Pseudoscalar Transition Form Factors and the Hadronic Light-by-Light Contribution to a_{μ}

Antoine Gérardin Jana Guenther Lukas Varnhorst Gen Wang <u>Willem Verplanke</u> [On Behalf of the Budapest-Marseille-Wuppertal Collaboration]

February 15th, 2023 New Physics Signals 2023, Pisa

Introduction

• The different contributions (Aoyama et al., 2020):

Contributions	Value $\times 10^{11}$
Experiment	116 592 089(63)
QED	116 584 718.931(0.104)
Electroweak	153.6(1.0)
HVP	6845(40)
HLbL	92(19)
Total SM value	116 591 810(43)
Difference: $\Delta a_{\mu} \equiv a_{\mu}^{exp} - a_{\mu}^{SM}$	279(76)

• Theory error on *a*_µ is currently dominated by two hadronic loop corrections:

- 1. Hadronic Vacuum Polarization (HVP) [$\mathscr{O}(\alpha_e^2)$]
- 2. Hadronic Light-by-Light (HLbL) scattering $[\mathscr{O}(\alpha_e^3)]$.

- $\rightarrow~{\sf HLbL}$ is a small contribution but with a relatively large error.
- \rightarrow Theory uncertainty needs to be reduced by a factor of two to meet future experimental precision.

Hadronic Light-by-Light Contribution

- Two ways to compute the HLbL contribution: direct lattice calculation (Chao et al., 2021; Blum et al., 2020) & dispersive framework (Colangelo et al., 2014b,a, 2015).
- In dispersive framwork: the HLbL scattering has different sub-contributions (Aoyama et al., 2020):

	Contributions	Value $\times 10^{11}$
	π^0,η,η' -poles	93.8(4.0)
	$\pi, K ext{-loops/boxes}$	-16.4(0.2)
	$\pi\pi$ scattering	-8(1)
	scalars $+$ tensors	-1(3)
	axial vectors	6(6)
	u, d, s-loops / short distance	15(10)
	<i>c</i> -loop	3(1)
	Total	92(19)
$\begin{cases} \downarrow k = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$= p' - p$ $= $ $(p') + \dots + $ $(p') + \dots + $	Exchanges of other resonances + (f_0, a_1, f_2, \ldots)

+...

- Two ways to compute the HLbL contribution: direct lattice calculation (Chao et al., 2021; Blum et al., 2020) & dispersive framework (Colangelo et al., 2014b,a, 2015).
- In dispersive framwork: the HLbL scattering has different sub-contributions (Aoyama et al., 2020):

Contributions	Value $\times 10^{11}$
π^0,η,η' -poles	93.8(4.0)
π, K -loops/boxes	-16.4(0.2)
$\pi\pi$ scattering	-8(1)
scalars $+$ tensors	-1(3)
axial vectors	6(6)
u, d, s-loops / short distance	15(10)
<i>c</i> -loop	3(1)
Total	92(19)

- ightarrow Pseudoscalar (π^0,η,η') poles form the largest contribution to HLbL diagram.
- $\rightarrow \pi^0$ -pole estimated using lattice (Gérardin et al., 2019) + dispersive framework (data-driven) (Hoferichter et al., 2018).
- \rightarrow ETM has recently shown a result for the η -pole at finite lattice spacing (Alexandrou et al., 2022).

- Two ways to compute the HLbL contribution: direct lattice calculation (Chao et al., 2021; Blum et al., 2020) & dispersive framework (Colangelo et al., 2014b,a, 2015).
- In dispersive framwork: the HLbL scattering has different sub-contributions (Aoyama et al., 2020):

Contributions	Value $\times 10^{11}$
π^0,η,η' -poles	93.8(4.0)
π, K -loops/boxes	-16.4(0.2)
$\pi\pi$ scattering	-8(1)
scalars $+$ tensors	-1(3)
axial vectors	6(6)
u, d, s-loops / short distance	15(10)
<i>c</i> -loop	3(1)
Total	92(19)

Project Goal: Calculate the sum of π^0, η, η' -pole contributions from lattice QCD methods with <10% precision in the continuum limit.

Figure 1: HLbL diagram and its leading contributions resulting from π^0,η,η' pseudoscalar exchanges.

In the dispersive framework, the 'master equation' relates the Pseudoscalar Transition Form Factors (TFFs) to pseudoscalar (p) pole contributions to a_{μ}^{p-pole} (Knecht and Nyffeler, 2002)

$$\begin{aligned} a_{\mu}^{p-pole} &= \left(\frac{\alpha_e}{\pi}\right)^3 \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \left[w_1(Q_1, Q_2, \tau) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_1^2, -Q_3^2) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_2^2, 0) \right. \\ &+ w_2(Q_1, Q_2, \tau) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_1^2, -Q_2^2) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_3^2, 0) \right] \end{aligned}$$

