Window contributions to the Muon HVP from twisted mass lattice QCD

Francesco Sanfilippo

INFN Roma Tre

15-17th February 2023

Istituto Nazionale di Fisica Nucleare

Introduction on a_{μ}

Definition of a_{μ}

Magnetic moment of the muon: $\mu_{\mu}=-g_{\mu} \frac{e}{2 m_{\mu}} S$

$$
a_{\mu} \equiv \frac{g_{\mu}-2}{2}=a_{\mu}^{Q E D}+a_{\mu}^{w e a k}+\boldsymbol{a}_{\mu}^{H V P}+a_{\mu}^{L B L}
$$

$a_{\mu}^{H V P} \rightarrow$ non-perturbative hadronic contribution

R-Ratio determination of $a_{\mu}^{\text {had }}$

Historically "computed" via dispersive relation:

$$
a_{\mu}^{H V P}=\frac{\alpha_{e m}^{2}}{3 \pi^{2}} \int_{M_{\pi}^{2}}^{\infty} d E^{2} \frac{K(E)}{E^{2}} R(E)
$$

from $R(E)$, the measured cross section:

$$
e^{+} e^{-} \rightarrow h a d r
$$

QCD determination: time momentum representation

Polarization-function based approach

From a pure theoretical point of view, a_{μ} can be computed from $\Pi\left(Q^{2}\right)$:

$$
a_{\mu}^{\mathrm{LO}-\mathrm{HVP}}=4 \alpha_{e m}^{2} \int_{0}^{\infty} d Q^{2} \frac{1}{m_{\mu}^{2}} f\left(\frac{Q^{2}}{m_{\mu}^{2}}\right) \cdot\left(\Pi\left(Q^{2}\right)-\Pi(0)\right) .
$$

Correlation function decomposition

Polarization function $\Pi\left(Q^{2}\right)$ can be extracted from the hadronic vector currents correlators:

$$
\Pi_{\mu \nu}(Q)=\int d^{4} x e^{i Q \cdot x}\left\langle J_{\mu}(x) J_{\nu}(0)\right\rangle=\left(\delta_{\mu \nu} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi\left(Q^{2}\right)
$$

Time momentum approach

Customarily done with time momentum representation [Bernecker \& Meyer, 2011]:

$$
a_{\mu}^{\mathrm{LO}-\mathrm{HVP}}=2 \alpha_{e m}^{2} \int_{0}^{\infty} d t t^{2} K\left(m_{\mu} t\right) V(t), \quad V(t) \equiv \frac{1}{3} \sum_{i=1,2,3} \int d \vec{x}\left\langle J_{i}(\vec{x}, t) J_{i}(0)\right\rangle .
$$

The new $g_{\mu}-2$ puzzle

[Fermilab plot, from PRL 126, 141801
(2021) Muon $g-2$ collaboration]

[BMWc version, from L. Lellouch slides at
SchwingerFest, LA (June 2022)]

Calculation using dispersive approach in $\sim 4 \sigma$ disagrement with experiment

?? What's the deal ??

A triangular puzzle...

DISPERSIVE PREDICTION

LATTICE CALCULATION

A triangular puzzle...

DISPERSIVE PREDICTION

PROBLEMS IN R-RATIO?
EXPERIMENTAL ISSUES?
NEW PHYSICS SPOILS?

LATTICE CALCULATION

PROBLEMS IN BMWc?

New physics explanation?

DISPERSIVE PREDICTION

LATTICE CALCULATION

New physics explanation?

DISPERSIVE PREDICTION

LATTICE CALCULATION

New physics behind the new muon g-2 puzzle?

