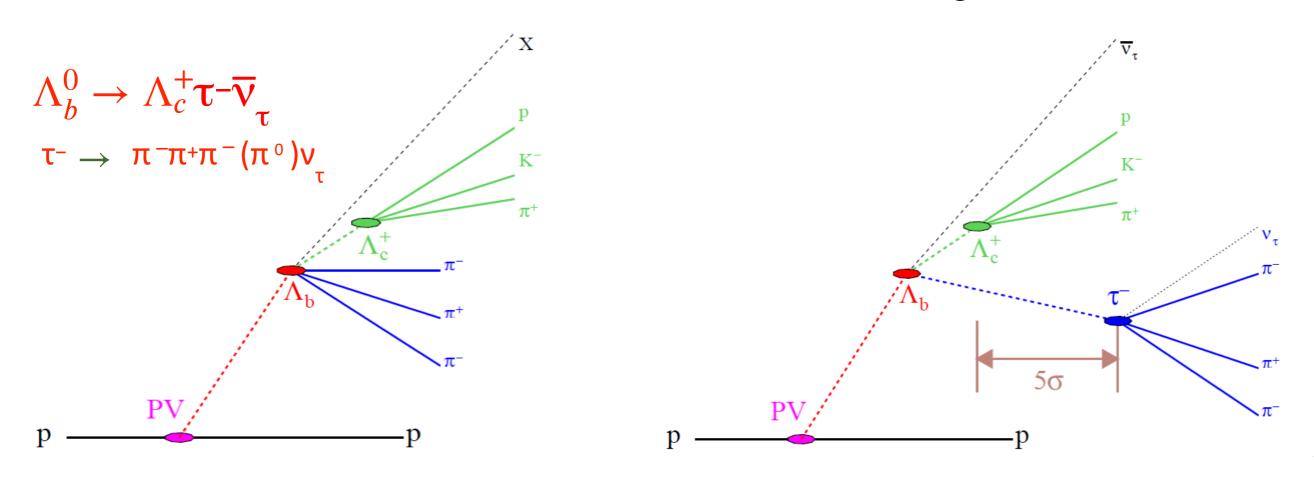


LHCb• $B_c \rightarrow J/\psi \, \ell \bar{\nu}$ $R_{J/\psi}^{\exp} > R_{J/\psi}^{SM}$ • $\Lambda_b \rightarrow \Lambda_c \, \ell \bar{\nu}$ $R_{\Lambda_c}^{\exp} \approx R_{\Lambda_c}^{SM}$ NEW and can be improved... a lot

