

The MUonE experiment

Giovanni Abbiendi (INFN Bologna)

NePSi 23, Pisa, 15-17 Feb 2023 https://agenda.infn.it/event/32931/

The MUonE project

(MUon ON Electron elastic scattering)

Three possible methods to determine a_{μ}^{HLO} (leading hadronic contribution to the muon anomalous magnetic moment):

- Pure theory (Lattice QCD)
- Data-driven, from R-ratio measurements (timelike)
- Data-driven in spacelike domain (MUonE)

The MUonE experiment aims at an independent and precise determination of the leading hadronic contribution to the muon anomalous magnetic moment $a_{\mu}=(g_{\mu}-2)/2$, based on an alternative method, complementary to the existing ones.

from M.Ce' talk at Mainz (2022)

Measurement of $\Delta \alpha_{had}(t)$ spacelike at LEP

OPAL measurement: Eur.Phys.J.C45(2006)1 Bhabha scattering at small angle, with $1.8 < -t < 6.1 \text{ GeV}^2$

about 10⁷ events, precision at the per mille level

 $e^+e^- \rightarrow e^+e^- \quad \sqrt{s} \approx 91.2 \,\text{GeV}$

OPAL

3

a_{μ}^{HLO} : the MUonE approach (space-like data)

B. E. Lautrup, A. Peterman and E. de Rafael, Phys. Rept. 3 (1972) 193

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{had}[t(x)]$$

C.M. Carloni Calame, M. Passera, L. Trentadue, G. Venanzoni, Phys.Lett.B746(2015)325 :

propose to determine $a_{\mu}{}^{\text{HLO}}$ from the measurement of the running of α in Bhabha scattering

15/Feb/2023

MUonE experiment idea

Eur. Phys. J. C (2017) 77:139 DOI 10.1140/epjc/s10052-017-4633-z THE EUROPEAN PHYSICAL JOURNAL C

Measuring the leading hadronic contribution to the muon g-2 via μe scattering

G. Abbiendi^{1,a}, C. M. Carloni Calame^{2,b}, U. Marconi^{3,c}, C. Matteuzzi^{4,d}, G. Montagna^{2,5,e}, O. Nicrosini^{2,f}, M. Passera^{6,g}, F. Piccinini^{2,h}, R. Tenchini^{7,i}, L. Trentadue^{8,4,j}, G. Venanzoni^{9,k}

Eur.Phys.J.C77(2017)139

Very precise measurement of the running of α_{QED} from the shape of the differential cross section of elastic scattering of $\mu(150-160\text{GeV})$ on atomic electrons of a fixed target with low Z (Be or C) \rightarrow CERN SPS

$$\frac{d\sigma}{dt} \approx \frac{d\sigma_0}{dt} \left| \frac{\alpha(t)}{\alpha(0)} \right|^2 \approx \frac{d\sigma_0}{dt} \left| \frac{1}{1 - \Delta\alpha(t)} \right|^2 \qquad \Delta\alpha(t) = \Delta\alpha_{lep}(t) + \Delta\alpha_{had}(t)$$
known from QED to be measured

From $\Delta \alpha_{had}(t)$ determine a_{μ}^{HLO} by the space-like approach: <u>Phys.Lett.B746(2015)325</u>

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{had}[t(x)]$$

MUonE experiment proposal

G.Abbiendi

Location @ CERN & M2 beam parameters

MUonE Letter-Of-Intent SPSC-I-252

Very small divergence ~0.2-0.3 mrad

Upstream of the COMPASS detector, after its Beam Momentum Station (BMS), on the M2 beam line : available ~ 40 m

Beam Momentum

Beam spot size $\sigma_x \sim \sigma_y \sim 3$ cm

μ-e Elastic scattering: pros

0

0

0.2

0.4

x

0.8

μ-e elastic scattering: challenges

Large statistics to reach the necessary sensitivity

Minimal distortions of the outgoing e/µ trajectories within the target material and small rate of radiative events

MUonE Detector LayoutLetter-Of-Intent SPSC-I-252

The detector concept is simple, the challenge is to keep the systematics at the same level as the statistical error.

