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Introduction on aµ

Definition of aµ

Magnetic moment of the muon: µµ = −gµ
e

2mµ
S

aµ ≡ gµ − 2
2 = aQED

µ + aweak
µ + aHV P

µ + aLBL
µ

aHV P
µ → non-perturbative hadronic contribution

R-Ratio determination of ahad
µ

Historically “computed” via dispersive relation:

aHV P
µ = α2

em

3π2

∫ ∞

M2
π

dE2K (E)
E2 R (E)

from R (E), the measured cross section:

e+e− → hadr



QCD determination: time momentum representation

Polarization-function based approach
From a pure theoretical point of view, aµ can be computed from Π

(
Q2):

aLO−HVP
µ = 4α2

em

∫ ∞

0
dQ2 1

m2
µ

f

(
Q2

m2
µ

)
·
(
Π(Q2) − Π(0)

)
.

Correlation function decomposition
Polarization function Π

(
Q2) can be extracted from the hadronic vector currents correlators:

Πµν(Q) =
∫
d4x eiQ·x 〈Jµ(x)Jν(0)

〉
=
(
δµνQ

2 −QµQν

)
Π(Q2).

Time momentum approach
Customarily done with time momentum representation [Bernecker & Meyer, 2011]:

aLO−HVP
µ = 2α2

em

∫ ∞

0
dt t2K(mµt)V (t), V (t) ≡ 1

3
∑

i=1,2,3

∫
dx⃗
〈
Ji(x⃗, t)Ji(0)

〉
.



The new gµ − 2 puzzle

Calculation using dispersive approach
in ∼ 4σ disagrement with experiment

?? What’s the deal ??
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Direct theoretical comparison?
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Intermediate step: aµ window

DISPERSIVE PREDICTION LATTICE CALCULATION

WINDOW g-2



Modified aµ

aµ: same observable, two approaches
α2

em

3π2

∫ ∞

M2
π

dE2

E2 K̃ (E) R (E)︸ ︷︷ ︸
disperisve, experimental

= aHV P
µ = 2α2

em

∫ ∞

0
dt t2K(mµt) V (t)︸ ︷︷ ︸
lattice, SM

Direct theoretical comparison of V (t) and R (E)?
One could use lattice V (t)to compute R (E)
Ambitious: R (E) is the Inverse Laplace Transform of V (t)
(again: see talk by A.De Santis @10am today for more info...)

Intermediate step: aµ window
Less ambitious but more effective: compare modified versions of aµ more local in energy

2α2
em

∫ ∞

0
dt t2K(mµt) V (t)Θ (t) = aΘ

µ = α2
em

3π2

∫ ∞

M2
π

dE2

E2 K̃ (E) R (E) Θ̃ (E)



Window observables for gµ − 2

Intermediate Window by RBC/UKQCD

Consider (mainly) the [0.4 − 1] fm contribution in the lattice computation.

ΘSD(t) + ΘW (t) + ΘLD(t) = 1

Historical motivation: restrict QCD to do what it is best at
Little cut off effects, little finite volume effects, good signal to noise ratio

Today: an important analysis tool
Compare more in details lattice calculations of aµ by different collaborations.
Explore local portions of the R-ratio experimental measurement with predictions.

IN THIS WORK: aSD
µ and aW

µ



ETMC calculation of short and intermediate windows
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We present a lattice determination of the leading-order hadronic vacuum polarization

(HVP) contribution to the muon anomalous magnetic moment, aHVP
µ , in the so-called short
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Outline of our twisted-mass lattice QCD calculation

What has been computed
u, d, s, c, quark-line connected and disconnected contributions to aSD

µ and aW
µ in the

isospin symmetric limit mu=md, neglecting α3
em QED effects.

Connected contributions: f = u, d, s, c.

V f
conn(t) ≡ −1

3
∑

i=1,2,3

∫
d3x

〈
Jf

i (x⃗,t) Jf
i (0)

〉
= q2

f ×

Disconnected contributions: f, f ′ = u, d, s, c.

V ff ′

disco(t) ≡ −1
3
∑

i=1,2,3

∫
d3x

〈
Jf

i (x⃗, t) Jf ′

i (0)
〉

= −qfqf ′ ×



Twisted-mass (tm) and Osterwalder-Seiler (OS) currents

Twisted-mass regularization
Mass term: ψ̄± (m± iµγ5)ψ± tuned to achieve O (a) improvement.

For connected contributions, two different ways to regularize quarks within Twisted Mass

The difference is a pure O
(
a2) effect → constrain continuum limit extrapolation.

Twisted Mass choice
Jf,tm

µ ∝ ψ̄+
f γµψ

−
f

Osterwalder-Seiler choice
Jf,OS

µ ∝ ψ̄+
f γµψ

+
f

The correlator

Comparison of the two regularizations:
Large differences at small ∼ a distances.
Subject to different finite volume effects.



Simulations at the ≃ physical point

Four (≃) physical point ensembles, with a ∈ [0.057 fm − 0.080 fm].
L ∼ 5.1 fm and L ∼ 7.6 fm to control Finite Size Effects (FSEs).
Mπ ∈ [136, 141] MeV, MπL > 3.5, V = L3 × T, T = 2L.