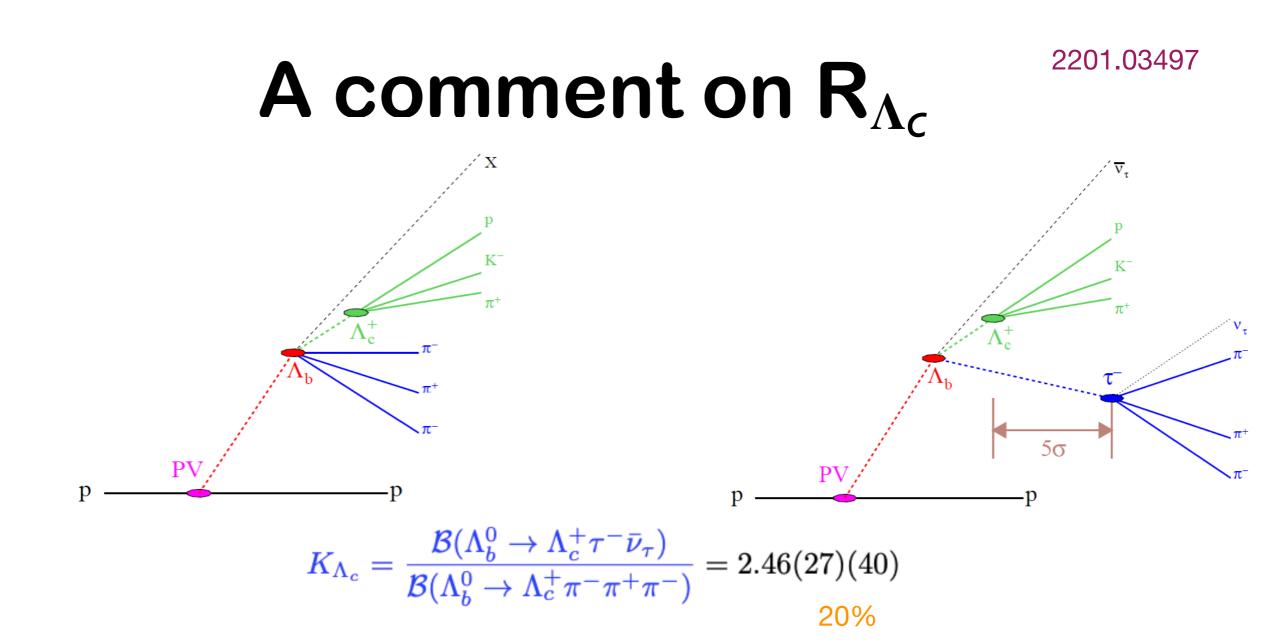
2201.03497

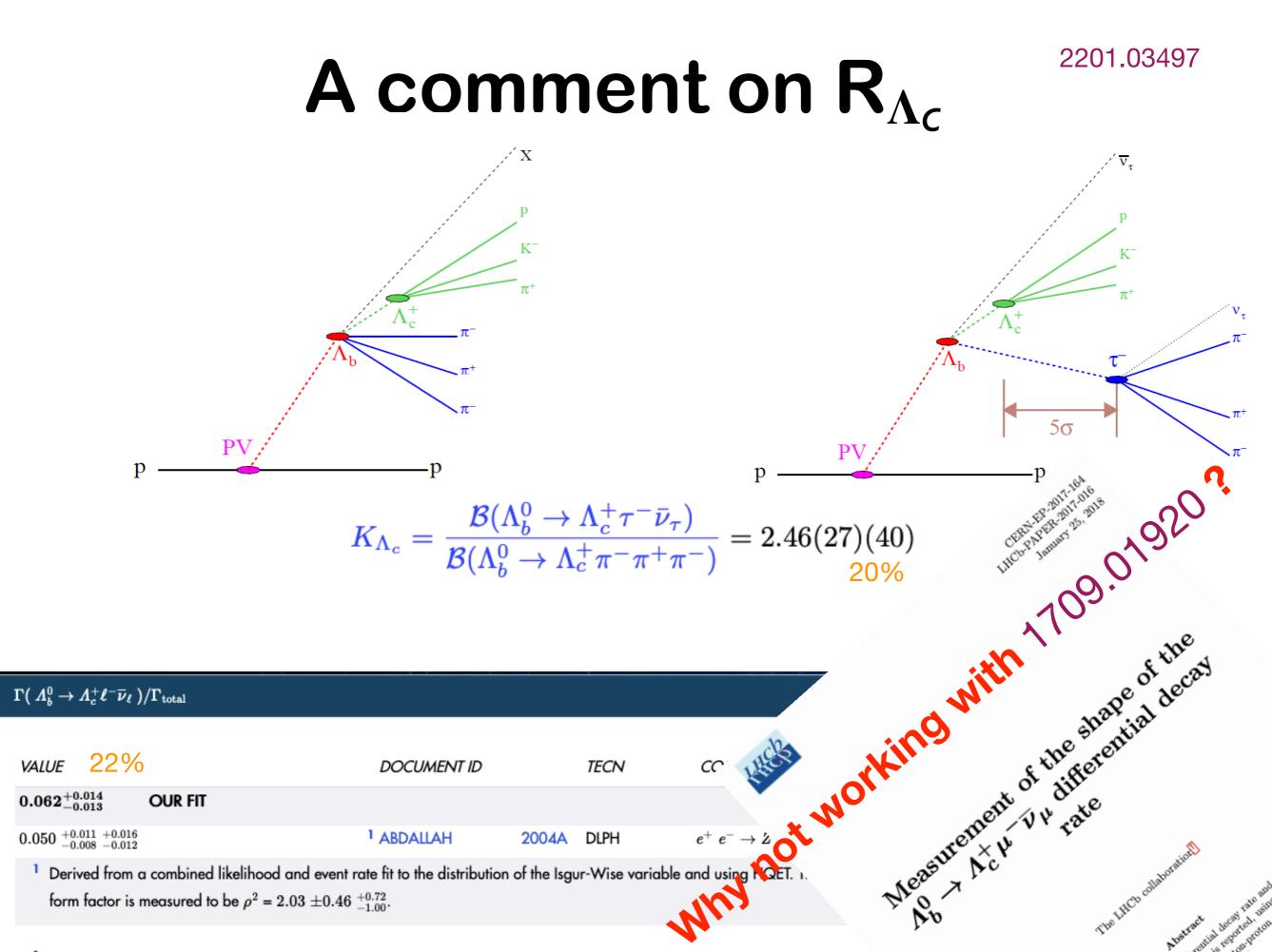
2201.03497

A comment on R_{Λ_c}



$$K_{\Lambda_c} = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-)} = 2.46(27)(40)$$



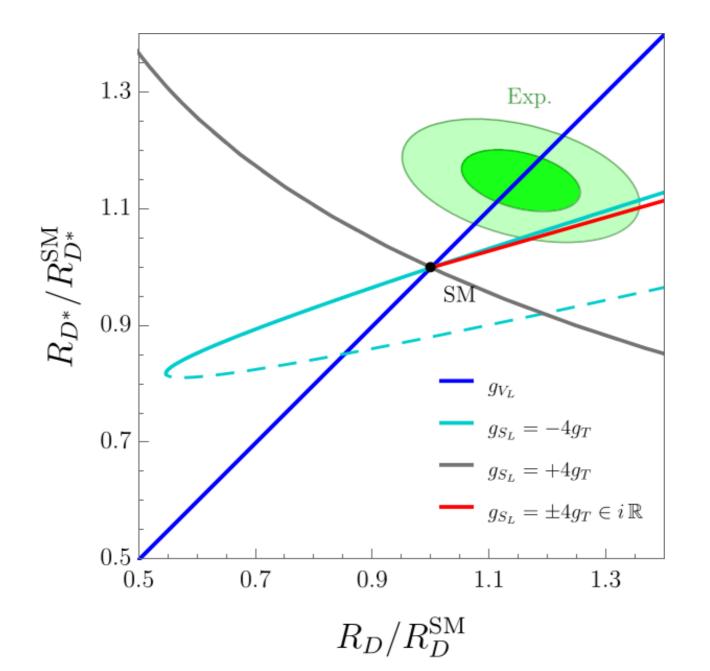


EFT - exclusive $b \to c \ell \nu$

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1 + g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$$

EFT - exclusive $b \to c \ell \nu$

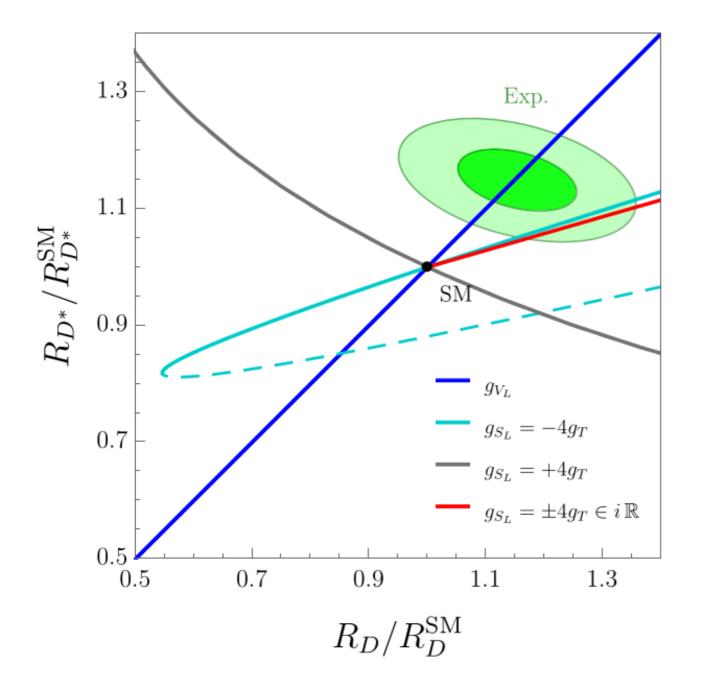
$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1 + g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$$