- Modular structure of 40 independent and precise tracking stations, with split light targets equivalent to 60cm Be
- > ECAL and Muon filter after the last station, to help the ID and background rejection

- **>** Boosted kinematics: θ_e <32mrad (for E_e >1 GeV), θ_u <5mrad:
 - the whole acceptance can be covered with a 10x10cm² silicon sensor
 - at 1m distance from the target, reducing many systematic errors

Detector choice: CMS-upgrade Outer Tracker 2S

MUonE Letter-Of-Intent SPSC-I-252

Details: see CMS Tracker Upgrade TDR

Two close-by planes of strips reading the same coordinate, providing track elements (**stubs**)

suppression of background from single-layer hits or large-angle tracks

Large active area 10x10 cm²

-> complete/uniform angular coverage with a single sensor

Position resolution ~20μm

-> improvable to $\sim 10 \mu m$ with a 15°-20° tilt around the strip axis and/or with effective staggering of the planes (with a microrotation)

MAIN Difference w.r.t. LHC operation: signal is asynchronous while sampling has fixed clock at 40MHz -> can be overcome with a specific configuration of the FE

MUonE tracking station

Length 1m Transverse size 10cm

Relative positions of modules must be stable within $10\mu m$

Low CTE support structure: INVAR (alloy of 65%Fe, 35%Ni)

Cooling system, tracker enclosure, Room temperature stabilized within 1-2 °C

Laser holographic system to monitor the stability

Support structure and 2S module on its frame

The support structure in INVAR

Tracker beam test setup

- Joint tests with CMS-Tracker in 2021-2022
- In 2022 the MUonE setup was placed on rails to allow easy movements in and out the M2 beam

Readout & DAQ

- Station is read out optically (lpGBT)
 - ~60m optical fibre from detector to barracks
 - Serenity implements IpGBT serial link and FE decoding, stub data processing at 40MHz and optionally event filtering
 - Packaged events transmitted over 10GbE links to servers
- Servers receive 10GbE data
 - Ryzen 9 5900X server PCs
 - 128GB RAM, 1TB NVMe SSD, 40TB RAID
 - Buffering, packaging, DQM, ship to EOS
- 10/100GbE switch
 - Direct 100GbE connection to B513/EOS
- FC7s for aux functions

10/100GbE switch

to EOS

Serenity

Server PCs

Online DQM

- Data stored on EOS for current data-taking run is sampled
 - Plots displayed on webUI
- Performed more complex calculations on data:
 - Synchronisation between modules
 - System alignment
 - Beam spot
 - Stub efficiency
- Many previous analyses have now become part of the DQM!

ECAL

- 5x5 PbWO₄ crystals:
 - area: 2.85×2.85 cm², length: 22cm (~25 X₀).
- Total area: ~14×14 cm².
- Readout: APD sensors.

Beam Test: 20-27 July 2022, CERN East Area.

- Electrons in range 1-4 GeV.
- Overall debug of detector, DAQ.
- Absolute energy calibration, energy resolution.
- Calorimeter being installed downstream of the tracking station at the M2 beam line.

Test with a full station and a calorimeter (October '22)

- A fully equipped tracking station and the calorimeter
- One week of test in M2 as main users performed the last October
- High intensity, asynchronous muon beam (160 GeV), up to 2×10⁸ muon/spill, for the first time
 - or low intensity 40 GeV electrons
- Tracker system always on, DAQ reliable throughout
- Some 100TB of stub data collected

GEANT4 simulations

Effect of the position resolution on θ_{μ} vs θ_{e} distribution:

(Left) TB2017: UA9 resolution 7µm ; (Right) TB2018: resolution ~35-40µm

Signal: elastic µe Background: $\mu N \rightarrow \mu Ne^+e^-$ pair production

Probing systematics in the normalisation region

The intrinsic angular resolution can be probed by looking at the θ_e distribution after a cut on θ_μ distribution, e.g. cutting at $\theta_\mu > 0.4$ mrad

