Connected HVP contribution to the muon's g-2 from lattice QCD (+QED)

Paola Tavella

15.02.2023

ETH zürich

RC^{*} collaboration : Anian Altherr, Lucius Bushnaq, Isabel Campos-Plasencia, Marco Catillo, Alessandro Cotellucci, Madeleine Dale, Alessandro De Sanctis, Patrick Fritzsch, Roman Gruber, Tim Harris, Javad Komijani, Jens Luecke, Marina Marinkovic, Sofie Martins, Letizia Parato, Agostino Patella, Joao Pinto Barros, Sara Rosso, Nazario Tantalo & Paola Tavella

Paola Tavella

Outline

- 2 C^{*} boundary conditions
- **3** Connected HVP from QCD and QCD+QED with C^{*}
- 4 Conclusions & outlook

Motivation

[L. Lellouch,g-2 Workshop '22]

- HVP is the main contribution to the SM prediction's uncertainty
- great efforts in the lattice community to reduce the error

To reach the subpercent precision for the HVP on lattice \implies isospin breaking corrections $\sim O(\alpha) \sim O(\frac{m_d - m_u}{\Lambda_{OCD}}) \sim O(10^{-2})$

To address the problem of the QED effects:

- non-local constraints to remove the zero-modes of the photon [Hayakawa & Uno, 0804.2044] e.g QED_L, where $\sum_{\vec{x}} A_{\mu}(x_0, \vec{x}) = 0$
- massive photon (QED_M) [Endres et al., 1507.08916]
- QED_{∞} [Blum et al., 1705.01067; Feng & Jin, 1812.09817]
- C^{*} boundary conditions \rightarrow local and gauge-invariant prescription [Kronfeld & Wiese, 1991, 1992; Polley, 1993; Lucini et al., 1509.01636]

Outline

⁽³⁾ Connected HVP from QCD and QCD+QED with C^{*}

4 Conclusions & outlook

\mathbf{C}^{\star} boundary conditions

Idea: include the charge conjugate of the fields in the simulations

- physical $(0 < x_1 < L_1)$ and mirror lattice $(L_1 < x_1 < 2L_1)$
- C^{*} boundary conditions in the spatial directions
- periodic conditions on the extended lattice e.g $\psi(x + 2L_i\hat{i}) = \psi(x)$

C^* boundary conditions¹

• $\psi(x)$ defined on the whole lattice

•
$$\overline{\psi}(x)$$
 given by $-\psi^T(x+L_1\hat{1})C$

- T: translation operator by L_i
- C: charge conjugation operator

¹ For details see 1509.01636, 1908.11673

$$[+] A_{\mu}(x) = -A_{\mu}(x + L_i\hat{i}) \implies p_i \neq 0$$

[+] charged particles propagation is allowed

[+] suppressed finite-volume effects for QED

[-] double volume

[-] flavour mixing (exponentially suppressed with the volume)

[-] charge conservation partially violated (exponentially suppressed with the volume)

Ensembles generated through the openQ*D code ² https://gitlab.com/rcstar/openQxD

ensemble	V	flavor	α	$a [\mathrm{fm}]^3$	$m_{\pi^{\pm}}[MeV]$
A400a00b324	64×32^3	3 + 1	0	0.05393(24)	398.5(4.7)
B400a00b324	$80 imes 48^3$	3 + 1	0	0.05400(14)	401.9(1.4)
A450a07b324	64×32^3	1 + 2 + 1	0.007299	0.05469(32)	451.2(4.3)
A380a07b324	64×32^3	1 + 2 + 1	0.007299	0.05323(28)	383.6(4.4)
A500a50b324	64×32^3	1 + 2 + 1	0.05	0.05257(14)	495.0(2.8)
A360a50b324	64×32^3	1 + 2 + 1	0.05	0.05054(27)	358.6(3.7)
C380a50b324	96×48^3	1 + 2 + 1	0.05	0.050625(79)	386.5(2.4)

- Lüscher-Weisz SU(3) gauge action ($\beta = 3.24$)
- Wilson action for compact U(1) field
- four flavours of O(a)-improved Wilson fermions

 $^{{}^2}_{_}$ For details see Lucke et al., 2108.11989; Bushnaq et al., 2209.13183

 $^{^{3}}a$ is determined using the $N_{f} = 2 + 1$ value of $\sqrt{8t_{0}} = 0.415$ fm from Bruno et al., 1608.08900