•
$$Q_3^2 = Q_1^2 + Q_2^2 + 2\tau Q_1 Q_2$$

- $\tau = \cos \theta$
- θ angle between $Q_1 \& Q_2$

Motivation

In the dispersive framework, the 'master equation' relates the Pseudoscalar Transition Form Factors (TFFs) to pseudoscalar (p) pole contributions to a_{μ}^{p-pole} (Knecht and Nyffeler, 2002)

$$\begin{aligned} a_{\mu}^{p-pole} &= \left(\frac{\alpha_e}{\pi}\right)^3 \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \left[w_1(Q_1, Q_2, \tau) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_1^2, -Q_3^2) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_2^2, 0) \right. \\ &+ w_2(Q_1, Q_2, \tau) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_1^2, -Q_2^2) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_3^2, 0) \end{aligned}$$

We recognize two main objects

- 1. The TFFs $\mathscr{F}_{p\gamma^*\gamma^*}(q_1^2, q_2^2)$
- 2. The weight functions $w_i(q_1, q_2, \tau)$

 $\mathscr{F}_{p\gamma^*\gamma^*}(q_1^2, q_2^2)$ encodes the interaction between a pseudoscalar and two virtual photons. E.g. for the pion

Motivation

In the dispersive framework, the 'master equation' relates the Pseudoscalar Transition Form Factors (TFFs) to pseudoscalar (p) pole contributions to a_{μ}^{p-pole} (Knecht and Nyffeler, 2002)

$$\begin{aligned} a_{\mu}^{p-pole} &= \left(\frac{\alpha_e}{\pi}\right)^3 \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \left[w_1(Q_1, Q_2, \tau) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_1^2, -Q_3^2) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_2^2, 0) \right. \\ &+ w_2(Q_1, Q_2, \tau) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_1^2, -Q_2^2) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_3^2, 0) \end{aligned}$$

We recognize two main objects

- 1. The TFFs $\mathscr{F}_{p\gamma^*\gamma^*}(q_1^2, q_2^2)$
- 2. The weight functions $w_i(q_1, q_2, \tau)$

Weight functions are peaked at low spacelike Q^2 so lattice QCD is the perfect method.

The TFF for a pseudoscalar meson is defined by the matrix elements $M_{\mu\nu}$ (Ji and Jung, 2001) (Gérardin et al., 2016)

$$M_{\mu\nu}(p,q_1) = i \int d^4 x \, e^{iq_1 \cdot x} \left\langle \Omega \right| \mathcal{T} \{ J_{\mu}(x) J_{\nu}(0) \} \left| P(\vec{p}) \right\rangle = \varepsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \mathscr{F}_{P\gamma^*\gamma^*}(q_1^2,q_2^2)$$

where J_{μ} is the EM current. (Euclidean) Matrix elements are related to 3-point correlation function $C_{\mu\nu}^{(3)}$ on lattice

$$C^{(3)}_{\mu\nu}(\tau,t_P) = a^6 \sum_{\vec{x},\vec{z}} \langle J_{\mu}(\vec{z},\tau+t_P) J_{\nu}(\vec{0},t_P) P^{\dagger}(\vec{x},0) \rangle e^{i\vec{p}\cdot\vec{x}} e^{-i\vec{q}_1\cdot\vec{z}}$$

where au is the time-separation between the two EM currents and

1. In the Euclidean:

$$M^{E}_{\mu\nu} = \frac{2E_{P}}{Z_{P}} \int_{-\infty}^{\infty} d\tau e^{\omega_{1}\tau} \tilde{A}_{\mu\nu}(\tau) \qquad \text{with } \tilde{A}_{\mu\nu} \sim C^{(3)}_{\mu\nu}$$

- 2. E_P, Z_P energy and overlap of the pseudoscalar that are extracted from two-point correlations functions.
- 3. $q_1 = (\omega_1, \vec{q}_1)$ and $q_2 = (E_P \omega_1, \vec{p} \vec{q}_1)$

$$C^{(3)}_{\mu\nu}(\tau, t_{PS}) = a^6 \sum_{\vec{x}, \vec{z}} \langle J_{\mu}(\vec{z}, t_i) J_{\nu}(\vec{0}, t_f) P^{\dagger}(\vec{x}, t_0) \rangle e^{i\vec{p}\cdot\vec{x}} e^{-i\vec{q}_1\cdot\vec{z}}$$

Correlation function receives contributions from (potentially) four different Wick contractions

1. • For the π^0

$$P_{\pi^0}(x) = \frac{1}{\sqrt{2}} \left(\overline{u} \gamma_5 u(x) - \overline{d} \gamma_5 d(x) \right).$$

- We work in the isospin limit. Consequently disconnected pseudoscalar loop is formally zero.
- Two diagrams contribute.
- Disconnected contribution is small $\mathcal{O}(1-2\%)$. (Gérardin et al., 2019).
- 2. For the η, η'

$$\begin{split} P_{\eta_8}(x) &= \frac{1}{\sqrt{6}} \left(\overline{u} \gamma_5 u(x) + \overline{d} \gamma_5 d(x) - 2\overline{s} \gamma_5 s(x) \right), \\ P_{\eta_0}(x) &= \frac{1}{\sqrt{3}} \left(\overline{u} \gamma_5 u(x) + \overline{d} \gamma_5 d(x) + \overline{s} \gamma_5 s(x) \right). \end{split}$$

- All four diagrams contribute.
- η^8 and η^0 mix to create physical η, η' .