→ Effect of a ±10% error w.r.t. the nominal σ_{θ} = **0.020 mrad** Huge distortion of 20-30% around electron angles of 20 mrad **No effect in the signal region**

Systematics: Multiple Coulomb Scattering

Multiple scattering previously studied in a Beam Test in 2017: <u>JINST 15 (2020) P01017</u> with 12–20 GeV electrons on 8-20 mm C targets

$\Delta \alpha_{had}$ parameterisation

Physics-inspired from the calculable contribution of lepton-pairs and top quarks at t<0

$$\begin{cases} \mathbf{q}^{2} = \mathbf{t} < \mathbf{0} \quad \Delta \alpha_{had}(t) = k \left\{ -\frac{5}{9} - \frac{4M}{3t} + \left(\frac{4M^{2}}{3t^{2}} + \frac{M}{3t} - \frac{1}{6} \right) \frac{2}{\sqrt{1 - \frac{4M}{t}}} \log \left| \frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}} \right| \right\} \end{cases}$$

M with dimension of mass squared, related to the mass of the fermion in the vacuum polarization loop k depending on the coupling $\alpha(0)$, the electric charge and the colour charge of the fermion

Low-|t| behavior dominant in the MUonE kinematical range:

$$\Delta \alpha_{had}(t) = -\frac{1}{15} \frac{k}{M} t$$

for $t \rightarrow -0$
$$\Delta \alpha_{had}(t) = \frac{k}{3} \left(\log \frac{|t|}{M} - \frac{5}{3} \right)$$

for $t \rightarrow -\infty$

G.Abbiendi

Template fit

Full description in: <u>Phys. Scripta 97 (2022) 054007</u> [arXiv:2201.13177]

Define a grid of points (K,M) in the parameter space covering a region of $\pm 5\sigma$ around the expected values (with σ the expected uncertainty). Step size taken to be 0.5 σ . This defines 21x21 = 441 templates for the relevant distributions.

For every template in the grid calculate the χ^2 obtained with the pseudodata distribution:

$$\chi^{2}(K,M) = \sum_{i}^{bins} \frac{R_{i}^{data} - R_{i}^{(K,M)}}{\sigma_{i}^{data}}$$

- Neglect the statistical errors of the templates as in the ratios they are vanishingly small.

Minimise the χ^2 interpolating across the grid by parabolic approximation. Final errors correspond to $\Delta \chi^2 = 1$.

Hadronic running of $\boldsymbol{\alpha}$

Most easily displayed by taking ratios of the MC predicted angular distributions (pseudodata) and the predictions obtained from the same MC sample reweighting $\alpha(t)$ to correspond to only the leptonic running:

 $R_{had}(\theta) = \frac{d\sigma(\theta, \Delta \alpha_{had})}{d\sigma(\theta, \Delta \alpha_{had}=0)}$

Observable effect ~ 10⁻³ wanted precision ~10⁻²

 \rightarrow required precision ~10⁻⁵

Example toy experiment: the expected distributions are obtained from the nominal integrated luminosity, corresponding to 3-year run

Closure test ok:

expected from the used input parameterization (Jegerlehner's) $a_{\mu}^{HLO} = 688.6 \times 10^{-10}$ \rightarrow Negligible error from the fit method: 0.2 x 10⁻¹⁰

Expected sensitivity of a First Physics Run

Expected integrated Luminosity with the Test Run setup:

assuming full beam intensity and full detector efficiency ~1pb⁻¹/day,

in one week ~5pb⁻¹ \rightarrow ~10⁹ µe scattering events with E_e > 1 GeV (θ_e < 30 mrad)

Template fit with just one fit parameter K= k/M in the $\Delta \alpha_{had}$ parameterization. The other parameter fixed at its expected value: M = 0.0525 GeV²

Initial sensitivity to the hadronic running of α .