Luca Di Luzio, ${ }^{1,2}$ Antonio Masiero, ${ }^{1,2}$ Paride Paradisi, ${ }^{1,2}$ and Massimo Passera ${ }^{2}$
${ }^{1}$ Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, Italy
${ }^{2}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy

The (g-2) ${ }_{\mu}$ window discrepancy: a GeV -scale new physics explanation

L. Darméa ${ }^{\text {a }}$ G. Grilli di Cortona ${ }^{\text {b.c }}$, E. Nardi ${ }^{\text {c }}$

${ }^{a}$ Institut de Physique des 2 Infinis de Lyon (IP2I), UMR5822, CNRSIN2P3, F-69622 Villeurbanne Cedex, France
${ }^{6}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale A. Moro 2, I-00185 Roma, Italy
${ }^{\text {c }}$ Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, C.P. 13, 00044 Frascati, Italy

PROBLEMS IN R-RATI
EXPERIMENTAL ISSUI NEW PHYSICS SPOIL

Abstract

Recent lattice determinations of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment a_{μ}^{HV} indicate an exacerbation of the discrepancy with the data driven dispersive method at the level of $\sim 4.5 \sigma$. This disagreement could \sim be due to some process beyond the standard model affecting the determination of a_{μ} from $e^{+} e^{-} \rightarrow$ hadrons data within a certain energy range. Recently, we built a new physics mechanism that could explain the lattice versus data-driven discrepancy together with other a_{μ} related anomalies. Here we study how our theoretical construction performs in the short, intermediate and long distance windows. We find that, in agreement with lattice indications, the dominant effects are confined to the low and intermediate energy windows, while the high energy window remains largely unaffected.

Clearing the discussion

DISPERSIVE PREDICTION

LATTICE CALCULATION

Direct theoretical comparison?

DISPERSIVE PREDICTION

LATTICE CALCULATION

Intermediate step: a_{μ} window

Modified a_{μ}

a_{μ} : same observable, two approaches

$$
\underbrace{\frac{\alpha_{e m}^{2}}{3 \pi^{2}} \int_{M_{\pi}^{2}}^{\infty} \frac{d E^{2}}{E^{2}} \tilde{K}(E) \boldsymbol{R}(\boldsymbol{E})}_{\text {disperisve, experimental }}=a_{\mu}^{H V P}=\underbrace{2 \alpha_{e m}^{2} \int_{0}^{\infty} d t t^{2} K\left(m_{\mu} t\right) \boldsymbol{V}(\boldsymbol{t})}_{\text {lattice, } S M}
$$

Direct theoretical comparison of $V(t)$ and $R(E)$?

- One could use lattice $V(t)$ to compute $R(E)$
- Ambitious: $R(E)$ is the Inverse Laplace Transform of $V(t)$
- (again: see talk by A.De Santis @10am today for more info...)

Intermediate step: a_{μ} window

Less ambitious but more effective: compare modified versions of a_{μ} more local in energy

$$
2 \alpha_{e m}^{2} \int_{0}^{\infty} d t t^{2} K\left(m_{\mu} t\right) \boldsymbol{V}(\boldsymbol{t}) \underline{\Theta(t)}=a_{\mu}^{\Theta}=\frac{\alpha_{e m}^{2}}{3 \pi^{2}} \int_{M_{\pi}^{2}}^{\infty} \frac{d E^{2}}{E^{2}} \tilde{K}(E) \boldsymbol{R}(\boldsymbol{E}) \underline{\tilde{\Theta}(E)}
$$

Window observables for $g_{\mu}-2$

Intermediate Window by RBC/UKQCD

Consider (mainly) the [0.4-1] fm contribution in the lattice computation.

$$
\Theta^{S D}(t)+\Theta^{W}(t)+\Theta^{L D}(t)=1
$$

Historical motivation: restrict QCD to do what it is best at

Little cut off effects, little finite volume effects, good signal to noise ratio

Today: an important analysis tool

- Compare more in details lattice calculations of a_{μ} by different collaborations.
- Explore local portions of the R-ratio experimental measurement with predictions.