2103.12504

EFT - exclusive $b \to c \ell \nu$

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1+g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$$



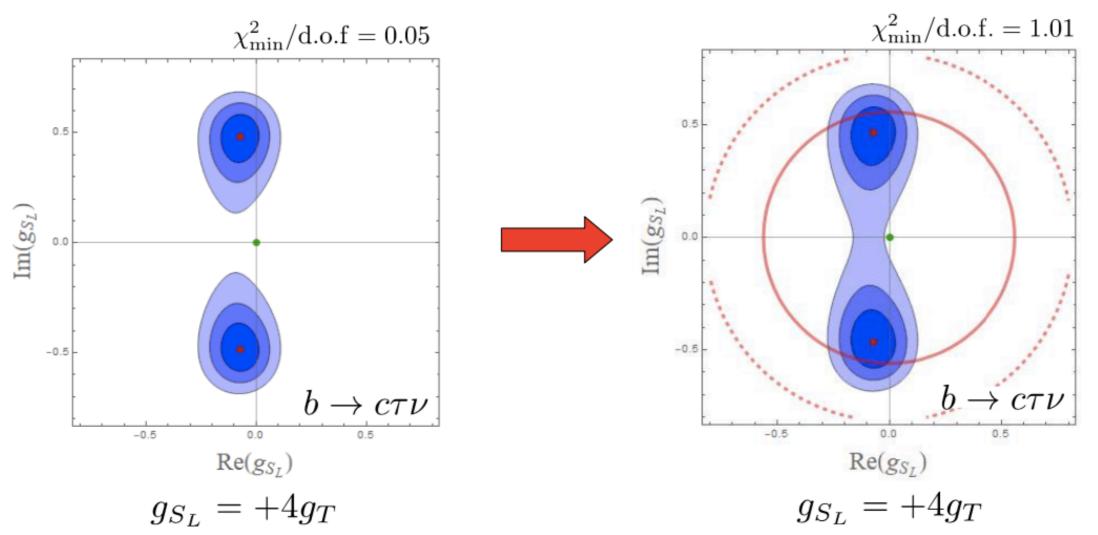
Need better data and more observables to discriminate among various possibilities.

Dream goal is to confidently & simultaneously determine all NP cplgs from fit with the data.

Angular distributions can help! vast literature...

Impact of R_{Λ_c}

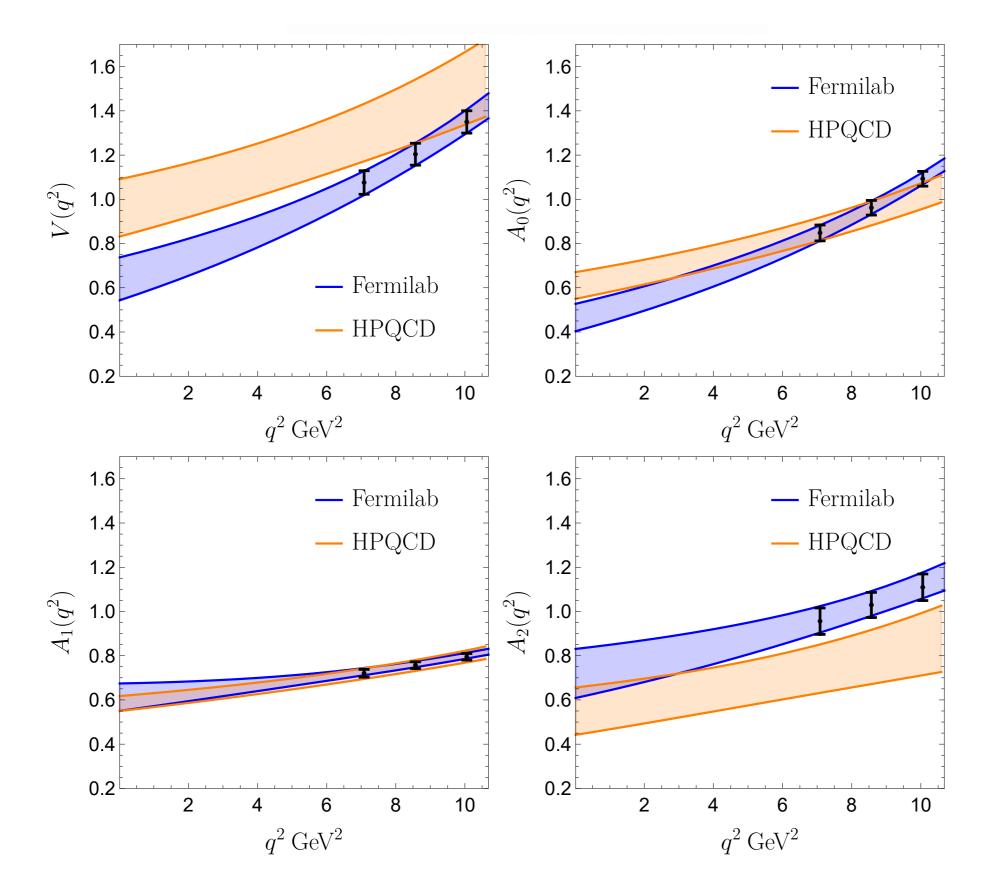
Wilson Coefficient	$R(D)$ and $R(D^{\ast})$	$R(\Lambda_c)$	Combined	$\chi^2_{ m min}/ m d.o.f$
g_{V_L}	0.084 ± 0.029	-0.15 ± 0.14	0.077 ± 0.035	$0.06 \rightarrow 1.3$
g_{S_L}	-1.47 ± 0.08	-0.53 ± 0.54	-1.45 ± 0.11	$0.5 \rightarrow 2.1$
g_T	-0.027 ± 0.011	0.13 ± 0.14	-0.026 ± 0.013	1.2 ightarrow 1.7
$g_{S_L} = +4g_T \in i\mathbb{R}$	$\pm 0.49 \pm 0.10$	0.0 ± 0.39	$\pm 0.47 \pm 0.13$	0.9 ightarrow 1.6
$g_{S_L} = -4g_T$	0.16 ± 0.06	0.0 ± 0.39	0.15 ± 0.07	0.7 ightarrow 1.0



