Fermilab **Energy** Office of Science

Kicker Transient Field Measurements for Muon g-2

David Kessler – University of Massachusetts, Amherst New Physics Signals 2023 15 February 2023


Work supported by DoE grant DE-FG02-88ER40415 and SCGSR program.

The g-2 Storage Ring Magnet

• We find g-2 by relating **anomalous** precession frequency $\overrightarrow{w_a}$ to magnetic field \overrightarrow{B} .

$$\overrightarrow{w_a} = (g-2) * \frac{-q}{2m_{\mu}} * \overrightarrow{B}$$

- NMR probes measure \vec{B} , tracking fluctuations and drift during the experiment.
 - 378 probes arranged into 72 stations measure every 1.3 seconds.
 - Good at tracking long-term effects, but not built to see fast effects.
- Fast Transient Fields in the ring must be measured separately, with unique apparati.

The storage ring contains muon beams with a 1.45-Tesla magnetic field.

Kicker and Kicker Transient Field

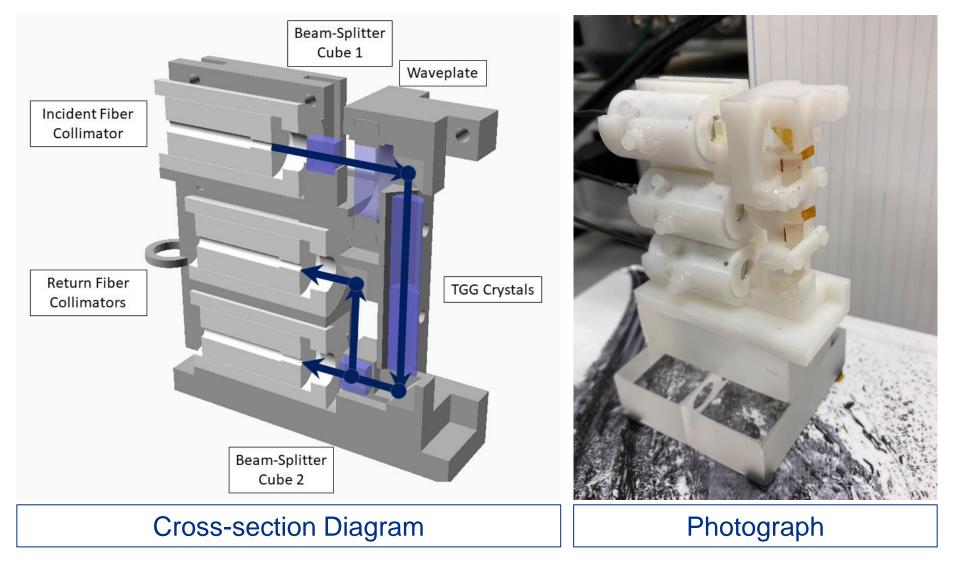
- The Kicker kicks muon beams into the correct trajectory to orbit the storage ring, by making a 220-Gauss magnetic field for ~0.2 microseconds.
- This rapid change induces eddy currents in all surrounding metal, creating the smaller but longer-lived Kicker Transient Field.
- Measuring the kicker transient field is a large priority in g-2.
 - The earlier E821 experiment at BNL assigned 100 ppb uncertainty from limits on the kicker transient field.
 - In g-2, the goal for total \vec{B} uncertainty is only 70 ppb!

A mockup of the kicker cage, used for tests and practice measurements.

Challenges in Measuring Kicker Transient

- Needs 1 mG resolution, and 1 MHz bandwidth.
- Must be vacuum-compatible below 10^-6 Torr.
- Must resist interference from vibrations when kicker activates.
- Cannot add any metal to measurement region, to avoid changing eddy currents.

The Faraday Effect


 Faraday Effect – When light travels through dielectric media, its polarization rotates proportionally to an external magnetic field.

$$d\varphi = \nu * \vec{B} \cdot \vec{L}$$

- This happens because the medium gains different indices of refraction for RH and LH circular-polarized light.
- We measure the kicker transient field by sending laser light through TGG crystals inside the storage ring, then retrieving the light and measuring the polarization.
 - UMass team uses fiber optics to transport light. INFN and KAIST teams aim laser through free space.

UMass Fiber Optic Faraday Magnetometer

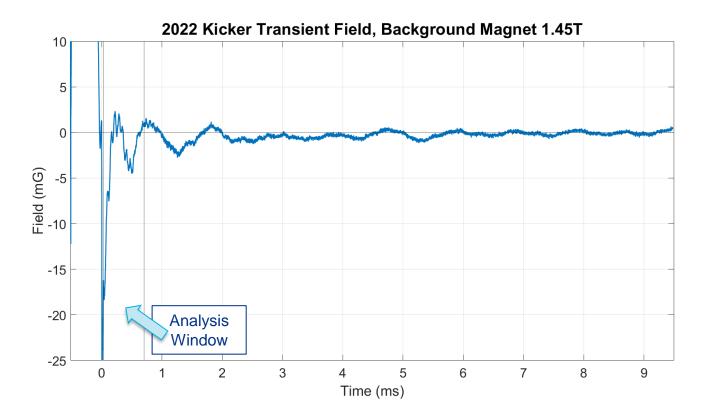
Vibration Suppression

- Vibrations are our biggest obstacle.
 - Just 1 milliradian (0.06 degrees) of crystal tilt is enough to overshadow the transient field signal!

Mitigation techniques:

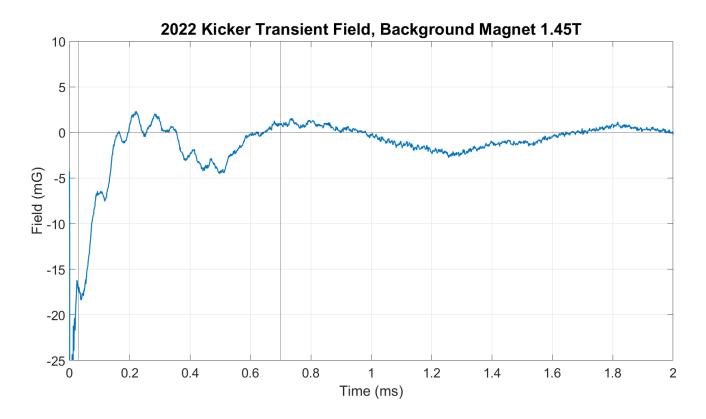
- Bridge across kicker cage.
- Sorbothane foundation.
- Silicone fibersupporting bands.

Vacuum Flange


Fibers in the flange connect to fibers from the magnetometer.

The installation process requires patience, precision, and flexibility.

Results



• This is an average of 3.5 million measurements, collected over two weeks in 2022.

Fermilab

• Additional datasets under different conditions help us learn more about the field and sources of noise.

Results

 This is an average of 3.5 million measurements, collected over two weeks in 2022.

Fermilab

• Additional datasets under different conditions help us learn more about the field and sources of noise.

Conclusion

- We are currently finalizing our results and uncertainties.
- Thank you for listening!
- Any questions or comments?