Planned simulations
at a < 0.05 fm,
on larger volume at a ∼ 0.068 fm,
and smaller volume at a ∼ 0.0072 fm



Details of the ETMC ensembles

Lattice parameters
ensemble β V/a4 a (fm) aµℓ Mπ (MeV) L (fm)
B.072.64 1.778 643 × 128 0.0796 (1) 0.00072 140.2 (0.2) 5.10
B.072.96 1.778 963 × 192 0.0796 (1) 0.00072 140.1 (0.2) 7.64
C.060.80 1.836 803 × 160 0.0682 (1) 0.00060 136.6 (0.2) 5.46
D.054.96 1.900 963 × 192 0.0569 (1) 0.00054 140.8 (0.3) 5.46

Rernormalization Constants have < 0.1% uncertainties.
Wilson-clover twisted mass fermions at maximal twist (automatic O(a) improvement).
Small mistuning of Mπ corrected both in valence and sea.
B lattice spacing interpolated to L = 5.46 fm.

“Renormalization constants”
ensemble ZV ZA

B.072.64 0.706378 (16) 0.74284 (23)
B.072.96 0.706402 (15) 0.74274 (20)
C.060.80 0.725405 (13) 0.75841 (16)
D.054.96 0.744105 (11) 0.77394 (10)

Estimates per confs
ensemble ℓ s c
B.072.64 103 16 4
B.072.96 103 16 4
C.060.80 103 16 4
D.054.96 103 64 24



Making contact with physical world

Continuum limit
Combined continuum fits employing both tm and OS lattice correlators.

Fit ansatz ( w = {SD,W} ):

aw
µ (ℓ) = aw,cont

µ (ℓ) ×
[
1 + Dr

1
a2

[log(a2/w2
0)]nr

+ Dr
2 a

4
]

aw,cont
µ ,Dr

1 and Dr
2 are free fitting parameters.

aw,cont
µ do not depend upon the regularization r = {tm,OS}.

Infinite volume limit within MLLGS method (for u, d quarks)
Finite Volume Effects Mostly dominates the tail of the correlator: ρ state (ππ resonance)
At finite volume: described in terms of discrete energy levels of two pions in a box
as H.Mayer proposed:

Lellouch-Luscher framework to describe the interacting states
Gounaris Sakurai model to parametrize phase shifts in the continuum

Bring continuum result from L = 5.46 to infinite volume limit.



Light (u + d) connected contribution to aWµ
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Typical accuracy of 0.1 − 0.2% for all ensembles and regularizations.



Analysis of the systematics

200.55 201.26 201.97 202.69 203.40 204.12 204.83 205.54 206.26 206.97 207.69 208.40 209.12 209.83 210.54

∫x+σx
x−σx Pr(Y ) dY = 0.69

aWµ (`)× 1010

N�ts = 154 , aWµ (`) = 205.78± 1.19× 10−10

wAIC ∝ e−(χ
2+2Nparms−Ndata)/2

Akaike information criterion or maximum χ2/d.o.f cut.



Light (u+d) connected contribution to aSDµ

Lattice evaluation of aSD
µ suffers from dangerous a2 log (a2) artifacts

generated by the short-times integration [Cé, Harris, Meyer et al. (2021)]

V (t ≪ m−1, a) ∝ 1
t3

[
1 +

∞∑
n=1

cn ·
(
a

t

)2n
]
, K(mµt ≪ 1) ∝ t2

=⇒ aSD
µ ≃

∫ t0

a
dt V (t, a) t2K(mµt) = A+D a2 log (a2) + O(a2)

0

0.5

1

1.5

2

2.5

3

3.5

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

D C B

∆
a
S
D
,p
er
t.

µ
(`

)
×

10
10

a2 [fm2]

OS regularization

tm regularization

Naive continuum limit of free theory cut-offs

a2 log(a2) cut-off effects already
present in the free-theory
correlator.

∆aSD,pert.
µ (ℓ) are cut-off effects

of the tm (OS) O(α0
s) massless

correlator.



Perturbative O(α0
s) subtraction of cut-off effects
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wo perturbative subtraction

O(a2/t2) perturbative subtraction

O(a2n/t2n) perturbative subtraction

Three options

No perturbative subtraction: continuum limit missed by ≃ 1 × 10−10

(effect larger than any other source of systematics).

LO O( a2

t2 ) subtraction: sufficient to get correct continuum limit.

Full O(a2n/t2n) subtraction: makes lattice data even flatter.



aSDµ (ℓ)
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Precision: better than 0.1%.

O(a2n/t2n) free-theory cut-off effects subtracted for both regularizations.

Final error entirely due to systematics in continuum extrapolation.

a4 term on tm regularization necessary to have a good χ2/dof .



Analysis of the systematics for aSDµ (ℓ)

47.59 47.68 47.77 47.85 47.94 48.03 48.12 48.20 48.29 48.38 48.47 48.55 48.64 48.73 48.82

∫x+σx
x−σx Pr(Y ) dY = 0.91

aSDµ (`)× 1010

N�ts = 155 , aSDµ (`) = 48.23± 0.15× 10−10

wAIC ∝ e−(χ
2+2Nparms−Ndata)/2

Final error entirely due to systematics in continuum extrapolation.