Results Transition Form Factor π^0 Single Ensemble

- High precision data, also for the disconnected contribution.
- Good agreement between two momentum frames of the pion.

Results Transition Form Factor π^0 Continuum

• Our result agrees with previous lattice computation (Mainz) and available experimental data.

Integrand Double Virtual regime η, η' TFF

- We have a good signal for all four different Wick contractions.
- Bulk of signal formed by pvv (fully connected) and p.vv (vv disconnected)
- pv.v (pv disconnected) and p.v.v. (fully disconnected) are subdominant.

Results Form Factor η, η' Single Enemble

• Integrating over this leads to one point for the TFF.

- We find a good agreement between two momentum frames of the η,η' mesons.
- Errors are bigger than for the π^0 due to sizeable disconnected diagram and mixing.

• Single Virtual regime

- We find a good agreement between two momentum frames of the η,η' mesons.
- $|\vec{p}| = \left(\frac{2\pi}{L}\right)$ frame helps at large Q^2 .
- Errors are bigger than for the π^0 due to sizeable disconnected diagram and mixing.

Results Form Factor η, η' Continuum

- Relatively good agreement experimental data and our lattice result.
- Tension at low Q^2 double virtual TFF η between our result and other estimates $_{16}$

Preliminary Results $a_{\mu}^{\text{pseudoscalar-pole}}$

Reminder:

$$\begin{aligned} a_{\mu}^{p-pole} &= \left(\frac{\alpha_e}{\pi}\right)^3 \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \left[w_1(Q_1, Q_2, \tau) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_1^2, -Q_3^2) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_2^2, 0) \right. \\ &+ w_2(Q_1, Q_2, \tau) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_1^2, -Q_2^2) \mathscr{F}_{p\gamma^*\gamma^*}(-Q_3^2, 0) \right] \end{aligned}$$

• In the end we find

$$a_{\mu}^{\eta- ext{pole}} = (11\pm2)\cdot10^{-11}$$

 $a_{\mu}^{\eta'- ext{pole}} = (15.5\pm4.0)\cdot10^{-11}$

- Errors are on statistics only.
- Confirms that η, η' pole contributions are about 1/2 the size of the π^0 pole contribution (e.g. Mainz: $a_{\mu}^{\pi^0-\text{pole}} = 59.7(3.6) \cdot 10^{-11}$).
- Systematics still need to be fully understood so values may shift slightly.

- We performed the first ab-initio computation of the π^0,η,η' TFFs.
- Systematics need to be finalized.
- Pre-print will be out soon!
- New experimental data for π^0 TFF by BES-III (preliminary data already shown) and for η, η' TFF by JLab (expected) \rightarrow comparison with our result.

References

- Alexandrou, C. et al. (2022). The $\eta \rightarrow \gamma^* \gamma^*$ transition form factor and the hadronic light-by-light η -pole contribution to the muon g-2 from lattice QCD.
- Aoyama, T. et al. (2020). The anomalous magnetic moment of the muon in the standard model. *Physics Reports*, 887:1–166.
- Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., Jin, L., Jung, C., and Lehner, C. (2020). Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD. *Physical Review Letters*, 124(13).
- Chao, E.-H., Hudspith, R. J., Gérardin, A., Green, J. R., Meyer, H. B., and Ottnad, K. (2021). Hadronic light-by-light contribution to $(g 2)_{\mu}$ from lattice QCD: a complete calculation. *Eur. Phys. J. C*, 81(7):651.
- Colangelo, G., Hoferichter, M., Kubis, B., Procura, M., and Stoffer, P. (2014a). Towards a data-driven analysis of hadronic light-by-light scattering. *Phys. Lett. B*, 738:6–12.
- Colangelo, G., Hoferichter, M., Procura, M., and Stoffer, P. (2014b). Dispersive approach to hadronic light-by-light scattering. *JHEP*, 09:091.

- Colangelo, G., Hoferichter, M., Procura, M., and Stoffer, P. (2015). Dispersion relation for hadronic light-by-light scattering: theoretical foundations. *JHEP*, 09:074.
- Gérardin, A., Meyer, H. B., and Nyffeler, A. (2016). Lattice calculation of the pion transition form factor $\pi^0 \rightarrow \gamma^* \gamma^*$. *Phys. Rev. D*, 94(7):074507.
- Gérardin, A., Meyer, H. B., and Nyffeler, A. (2019). Lattice calculation of the pion transition form factor with $N_f = 2 + 1$ Wilson quarks. *Phys. Rev. D*, 100(3):034520.
- Hoferichter, M., Hoid, B.-L., Kubis, B., Leupold, S., and Schneider, S. P. (2018). Dispersion relation for hadronic light-by-light scattering: pion pole. *Journal of High Energy Physics*, 2018(10).
- Ji, X. and Jung, C. (2001). Studying hadronic structure of the photon in lattice QCD. *Physical Review Letters*, 86(2):208–211.
- Knecht, M. and Nyffeler, A. (2002). Hadronic light-by-light corrections to the muon g-2: The pion-pole contribution. *Physical Review D*, 65(7).