$$
\text { IN THIS WORK: } a_{\mu}^{S D} \text { and } a_{\mu}^{W}
$$

ETMC calculation of short and intermediate windows

```
Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions
C. Alexandrou, \({ }^{1,2}\) S. Bacchio, \({ }^{2}\) P. Dimopoulos, \({ }^{3}\) J. Finkenrath, \({ }^{2}\) R. Frezzotti, \({ }^{4}\)
G. Gagliardi, \({ }^{5}\) M. Garofalo, \({ }^{6}\) K. Hadjiyiamakou, \({ }^{1,2}\) B. Kostrzewa, \({ }^{7}\) K. Jansen, \({ }^{8}\)
V. Lubicz, \({ }^{9}\) M. Petschlies, \({ }^{6}\) F. Sanfilippo, \({ }^{5}\) S. Simula, \({ }^{5}\) C. Urbach, \({ }^{6}\) and U. Wenger \({ }^{10}\)
\({ }^{1}\) Department of Physics, University of Cyprus, 20537 Nicosia, Cyprus
\({ }^{2}\) Computation-based Science and Technology Research Center, The Cyprus Institute 20 Konstantinou Kavafi Street, 2121 Nicosia, Cyprus
\({ }^{\text {'Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma and INFN }}\)
Gruppo Collegato di Parma, Parco Area delle Scienze 7/a (Campus), 43124 Parma, Italy "Dipartimento di Fisica and INFN, Universitì di Roma "Tor Vergata",
Via della Ricerca Scientifica 1, I-00133 Roma, Italy
Istituto Nazionnle di Fisica Nucleare, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy
\({ }^{6}\) HISKP (Theory), Rheinische Friedrich-Wilhelms-Universität Bonn
Nussallee 14-16, 53115 Bonn, Germany
High Performance Computing and Analytics Lab, Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany
\({ }^{8}\) NIC, DESY, Platanenallee 6, D-15738 Zeuthen, Germany
\({ }^{9}\) Dipartimento di Matemation e Fisica, Universitả Roma Tre and INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy
\({ }^{10}\) Institute for Theoretical Physics, Albert Einstein Center for Fundamental Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Suitzerland
```


We present a lattice determination of the leading-order hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment, $a_{\mu}^{\text {HVP }}$, in the so-called short

Outline of our twisted-mass lattice QCD calculation

What has been computed

u, d, s, c, quark-line connected and disconnected contributions to $a_{\mu}^{S D}$ and a_{μ}^{W} in the isospin symmetric limit $m_{u}=m_{d}$, neglecting $\alpha_{e m}^{3}$ QED effects.

Connected contributions: $f=u, d, s, c$.

$$
V_{c o n n}^{f}(t) \equiv-\frac{1}{3} \sum_{i=1,2,3} \int d^{3} x\left\langle J_{i}^{f}(\vec{x}, t) J_{i}^{f}(0)\right\rangle=q_{f}^{2} \times \underbrace{}_{f}
$$

Disconnected contributions: $f, f^{\prime}=u, d, s, c$.

$$
V_{d i s c o}^{f f^{\prime}}(t) \equiv-\frac{1}{3} \sum_{i=1,2,3} \int d^{3} x\left\langle J_{i}^{f}(\vec{x}, t) J_{i}^{f^{\prime}}(0)\right\rangle=-q_{f} q_{f^{\prime}} \times
$$

Twisted-mass (tm) and Osterwalder-Seiler (OS) currents

Twisted-mass regularization

Mass term: $\bar{\psi}^{ \pm}\left(m \pm i \mu \gamma_{5}\right) \psi^{ \pm}$tuned to achieve $\mathcal{O}(a)$ improvement.

- For connected contributions, two different ways to regularize quarks within Twisted Mass
- The difference is a pure $O\left(a^{2}\right)$ effect \rightarrow constrain continuum limit extrapolation.

Twisted Mass choice

$$
J_{\mu}^{f, t m} \propto \bar{\psi}_{f}^{+} \gamma_{\mu} \psi_{f}^{-}
$$

Osterwalder-Seiler choice

$$
J_{\mu}^{f, O S} \propto \bar{\psi}_{f}^{+} \gamma_{\mu} \psi_{f}^{+}
$$

The correlator

Comparison of the two regularizations:

- Large differences at small $\sim a$ distances.
- Subject to different finite volume effects.