Pure statistical level: 5.2σ 2D (θ_{μ} , θ_{e}) K=0.136 ± 0.026

Definitely we will have sensitivity to the leptonic running (ten times larger)

Systematics: Beam Energy scale

Time dependency of the beam energy profile has to be continuously monitored during the run:

- SPS monitor - COMPASS BMS - needed external infos

Effect of a syst shift of the average beam energy on the θ_{μ} distribution: 1h run / 1 station

Simultaneous fit of signal and nuisances

Full description in Riccardo Pilato's PhD thesis

- Template fit using CMS Combine tool
 - Likelihood fit with systematics included as nuisance parameters, simultaneously extracted along with the signal parameters <u>https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/</u>
- Currently including 4 nuisance parameters, related to:
 - Normalisation (uncertainty in the integrated luminosity)
 - Average beam energy
 - Intrinsic angular resolution
 - Multiple Coulomb Scattering (core width)
- Recent improvement: two-step workflow suited to the Test Run luminosity
 - 1. fit the main systematic effects (nuisance parameters) in the normalisation region (where signal is ~0). Use a short run of ~1h time station-by-station (~35/nb) assuming SM for the hadronic running.
 - fit signal + nuisance parameters using as starting values and prior uncertainties for the nuisances the values determined in (1). Use the full Test Run statistics (~5/pb).

Example Fit results

From Riccardo Pilato's PhD thesis Pseudodata with statistics equivalent to the Test Run (5/pb). Input Signal parameter: K=0.136. Normalisation nuisance v=0. Distorted by the following 3 simultaneous shape systematics:

		Nominal	Shift		
		configuration	in the pseudo-data	-2A -00/	Fit without
Beam ene	ergy scale	$E_{\underline{beam}} = (150 \pm 1) \text{ GeV}$	+ 6 MeV	600	systematics
Multiple scattering		$\sqrt{x/X_0} = 0.1458 \pm 1\%$	+ 0.5%	500	
Angular intri	nsic resolution	$\sigma_{Intr} = 0.02 \mathrm{mrad} \pm 10\%$	6 + 5%	500-	\sim
Results:				400	
Selection cuts	F	`it results		300	\sim
$\theta_e \leq 32 \mathrm{mrad}$ $\theta_e \geq 0.2 \mathrm{mrad}$	$K = 0.133 \pm 0.028$	$\mu_{\rm MS} = (0.47 \pm 0.03)\%$ $\mu_{Intr} = (5.02 \pm 0.02)\%$ $\mu_{\rm T} = -(6.5 \pm 0.5) \text{ MeV}$		200	
$b_{\mu} \geq 0.2 \mathrm{mrad}$		$\mu_{E_{Beam}} = (0.0 \pm 0.0) \text{ MeV}$ $\nu = -0.001 \pm 0.003$		100	
$\theta_e \le 20 \mathrm{mrad}$ $\theta_\mu \ge 0.4 \mathrm{mrad}$	$K = 0.133 \pm 0.033$	$\mu_{\rm MS} = (0.46 \pm 0.04)\%$ $\mu_{Intr} = (5.02 \pm 0.03)\%$ $\mu_{E_{Beam}} = (6.5 \pm 0.6) \text{ MeV}$ $\nu = -0.008 \pm 0.007$		0 	D.1 0 0.1 0.2 0.3
$\theta_e \leq 32$ mrad $\theta_\mu \geq 0.4$ mrad	$K = 0.133 \pm 0.033$	$\mu_{\rm MS} = (0.46 \pm 0.04)\%$ $\mu_{Intr} = (5.03 \pm 0.03)\%$ $\mu_{E_{Beam}} = (6.5 \pm 0.6) \text{ MeV}$ $\nu = -0.009 \pm 0.007$	Fit Results are in	니 70 - 57 - 60	Fit including the nuisance
$\theta_e \le 20 \mathrm{mrad}$ $\theta_\mu \ge 0.2 \mathrm{mrad}$	$K = 0.133 \pm 0.031$	$\mu_{\rm MS} = (0.47 \pm 0.03)\%$ $\mu_{Intr} = (5.02 \pm 0.03)\%$ $\mu_{E_{Beam}} = (6.5 \pm 0.5) \text{ MeV}$ $\nu = -0.001 \pm 0.006$	excellent agreement with the input values	50 40	parameters
$\theta_{L,R} \in [0.2, 32] \text{ mrad}$	$K = 0.132 \pm 0.029$	$\mu_{MS} = (0.45 \pm 0.02)\%$ $\mu_{Intr} = (5.04 \pm 0.02)\%$ $\mu_{E_{Beam}} = (6.9 \pm 0.5) \text{ MeV}$ $\nu = -0.001 \pm 0.003$	for all the selections, both with and without particle identification	30 t 20	
$\theta_{L,R} \in [0.4, 20]$ mrad	$K = 0.133 \pm 0.034$	$\mu_{\rm MS} = (0.43 \pm 0.03)\%$ $\mu_{Intr} = (5.05 \pm 0.03)\%$ $\mu_{E_{Beam}} = (6.8 \pm 0.6) \text{ MeV}$ $\nu = -0.008 \pm 0.007$		10 0 	0.1 0 0.1 0.2 0.3