Ensembles generated through the openQ*D code ² https://gitlab.com/rcstar/openQxD

ensemble	V	flavor	α	$a[\text{fm}]^3$	$m_{\pi^{\pm}}[MeV]$
A400a00b324	64×32^3	3 + 1	0	0.05393(24)	398.5(4.7)
B400a00b324	$80 imes 48^3$	3 + 1	0	0.05400(14)	401.9(1.4)
A450a07b324	64×32^3	1 + 2 + 1	0.007299	0.05469(32)	451.2(4.3)
A380a07b324	64×32^3	1 + 2 + 1	0.007299	0.05323(28)	383.6(4.4)
A500a50b324	64×32^3	1 + 2 + 1	0.05	0.05257(14)	495.0(2.8)
A360a50b324	64×32^3	1 + 2 + 1	0.05	0.05054(27)	358.6(3.7)
C380a50b324	96×48^3	1 + 2 + 1	0.05	0.050625(79)	386.5(2.4)

- Lüscher-Weisz SU(3) gauge action ($\beta = 3.24$)
- Wilson action for compact U(1) field
- four flavours of O(a)-improved Wilson fermions

²For details see Lucke et al., 2108.11989; Bushnaq et al., 2209.13183

 $^{^{3}}a$ is determined using the $N_{f} = 2 + 1$ value of $\sqrt{8t_{0}} = 0.415$ fm from Bruno et al., 1608.08900

Outline

2 C^{*} boundary conditions

⁽³⁾ Connected HVP from QCD and QCD+QED with C^*

4 Conclusions & outlook

Strategy for the calculation

• Time-momentum representation

$$G(t) = -\frac{1}{3} \sum_{k=1,2,3} \sum_{\vec{x}} \langle V_k(x) V_k(0) \rangle$$
$$a_{\mu}^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \sum_t G(t) \tilde{K}(t; m_{\mu})$$

• two discretizations for the vector current

• extrapolation of the signal at large t (single-exponential for now)

Hadronic Vacuum Polarization

By considering the different Wick contractions:

$$\langle V_k^l(x)V_k^l(0) \rangle = \sum_{f,f'} q_f q_{f'} \operatorname{tr} \left[\gamma_k D_f^{-1}(x|x) \right] \cdot \operatorname{tr} \left[\gamma_k D_{f'}^{-1}(0|0) - \sum_f q_f^2 \operatorname{tr} \left[\gamma_k D_f^{-1}(x|0) \gamma_k D_f^{-1}(0|x) \right] \right]$$

connected

- $D_f^{-1}(x|y)$ quark propagator from y to x
- γ_k Dirac matrices (k = 1, 2, 3)

QCD configurations \rightarrow leading HVP (w/o IBE effects) QCD+QED configurations \rightarrow full HVP

Ensemble	V	β	$\kappa_{u,d,s}$	κ_c	$c_{\rm sw,SU(3)}$
A400a00b324	64×32^3	3.24	0.1344073	0.12784	2.18859
B400a00b324	80×48^3	3.24	0.1344073	0.12784	2.18859

• study of the signal-to-noise ratio for different discretizations of the correlator: $G^{ll}(t)$, $G^{cl}(t)$, $G^{cc}(t)$

Ensemble	V	β	$\kappa_{u,d,s}$	κ_c	$C_{\rm sw,SU(3)}$
A400a00b324	64×32^{3}	3.24	0.1344073	0.12784	2.18859
B400a00b324	80×48^3	3.24	0.1344073	0.12784	2.18859

• V^l_{μ} requires a renormalization constant and O(a)-improvement

 $V^R_{\mu,f} = Z^{m_f}_V (V^l_{\mu,f} + ac_V \partial_
u T_{\mu
u,f})$ [Bhattacharya et al., 0511014]

QCD with C^* b.c.

• comparison of the results for lattice volumes 64×32^3 and 80×48^3

ensemble	type	am_V^s	$a^{s}_{\mu} \times 10^{-10}$	am_V^c	$a^{c}_{\mu} \times 10^{-10}$
A400a00b324	ll	0.2808(22)	46.7(7)	0.8463(5)	7.83(8)
	cl	0.2796(29)	46.2(7)	0.8462(5)	6.18(7)
B400a00b324	ll	0.2794(19)	48.5(7)	0.8458(9)	7.81(9)
	cl	0.2791(20)	48.0(7)	0.8454(8)	6.16(7)

Simulation details:

ensemble	V	β	α	κ_u	$\kappa_{d,s}$	κ_c	$c_{SW}^{SU(3)}$	$c_{SW}^{U(1)}$
A380a07b324	64×32^3	3.24	0.007299	0.13459164	0.13444333	0.12806355	2.18859	1
A360a50b324	64×32^3	3.24	0.05	0.135560	0.134617	0.129583	2.18859	1