Simulations at the \simeq physical point

- Four (\simeq) physical point ensembles, with $a \in[0.057 \mathrm{fm}-0.080 \mathrm{fm}]$.
- $L \sim 5.1 \mathrm{fm}$ and $L \sim 7.6 \mathrm{fm}$ to control Finite Size Effects (FSEs).
- $M_{\pi} \in[136,141] \mathrm{MeV}, \quad M_{\pi} L>3.5, \quad V=L^{3} \times T, \quad T=2 L$.

Planned simulations

- at $a<0.05 \mathrm{fm}$,
- on larger volume at $a \sim 0.068 \mathrm{fm}$,
- and smaller volume at $a \sim 0.0072 \mathrm{fm}$

Details of the ETMC ensembles

Lattice parameters

ensemble	β	V / a^{4}	$a(\mathrm{fm})$	$a \mu_{\ell}$	$M_{\pi}(\mathrm{MeV})$	$L(\mathrm{fm})$
B.072.64	1.778	$64^{3} \times 128$	$0.0796(1)$	0.00072	$140.2(0.2)$	5.10
B.072.96	1.778	$96^{3} \times 192$	$0.0796(1)$	0.00072	$140.1(0.2)$	7.64
C.060.80	1.836	$80^{3} \times 160$	$0.0682(1)$	0.00060	$136.6(0.2)$	5.46
D.054.96	1.900	$96^{3} \times 192$	$0.0569(1)$	0.00054	$140.8(0.3)$	5.46

- Rernormalization Constants have $<0.1 \%$ uncertainties.
- Wilson-clover twisted mass fermions at maximal twist (automatic $\mathcal{O}(a)$ improvement).
- Small mistuning of M_{π} corrected both in valence and sea.
- B lattice spacing interpolated to $L=5.46 \mathrm{fm}$.

"Renormalization constants"

ensemble	Z_{V}	Z_{A}
B.072.64	$0.706378(16)$	$0.74284(23)$
B.072.96	$0.706402(15)$	$0.74274(20)$
C.060.80	$0.725405(13)$	$0.75841(16)$
D.054.96	$0.744105(11)$	$0.77394(10)$

Estimates per confs

ensemble	ℓ	s	c
B.072.64	10^{3}	16	4
B.072.96	10^{3}	16	4
C.060.80	10^{3}	16	4
D.054.96	10^{3}	64	24

Making contact with physical world

Continuum limit

Combined continuum fits employing both tm and OS lattice correlators.

$$
\begin{gathered}
\text { Fit ansatz }(w=\{S D, W\}): \\
a_{\mu}^{w}(\ell)=\boldsymbol{a}_{\mu}^{\boldsymbol{w}, \text { cont }}(\ell) \times\left[1+\boldsymbol{D}_{\mathbf{1}}^{r} \frac{a^{2}}{\left[\log \left(a^{2} / w_{0}^{2}\right)\right]^{n_{r}}}+\boldsymbol{D}_{\mathbf{2}}^{r} a^{4}\right]
\end{gathered}
$$

- $\boldsymbol{a}_{\mu}^{w, \text { cont }}, \boldsymbol{D}_{1}^{r}$ and \boldsymbol{D}_{2}^{r} are free fitting parameters.
- $a_{\mu}^{w, c o n t}$ do not depend upon the regularization $r=\{t m, O S\}$.

Infinite volume limit within MLLGS method (for u, d quarks)

- Finite Volume Effects Mostly dominates the tail of the correlator: ρ state ($\pi \pi$ resonance)
- At finite volume: described in terms of discrete energy levels of two pions in a box as H.Mayer proposed:
- Lellouch-Luscher framework to describe the interacting states
- Gounaris Sakurai model to parametrize phase shifts in the continuum
- Bring continuum result from $L=5.46$ to infinite volume limit.

Light $(u+d)$ connected contribution to a_{μ}^{W}

Typical accuracy of $0.1-0.2 \%$ for all ensembles and regularizations.