We still do not have a full/good control over hadronic uncertainties

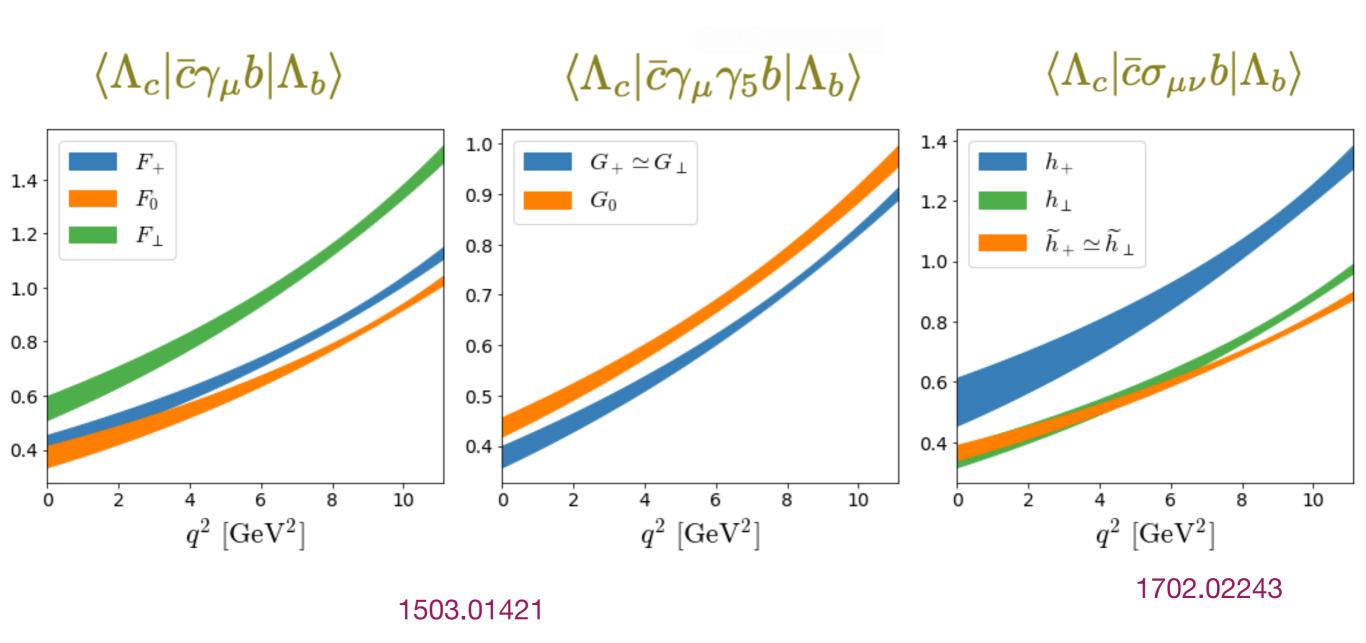
Mode	$B ightarrow D \ell \bar{ u}$	$B o D^* \ell \bar{\nu}$	$\Lambda_b o \Lambda_c \ell ar{ u}$
$\langle V_{\mu} angle$	2 🗸	1 🗸	3 🗸
$\langle A_{\mu} angle$		3 🗸	3 🗸
$\langle T_{\mu\nu} \rangle$	$1 \times$	3 ×	4 🗸
	1503.07237	1904.02046	1503.01421
	1505.03925	2105.14019	1702.02243

 $B \to D^* \ell \bar{\nu}$



2105.11433 2105.14019

 $\Lambda_b \to \Lambda_c \ell \bar{\nu}$



Keep in mind: Less than a half of available q^2 's computed on the lattice. Otherwise "z-parametrization".

Angular observables can help disentangling among various NP scenarios

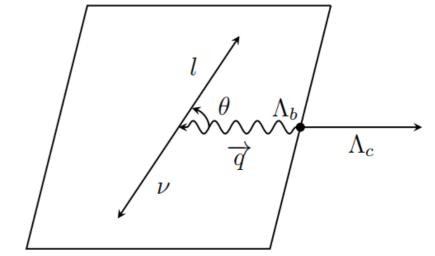
Many works with mesons: ${f B} o {f D} \ell ar
u$ ${f B} o {f D}^* \ell ar
u$

$$\frac{d^2\Gamma}{dq^2d\cos\theta} = \frac{\sqrt{\lambda_{\Lambda_b\Lambda_c}\left(q^2\right)}}{1024\pi^3 M_{\Lambda_b}^3} \left(1 - \frac{m_l^2}{q^2}\right) \sum_{\lambda_l\lambda_b\lambda_c} \left|\mathcal{M}_{\lambda_c}^{(3)\lambda_b\lambda_l}\right|^2$$

$$\frac{\mathrm{d}^2\Gamma(\Lambda_b \to \Lambda_c^{\lambda_c} \ell^{\lambda_l} \nu)}{\mathrm{d}q^2 \mathrm{d}\cos\theta} = a_{\lambda_c}^{\lambda_l}(q^2) + b_{\lambda_c}^{\lambda_l}(q^2) \cos\theta + c_{\lambda_c}^{\lambda_l}(q^2) \cos^2\theta$$

Each $a_{\lambda_c}^{\lambda_l}(q^2)$, $b_{\lambda_c}^{\lambda_l}(q^2)$, $c_{\lambda_c}^{\lambda_l}(q^2)$ is a function of kinematics, form factors and the NP couplings g_{V_L} , g_{S_L} , g_{S_R} , g_T .