• Wilson action with compact U(1) field

$$S_{g,U(1)} = \frac{1}{8\pi q_{el}^2 \alpha} \sum_{x} \sum_{\mu \neq \nu} [1 - P_{\mu\nu}^{\mathrm{U}(1)}(x)]$$

 q_{el} elementary charge, $P^{\mathrm{U}(1)}_{\mu\nu}$ plaquette

- $c_{SW}^{SU(3)}$ correct up to $O(\alpha)$ terms, tree level improvement for U(1)
- $N_f = 1 + 2 + 1 \rightarrow \text{non-physical degenerate } d \text{ and } s \text{ quarks}$

Evaluation of the connected HVP:

- signal-to-noise ratio of $G^{ll}(t), G^{cl}(t), G^{cc}(t)$ similar to the QCD case \rightarrow we evaluate $G^{cl}(t)$
- the conserved current requires renormalization (not included yet) $V^{\rm R}_{\mu}(x) = V^{\rm c}_{\mu}(x) + \mathcal{O}\left(\partial_{\nu}F^{\nu\mu}\right)$ [Collins et al., 0512187]
- isospin breaking effects automatically included

QCD+QED with C^{\star} b.c.

α_R	flavor	$a_{\mu}^{\text{HVP}} \times 10^{10}$
0.007081(19)	up	309(11)
	down/strange	77(2)
	charm	10.62(11)
0.040633(80)	up	331(7)
	down/strange	83(2)
	charm	9.78(10)
	$\frac{\alpha_R}{0.007081(19)}$ 0.040633(80)	$\begin{array}{ccc} \alpha_R & {\rm flavor} \\ \hline 0.007081(19) & {\rm up} \\ {\rm down/strange} \\ {\rm charm} \\ \hline 0.040633(80) & {\rm up} \\ {\rm down/strange} \\ {\rm charm} \end{array}$

Figure: Integrand of the connected HVP contribution for the A380a07b324 ensemble

Outline

2 C^{*} boundary conditions

[3] Connected HVP from QCD and QCD+QED with C^{*}

4 Conclusions & outlook

Conclusions & Outlook

- We computed the connected HVP on two QCD and two QCD+QED ensembles with C^{*} b.c.
- Signal-to-noise ratio good for QCD and at the physical α_{EM}
- The results are not extrapolated: $a \sim 0.05, 360 < m_{\pi} < 400 \text{ MeV}$
- On-going:
 - ► Variance reduction: low mode averaging [De Grand & Schaefer, 0401011]
 - Disconnected contributions
 - Isospin breaking effects in QCD through a perturbative expansion (RM123) [De Divitiis et al., 1303.4896]
- Long-term:
 - Chiral extrapolation
 - Continuum extrapolation

Backup slides

Line of constant physics

• renormalization scheme ⁴: $(8t_0)^{1/2}$, $\alpha_R(t_0)$, ϕ_0 , ϕ_1 , ϕ_2 , ϕ_3

$$\begin{split} \phi_0 &= 8t_0(m_{K^{\pm}}^2 - m_{\pi^{\pm}}^2) &\to 0 \quad (\text{fixes } m_s - m_d) \\ \phi_1 &= 8t_0(m_{K^{\pm}}^2 + m_{\pi^{\pm}}^2 + m_{K^0}^2) \to \phi_1^{\text{phys}} \; (\text{fixes } m_s + m_d + m_u) \\ \phi_2 &= 8t_0(m_{K^0}^2 - m_{K^{\pm}}^2)/\alpha_R \to \phi_2^{\text{phys}} \; (\text{fixes } \delta m_{strong}/\delta_{EM}) \\ \phi_3 &= \sqrt{8t_0}(m_{D_S^{\pm}}^2 + m_{D^{\pm}}^2 + m_{D^0}^2) \to \phi_3^{\text{phys}} \; (\text{fixes } m_c) \end{split}$$

we used the CLS $N_f = 2 + 1$ value of $\sqrt{8t_0} = 0.415$ fm [Bruno et al., 1608.08900

Paola Tavella

15.02.2023

C^{\star} b.c.

- C^{*} boundaries in $\hat{i} \implies p_i = \frac{\pi}{L}(2\mathbb{Z}+1)$ for A_{μ}
- the vector current is a C-odd operator
- zero-momentum projection is not possible
- the spatial integration domain in TMR should be set to

$$\left(-\frac{V}{2},\frac{V}{2}\right)^3$$

Sofie Martins(Lattice22)]

QCD with C^* b.c.

• tuning of $\kappa_{s,c}^{\rm val}$: change the valence hopping parameters such that $m_V^{s\bar{s}}, m_V^{c\bar{c}}$ match

$$m_{\phi}^{phys} = 1019.461(20) \text{MeV}$$
 $m_{J/\psi}^{phys} = 3096.900(6) \text{MeV}$

7.44048

7.45156

 κ_s^{-1}

7.46269

7.82228

 κ_c^{-1}

7.81616

QCD+QED with C^* b.c.

• comparison of the relative error for three values of α