Analysis of the systematics

Akaike information criterion or maximum $\chi^{2} /$ d.o.f cut.

Light $(\mathrm{u}+\mathrm{d})$ connected contribution to $a_{\mu}^{S D}$

Lattice evaluation of $a_{\mu}^{S D}$ suffers from dangerous $a^{2} \log \left(a^{2}\right)$ artifacts generated by the short-times integration [Cé, Harris, Meyer et al. (2021)]

$$
\begin{aligned}
V(t & \left.\ll m^{-1}, a\right) \propto \frac{1}{t^{3}}\left[1+\sum_{n=1}^{\infty} c_{n} \cdot\left(\frac{a}{t}\right)^{2 n}\right], \quad K\left(m_{\mu} t \ll 1\right) \propto t^{2} \\
& \Longrightarrow a_{\mu}^{S D} \simeq \int_{a}^{t_{0}} d t V(t, a) t^{2} K\left(m_{\mu} t\right)=A+D a^{2} \log \left(a^{2}\right)+\mathcal{O}\left(a^{2}\right)
\end{aligned}
$$

- $a^{2} \log \left(a^{2}\right)$ cut-off effects already present in the free-theory correlator.
- $\Delta a_{\mu}^{S D, p e r t .}(\ell)$ are cut-off effects of the $\operatorname{tm}(\mathrm{OS}) \mathcal{O}\left(\alpha_{s}^{0}\right)$ massless correlator.

Naive continuum limit of free theory cut-offs

Perturbative $\mathcal{O}\left(\alpha_{s}^{0}\right)$ subtraction of cut-off effects

Three options

- No perturbative subtraction: continuum limit missed by $\simeq 1 \times 10^{-10}$ (effect larger than any other source of systematics).
- LO $\mathcal{O}\left(\frac{a^{2}}{t^{2}}\right)$ subtraction: sufficient to get correct continuum limit.
- Full $\mathcal{O}\left(a^{2 n} / t^{2 n}\right)$ subtraction: makes lattice data even flatter.

- Precision: better than 0.1%.
- $\mathcal{O}\left(a^{2 n} / t^{2 n}\right)$ free-theory cut-off effects subtracted for both regularizations.
- Final error entirely due to systematics in continuum extrapolation.
- a^{4} term on tm regularization necessary to have a good $\chi^{2} / d o f$.

Analysis of the systematics for $a_{\mu}^{S D}(\ell)$

- Final error entirely due to systematics in continuum extrapolation.
- Alternative continuum limit extrapolation with ultra-short distance regulator.

Calculation details

Strange contributions

- Valence s quark mass tuned alternatively using $M_{\eta_{s}}$ or M_{ϕ} as input.
- Both determinations included in final analysis of systematics.
- Subtraction of perturbative $\mathcal{O}\left(\alpha_{s}^{0}\right)$ cut-off effects in $a_{\mu}^{S D}(s)$.
- Finite size effects and $M_{\pi}^{s e a}$ mistuning effects not visible within accuracy.

Charm contributions

- Valence c quark mass tuned alternatively using $M_{\eta_{c}}$ or $M_{J / \Psi}$ as input.
- Both determinations included in final analysis of systematics.
- Added a fourth (coarser) lattice spacing $a \sim 0.09 \mathrm{fm}$ with pion masses $M_{\pi}^{\text {sea }} \in[250-350] \mathrm{MeV}$ to improve continuum limit extrapolation.
- No $M_{\pi}^{\text {sea }}$ dependence observed, negligible finite size effects.
- Subtraction of perturbative $\mathcal{O}\left(\alpha_{s}^{0}\right)$ cut-off effects in $a_{\mu}^{S D}(c)$. More effective if evaluated with $m_{q}=m_{c}^{b a r e}$.