0.3

0.4 K

0.4 K

0.3

Conclusions & Plans

- **MUonE** experiment proposal: measuring the running of α_{QED} from the shape of the differential cross section for elastic scattering of $\mu(160 \text{GeV})$ on atomic electrons at the CERN SPS
 - Getting $a_{\mu}{}^{\text{HLO}}$ with a novel method integrating over the space-like region
 - Independent and complementary to the standard method integrating over the time-like region and to lattice QCD calculations
 - Competitive precision ~0.35-0.5% on a_{μ}^{HLO} allowing to better constrain the theory prediction, will help to solve the muon g-2 puzzle
- Impressive progress on the needed theoretical calculations and tools
 - (see talks by E.Budassi and C.L.Del Pio)
- Successful beam tests in 2021-22 with one tracking station
 - Stable operation under very high intensity
 - Good quality data collected (analysis ongoing)
- Test Run 2023: prove the feasibility of the method
 - 2 or 3 tracking stations (minimum: one before / one after the target)
 - Integration of the ECAL readout with the full DAQ
 - Implementation of online (in-FPGA) event selection
 - Simple track and vertex reconstruction
 - Selection of two-track events
 - Study backgrounds
 - Study the alignment in test beams
 - Study the beam energy calibration and validate our method
- Write the experimental proposal
- Move to the experiment with 10 stations to get a first measurement before LS3

More infos: papers, conferences, theses see: <u>https://web.infn.it/MUonE/</u>

BACKUP

Muon g-2 Theory prediction

QED LO term (Schwinger) = $\alpha/2\pi \sim 0.00116$ QED corrections known up to 5 loops, uncertainty related to missing 6 loops! Hadronic contributions -not calculable by pQCD-

Dominant Theoretical uncertainty LO Hadronic Vacuum Polarization Relative uncertainty: 0.6%

a_μ^{HVP,LO}: standard data-driven approach (time-like)

Dispersion relations, optical theorem:

$$\int_{\mu} \frac{1}{\gamma} \int_{had} \frac{1}{\gamma} \int_{\mu} a_{\mu}^{HVP,LO} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} \frac{\widehat{K}(s)R(s)}{s^2} ds$$

 $R(s) = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)} \quad \widehat{K} \text{ smooth}$

Traditionally the integral is calculated by using the experimental measurements up to an energy cutoff, beyond which perturbative QCD can be applied.

Main contribution: low-energy region (1/s² enhancement), highly fluctuating due to hadron resonances and thresholds effects

Radiative corrections to R(s) crucial

F.Jegerlehner, EPJ Web Conf. 1c18 (2016) 01016

Radiative events and elastic selection

G.Abbiendi

GEANT4: μ interaction cross sections

Differential macroscopic cross section: carbon

GEANT4 simulation

 ϵ Muon Energy loss fraction σ Macroscopic cross section

 $\boldsymbol{\sigma} = \boldsymbol{\sigma}_A \; \boldsymbol{n}_A / \boldsymbol{\rho}_A$