Alternative continuum limit extrapolation with ultra-short distance regulator.



Calculation details

Strange contributions
Valence s quark mass tuned alternatively using Mηs

or Mϕ as input.

Both determinations included in final analysis of systematics.

Subtraction of perturbative O(α0
s) cut-off effects in aSD

µ (s).

Finite size effects and Msea
π mistuning effects not visible within accuracy.

Charm contributions
Valence c quark mass tuned alternatively using Mηc

or MJ/Ψ as input.

Both determinations included in final analysis of systematics.

Added a fourth (coarser) lattice spacing a ∼ 0.09 fm with pion masses Msea
π ∈ [250 − 350] MeV

to improve continuum limit extrapolation.

No Msea
π dependence observed, negligible finite size effects.

Subtraction of perturbative O(α0
s) cut-off effects in aSD

µ (c).
More effective if evaluated with mq = mbare

c .



Strange and charm connected contributions
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Disconnected contribution to aWµ and aSDµ
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Noise-reduction techniques: one-end-trick, exact deflation of low-modes, hierarchical probing.

Small cut-off effects within accuracy. No study of Finite Size Effect.
aSD

µ (disco) completely negligible, aW
µ (disco) ∼ 0.3% aW

µ .

aSD
µ (disco) = −0.006 (5) × 10−10 , aW

µ (disco) = −0.77 (17) × 10−10

ETMC-22 BMW-20 CLS/MAINZ-22 RBC/UKQCD-18
aW

µ (disco) × 1010 −0.77 (17) −0.85 (6) −0.81 (9) −1.00 (10)



Summary

Unbridged results
aSD

µ × 1010 aW
µ × 1010

ℓ 48.24 (20) 206.5 (1.3)
s 9.074 (64) 27.28 (20)
c 11.61 (27) 2.90 (12)

disco −0.006 (5) −0.78 (21)
IB 0.03∗ 0.43 (4)∗∗

b 0.32 (2)∗∗∗ −
total 69.27 (34) 236.3 (1.3)

* rhad software package. 0.04% of the total aSD
µ (or 0.1σ).

** From Borsanyi et al. (Nature, 2021).
0.18% of the total aW

µ (or 0.4σ).

*** rhad & lattice. 0.46% of total aSD
µ (or 1.1σ).

Precision achieved on aW
µ and aSD

µ is ∼ 0.5%.



Per-flavour lattice comparisons...

...include only results from at least 3 lattice spacings and 1 phys. point ensemble.

202 204 206 208 210 212 214 216

aWµ (ℓ)× 1010

ETMC-22

CLS/MAINZ-22

BMW-20

χQCD-22

Aubin et al.-22

Lehner et al.-20

RBC/UKQCD-23

FHM-23

26 26.5 27 27.5 28 28.5 29 29.5 30

aWµ (s)× 1010

ETMC-22

CLS/MAINZ-22

BMW-20

χQCD-22

Lehner et al.-20

RBC/UKQCD-18

2.6 2.8 3 3.2 3.4 3.6 3.8

aWµ (c)× 1010

ETMC-22

CLS/MAINZ-22

BMW-20

RBC/UKQCD-18

[aSD
µ + aW

µ ] × 1010 ℓ s c total, incl. disc., IB, b
ETMC-22∗ 254.74 (1.5) 36.4 (0.3) 14.51 (4) 305.65 (1.5)

Fermilab/HPQCD/MILC-22 253.5 (0.9) 36.3 (0.2) 14.63 (5) 303.8 (1.1)
*Preliminary: conservative error (Assuming 100% correlation between aSD

µ and aW
µ ).



Comparison with e+e− → hadrons results

e+e− → hadrons from Colangelo et al. arXiv:2205.12963 (2022).

67.5 68 68.5 69 69.5 70 70.5

aSDµ × 1010

ETMC-22

e+e− (Colangelo et al.-22)

1.4σ

230 235 240 245

4.5σ

aWµ × 1010

ETMC-22

BMWc-20

CLS/MAINZ-22

RBC/UKQCD-23

Informal average

e+e− (Colangelo et al.-22)

Tension in aW
µ rises to 4.5σ if we combine ETMC ’22, BMW ’20 and CLS/Mainz ’22

(informal average → next WP).

Deviation of e+e− → hadrons data w.r.t. the SM
in the intermediate energy regions more pronounced,
in the low energy very mild,
but not in the high energy region.



Conclusions

The gµ − 2 puzzle
Dipsersive approach disagree with experimental measurement
Lattice calculation substantially agree with the experimental measurement

Slicing the comparison
Comparing R (E) energy per energy would be highly interesting
And we are making progress in this directions, see this morning’s talk
Meanwhile we refer to WINDOW OBSERVABLES, with interesting phenomenology:

deviation concentrated in the intermediate energy regions,
agreement in the low/high energy region.

Perspective
Including isospin breaking & QED
Improving statistics (also for R (E))
Including more volumes
Produce results for the total aµ

THANKS!
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