Strange and charm connected contributions

Disconnected contribution to a_{μ}^{W} and $a_{\mu}^{S D}$

- Noise-reduction techniques: one-end-trick, exact deflation of low-modes, hierarchical probing.
- Small cut-off effects within accuracy. No study of Finite Size Effect.
- $a_{\mu}^{S D}($ disco $)$ completely negligible, a_{μ}^{W} (disco) $\sim 0.3 \% a_{\mu}^{W}$.

$$
a_{\mu}^{S D}(\text { disco })=-0.006(5) \times 10^{-10}, \quad a_{\mu}^{W}(\text { disco })=-0.77(17) \times 10^{-10}
$$

	ETMC-22	BMW-20	CLS/MAINZ-22	RBC/UKQCD-18
$a_{\mu}^{W}($ disco $) \times 10^{10}$	$-0.77(17)$	$-0.85(6)$	$-0.81(9)$	$-1.00(10)$

Unbridged results

	$a_{\mu}^{S D} \times 10^{10}$	$a_{\mu}^{W} \times 10^{10}$
ℓ	$48.24(20)$	$206.5(1.3)$
s	$9.074(64)$	$27.28(20)$
c	$11.61(27)$	$2.90(12)$
disco	$-0.006(5)$	$-0.78(21)$
IB	0.03^{*}	$0.43(4)^{* *}$
b	$0.32(2)^{* * *}$	-
total	$69.27(34)$	$236.3(1.3)$

- * rhad software package. 0.04% of the total $a_{\mu}^{S D}$ (or 0.1σ).
- ** From Borsanyi et al. (Nature, 2021).
0.18% of the total a_{μ}^{W} (or 0.4σ).
- *** rhad \& lattice. 0.46% of total $a_{\mu}^{S D}$ (or 1.1σ).

Precision achieved on a_{μ}^{W} and $a_{\mu}^{S D}$ is $\sim 0.5 \%$.

Per-flavour lattice comparisons...

...include only results from at least 3 lattice spacings and 1 phys. point ensemble.

$\left[a_{\mu}^{S D}+a_{\mu}^{W}\right] \times 10^{10}$	ℓ	s	c	total, incl. disc., IB, b
ETMC-22*	$254.74(1.5)$	$36.4(0.3)$	$14.51(4)$	$305.65(1.5)$
Fermilab/HPQCD/MILC-22	$253.5(0.9)$	$36.3(0.2)$	$14.63(5)$	$303.8(1.1)$

*Preliminary: conservative error (Assuming 100% correlation between $a_{\mu}^{S D}$ and a_{μ}^{W}).

Comparison with $e^{+} e^{-} \rightarrow$ hadrons results

Tension in a_{μ}^{W} rises to 4.5σ if we combine ETMC '22, BMW '20 and CLS/Mainz '22 (informal average \rightarrow next WP).

Deviation of $e^{+} e^{-} \rightarrow$ hadrons data w.r.t. the SM

- in the intermediate energy regions more pronounced,
- in the low energy very mild,
- but not in the high energy region.

Conclusions

The $g_{\mu}-2$ puzzle

- Dipsersive approach disagree with experimental measurement
- Lattice calculation substantially agree with the experimental measurement

Slicing the comparison

- Comparing $R(E)$ energy per energy would be highly interesting
- And we are making progress in this directions, see this morning's talk
- Meanwhile we refer to WINDOW OBSERVABLES, with interesting phenomenology:
- deviation concentrated in the intermediate energy regions,
- agreement in the low/high energy region.

Perspective

- Including isospin breaking \& QED
- Improving statistics (also for $R(E)$)
- Including more volumes
- Produce results for the total a_{μ}

Conclusions

The $g_{\mu}-2$ puzzle

- Dipsersive approach disagree with experimental measurement
- Lattice calculation substantially agree with the experimental measurement

Slicing the comparison

- Comparing $R(E)$ energy per energy would be highly interesting
- And we are making progress in this directions, see this morning's talk
- Meanwhile we refer to WINDOW OBSERVABLES, with interesting phenomenology:
- deviation concentrated in the intermediate energy regions,
- agreement in the low/high energy region.

Perspective

- Including isospin breaking \& QED
- Improving statistics (also for $R(E)$)
- Including more volumes
- Produce results for the total a_{μ}

THANKS!