12-2=10 observables



Angular observables $\Lambda_b \to \Lambda_c \ell \bar{\nu}$

1907.12554 1908.02328 1909.10769 1702.02243 1502.04864

2209.13409

Three powerful observables:

$$\circ \quad \mathcal{A}_{\rm fb}(q^2) = \frac{1}{\Gamma} \left[\int_0^1 - \int_{-1}^0 \right] \frac{d\Gamma}{d\cos\theta} d\cos\theta$$

$$\circ \quad \mathcal{A}_{\pi/3}(q^2) = \frac{1}{\Gamma} \left[\int_0^{\pi/3} + \int_{2\pi/3}^{\pi} - \int_{\pi/3}^{2\pi/3} \right] \frac{d\Gamma}{d\cos\theta} \sin\theta \, d\theta$$

$$\circ \quad \mathcal{A}_{\lambda}(q^{2}) = \frac{1}{\Gamma} \left[\frac{d\Gamma^{+}}{dq^{2}} - \frac{d\Gamma^{-}}{dq^{2}} \right]$$

Examples:

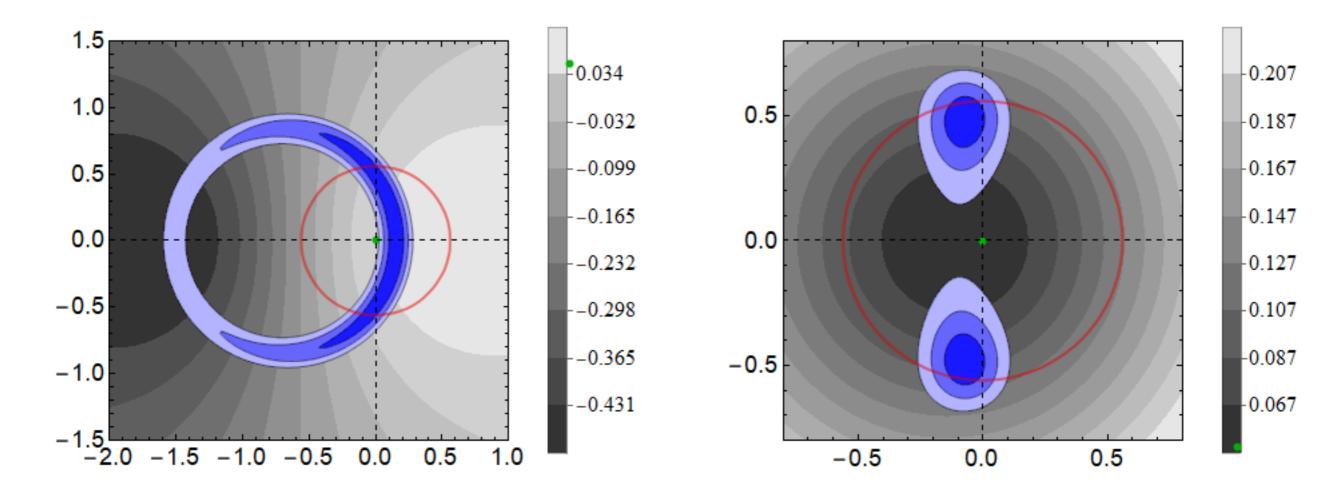
 $U_1: g_{V_L}$ $R_2: g_{S_L} = 4 g_T$ $S_1: g_{S_L} = -4 g_T$

Angular observables $\Lambda_b \to \Lambda_c \ell \bar{\nu}$

2209.13409

Three powerful observables:

 $\langle \mathcal{A}_{\mathrm{fb}}^{ au}
angle$



 S_1

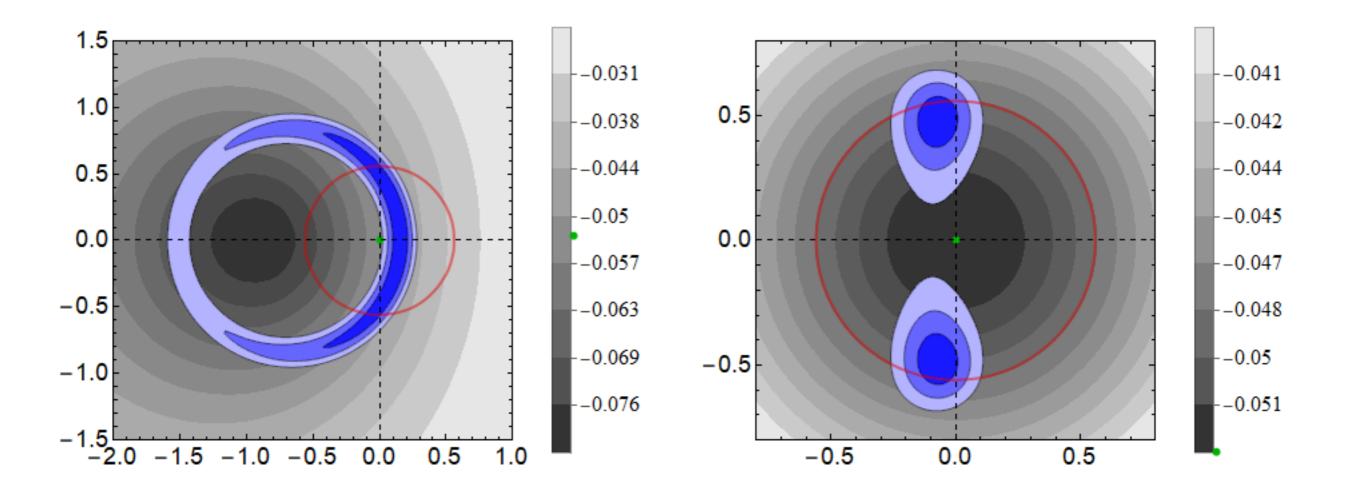
 R_2

Angular observables $\Lambda_b \to \Lambda_c \ell \bar{\nu}$

2209.13409

Three powerful observables:

 $\langle \mathcal{A}_{\pi/3}^{ au}
angle$:



 S_1

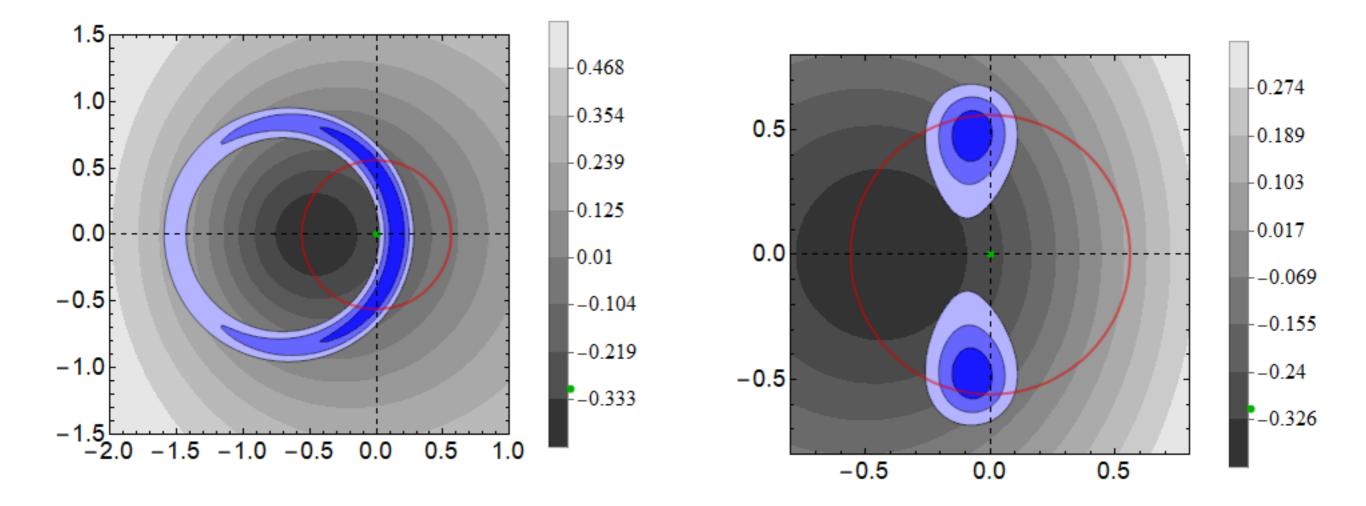
 R_2

Angular observables $\Lambda_b \to \Lambda_c \ell \bar{\nu}$

2209.13409

Three powerful observables:

 $\langle \mathcal{A}_{\lambda}^{ au}
angle$



 S_1

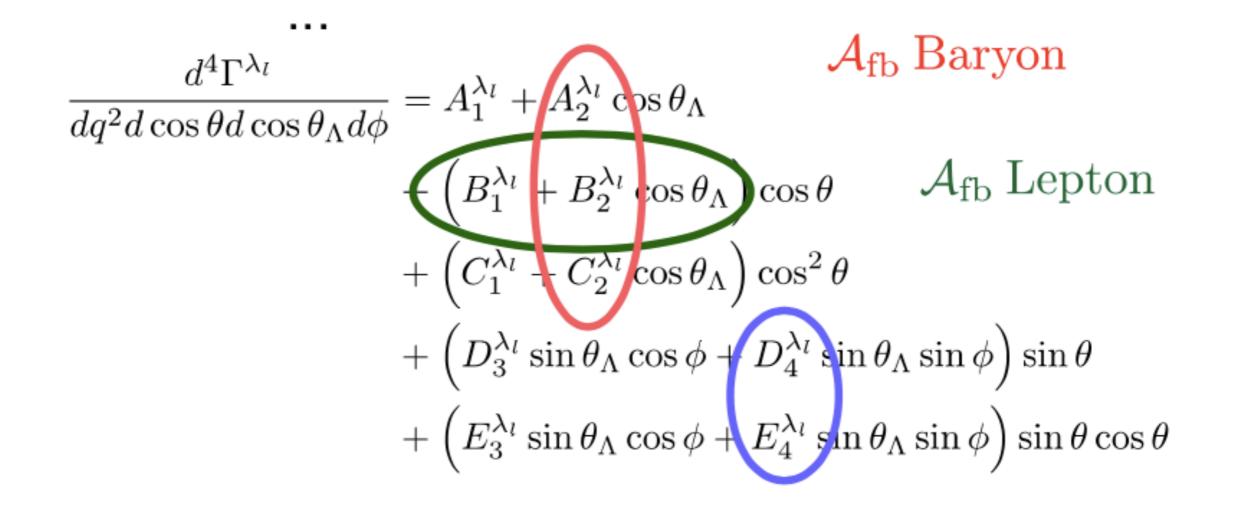
 R_2

 $\Lambda_b \longrightarrow \Lambda_c (\to \Lambda \pi) \ell \nu$

2209.13409

NB: $\mathcal{B}(\Lambda_c \to \Lambda \pi) = 1.30(7)\%$ or $\mathcal{B}(\Lambda_c \to pK_S) = 1.59(8)\%$