 σ_A Atomic cross section n_A density of atoms per unit volume

 ρ_A material density in g/cm³

Simulation: Intrinsic Resolution – Tilted geometry

Strip digital readout: with 90 μ m pitch the expected resolution is 90/sqrt(12) \cong 26 μ m on a single sensor layer for single-strip clusters

Tilting a sensor around an axis parallel to the strips \rightarrow Charge sharing between adjacent strips, improving the resolution

The best is obtained when <cluster width>~1.5 (same number of clusters made of 1 or 2 strips) for a tilt angle ~15 degrees

Further improvement: a small tilt of 25mrad is equivalent to an half-strip staggering of the two sensor layers of a 25 module

Final resolution: 22 μ m \rightarrow 8-11 μ m

measured coordinate (x) determined by hit position on one layer and direction of the track stub

Tilt angle [mrad]	<bend $>$ [strips]	threshold $[\sigma]$	resolution $[\mu m]$	<cluster width $>$ [strips]
210	4.25	5	7.8	1.51
221	4.5	5.5	11.5	1.51
233	4.75	6	8.0	1.50
245	5	6.5	11.2	1.51
257	5.25	7	8.7	1.50
268	5.5	7.5	11.0	1.49

FastSim analysis strategy

- NLO MESMER MC
- $\Delta \alpha_{had}(t)$ from F.Jegerlehner's code(hadr5n12.f) $\rightarrow a_{\mu}^{HLO} = 688.6 \times 10^{-10}$
- Detector resolution effects parametrized in a simplified way (including only: multiple scattering on 1.5cm Be target and intrinsic resolution σ_{θ} =0.02 mrad)
 - Neglecting: scattering on the Si planes, non-Gaussian tails, residual backgrounds
 - Neglecting: detailed track simulation and reconstruction
- Fit is done directly on the angular distributions of scattered μ and e
 - No attempt to estimate t (or x) event by event
 - $\theta_e < 32 \text{ mrad}$ (geometric acceptance)
 - $\theta_{\mu} > 0.2 \text{ mrad}$ (remove most of the background)
 - Both 1D and 2D distributions fitted. 2D is the most robust.
 - Ideally there is no need to identify the outgoing muon and electron, provided the event is a signal one. In this case we simply label the two angles as θ_L , θ_R ("Left" and "Right" w.r.t. an arbitrary axis)
- Shape-only fit: the absolute normalization shall not count.

Template Fit technique

- MC templates for any useful distribution are built by reweighting the events to correspond to a given functional form of $\Delta \alpha_{had}(t)$
- $\Delta \alpha_{had}(t)$ is conveniently parameterised with the "Lepton-Like" form, one-loop QED calculation.

The 2->3 matrix element for one-photon emission at NLO can be split in 3 parts (radiation from mu or e leg and their interference), each one with a different running coupling factor \rightarrow 3 coefficients

NOTE: at NNLO one needs 11 coefficients

By saving the relevant coefficients at generation time we can easily reweight the events according to the chosen parameters in the $\Delta\alpha_{had}(t)$

Determination of $a_{\mu}^{\ \ \text{HLO}}$ by the Master Integral

• From the fitted (K,M) values the hadronic contribution to $\Delta \alpha_{had}(t)$ is determined from the Lepton-Like parameterisation:

$$\Delta \alpha_{had}(t) = k \left\{ -\frac{5}{9} - \frac{4M}{3t} + \left(\frac{4M^2}{3t^2} + \frac{M}{3t} - \frac{1}{6}\right) \frac{2}{\sqrt{1 - \frac{4M}{t}}} \log \left| \frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}} \right| \right\}$$

• Then, by using the master integral, we have the result in the full phase space:

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{had}[t(x)]$$

- The result for the nominal luminosity is $a_{\mu}^{HLO} = (688.8 \pm 2.4) \times 10^{-10}$
 - statistical uncertainty of 0.35%
- The expectation from the used Jegerlehner's parameterization is: $a_{\mu}^{HLO} = 688.6 \times 10^{-10}$
 - difference from our fit is 0.2 x 10⁻¹⁰, negligible w.r.t. the statistical uncertainty