Many more angular observables and checking on $Im[g_x] \neq 0$



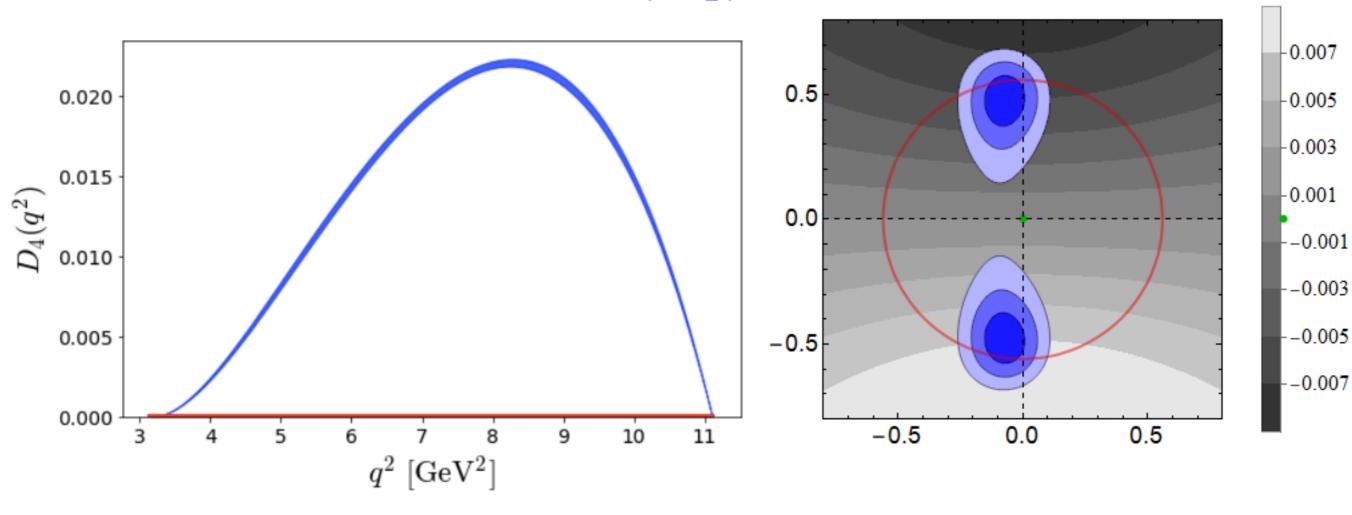
2209.13409

 $\Lambda_b \longrightarrow \Lambda_c (\to \Lambda \pi) \ell \nu$

NB: $\mathcal{B}(\Lambda_c \to \Lambda \pi) = 1.30(7)\%$ or $\mathcal{B}(\Lambda_c \to pK_S) = 1.59(8)\%$

Many more angular observables and checking on $Im[g_x] \neq 0$

 $\langle D_4^{\tau} \rangle$

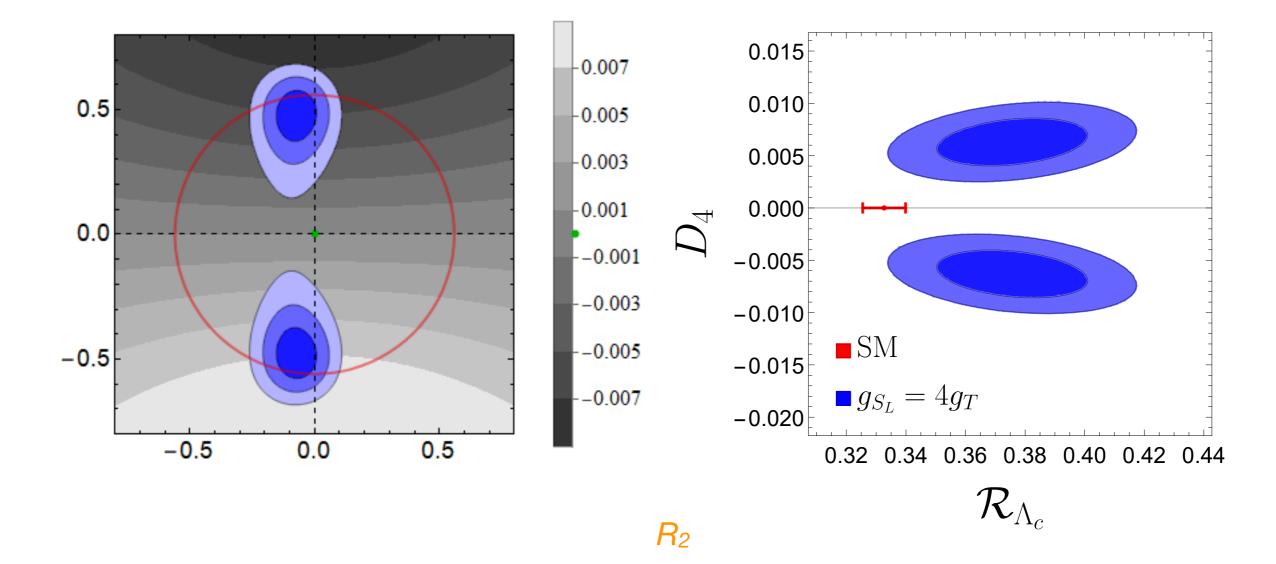


2209.13409

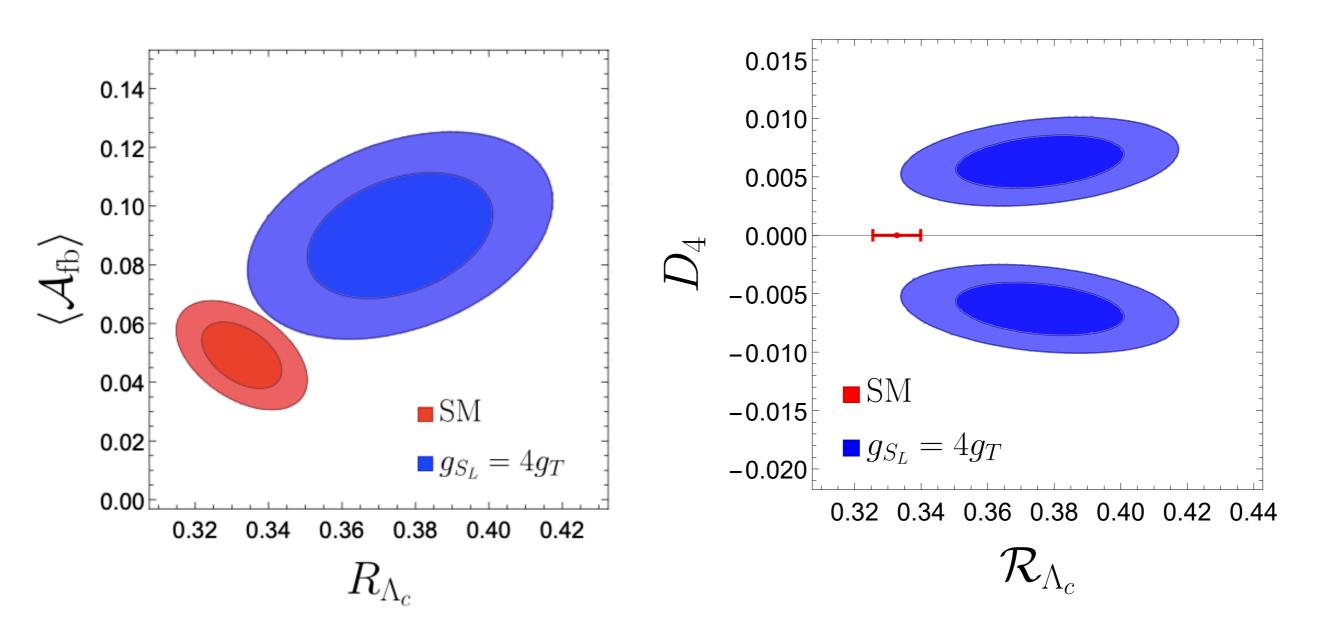
 $\Lambda_b \longrightarrow \Lambda_c (\to \Lambda \pi) \ell \nu$

Many more angular observables and checking on $\text{Im}[g_x] \neq 0$

 $\langle D_4^{\tau} \rangle$

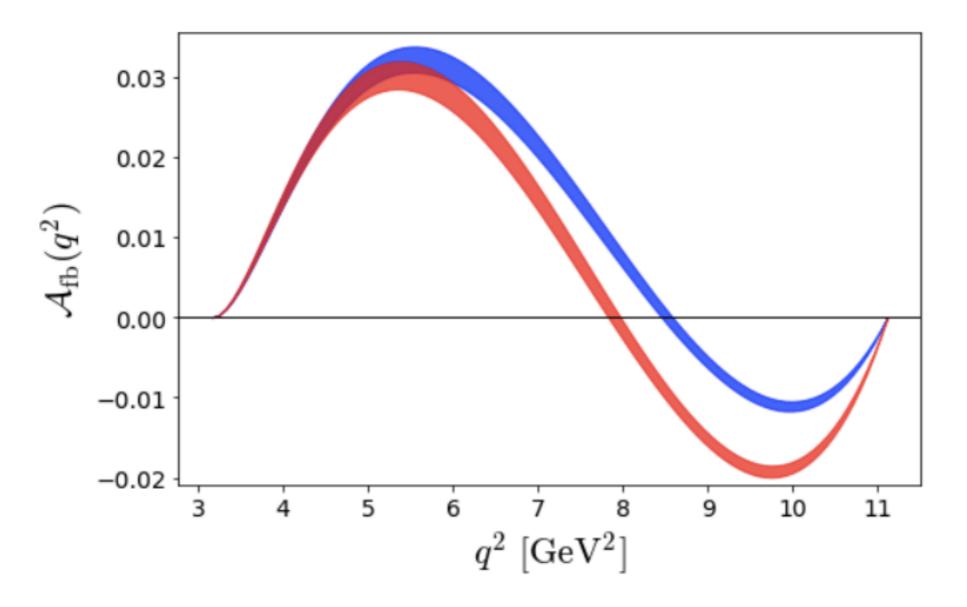


 $\Lambda_b \longrightarrow \Lambda_c (\to \Lambda \pi) \ell \nu$



 $\Lambda_b \longrightarrow \Lambda_c (\to \Lambda \pi) \ell \nu$

And there is also this...



- Hadronic uncertainties are with us and one should always keep in mind that nonperturbative QCD is <u>not</u> solved.
- Results from various models and SR suffer from systematics that is next-toimpossible to estimate.
- LQCD is the only good way to go but the situation is still unsatisfactory for a reliable fit with data to extract $|V_{cb}|$ and NP parameters.
- Exclusive V_{cb} should be checked on in several possible ways. [Sanity check and can be helpful for testing other ideas e.g. factorization.]
- R_D and R_{D^*} are too few observables to understand the source of LFUV. Too many NP solutions exist and could be filtered by angular $B \rightarrow D^{(*)} \tau v$ and

 $\Lambda_{\rm b} \rightarrow \Lambda_{\rm c} \ \tau \ v \text{ observables.}$

- All of the Λ_b→ Λ_c ℓν form factors are known from LQCD in SM and BSM.
 LHCb showed it is possible to measure B(Λ_b→ Λ_c τν). A partial angular is doable.
- There are 18 observables that can be extracted from Λ_b→ Λ_c (→ Λπ)τν.
 Even a small subset would be very helpful to discriminate among various scenarios.
- There are observables allowing to check whether or not there is a nonzero NP phase!