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Contributions from known particles: The Standard Model

aµ(SM) = aµ(QED) + aµ(Weak) + aµ(Hadronic)

A. El-Khadra JETP 07 April 2021

Muon g-2: SM contributions

8

aµ = aµ(QED) + aµ(Weak) + aµ(Hadronic)
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Status of hadronic light-by-light contribution
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Diagrams to calculate 3

FIG. 2. Diagrams contributing to the muon anomaly. The di-
agrams in the top row are the leading ones, and do not vanish
in the SU(3) flavor limit. Strong interactions to all orders,
including gluons connecting the quark loops and sea quark
loops which are not connected by photons, are not shown.

The contribution to the muon g ≠ 2 can be calculated
with the combination of the hadronic four point function
H and the QED weighting function G [40]:

aHLbL
µ

e

m
ūsÕ (̨0)�i

2 us(̨0) (7)

= 1
V T

ÿ

xop

ÿ

x,y,z

1
2‘i,j,k

!
xop ≠ xref(x, y, z)

"
j

◊ i3e6Hk,fl,‡,⁄(xop, x, y, z)ūsÕ (̨0)Gfl,‡,Ÿ(x, y, z)us(̨0),

where ūsÕ (̨0), us(̨0) are Dirac spinors for the outgoing
and incoming muon in the diagram. �k = ‘i,j,k“i“j/(2i)
is the 4 ◊ 4 version of the Pauli matrix, ‡k. From the
spin structure of the muon particle, we can obtain the
expression for aHLbL

µ :

aHLbL
µ = 2me2

3
1
V T

ÿ

xop

ÿ

x,y,z

1
2‘i,j,k

!
xop ≠ xref(x, y, z)

"
j

◊ 6e4Hk,fl,‡,⁄(xop, x, y, z)Mi,fl,‡,⁄(x, y, z) (8)

where

Mi,fl,‡,⁄(x, y, z) = 1
2Tr

Ë1
6 i

3Gfl,‡,‹(x, y, z)�i

È
(9)

The QED weighting function G is shown diagramatically
in Fig. 3 and is expressed in terms of the free muon and
Feynman gauge photon propagators, Sµ and G:

G‡,Ÿ,fl(y, z, x) = lim
tsrcæ≠Œ,tsnkæŒ

emµ(tsnk≠tsrc) (10)

◊
⁄

–,—,÷,x̨snk,x̨src

G(x,–)G(y,—)G(z, ÷)

◊ Sµ (xsnk,—) i“‡Sµ(—, ÷)i“ŸSµ(÷,–)i“flSµ (–, xsrc)

As is well know, the above expression contains an infrared
divergence that vanishes after projection to its magnetic

tsrc tsnk↵, ⇢ ⌘, �,�

z

x y

FIG. 3. Diagramatic representation of the QED weighting
function defined in Eq. 9, following Ref. [40].

part. We can also remove this infrared divergent piece
by the following procedure:

G(1)
‡,Ÿ,fl(y, z, x) = 1

2G‡,Ÿ,fl(y, z, x) (11)

+ 1
2[Gfl,Ÿ,‡(x, z, y)]†

In addition we can perform somewhat arbitrary subtrac-
tions to this infinite volume QED weighting function
without changing the final result due to vector current
conservation satisfied by the hadronic four point func-
tion.

G(2)
‡,Ÿ,fl(y, z, x) = G(1)

‡,Ÿ,fl(y, z, x) (12)
≠ G(1)

‡,Ÿ,fl(z, z, x) ≠ G(1)
‡,Ÿ,fl(y, z, z).

Note that G
(1)
‡,Ÿ,fl(z, z, z) = 0, so this subtraction signif-

icantly reduces the size of the QED weighting function
when |x ≠ z| or |y ≠ z| is small. This is the region where
the hadronic function from the lattice calculation has the
largest discretization error. It turns out that this sub-
traction greatly reduces the discretization error. This is
the major finding of Ref. [40]. We should also note that
the subtraction does impact the integrand and partial
sum. In Ref. [42], a modified subtraction scheme is used,
so their integrand and partial sum cannot be directly
compared with ours. Finally, we include all the possible
permutations of the subtracted QED weighting function
which are required for the total contribution to the muon
g ≠ 2:

i3Gfl,‡,Ÿ(x, y, z) = G(2)
fl,‡,Ÿ(x, y, z) + G(2)

‡,Ÿ,fl(y, z, x) (13)
+ G(2)

Ÿ,fl,‡(z, x, y) + G(2)
Ÿ,‡,fl(z, y, x)

+ G(2)
fl,Ÿ,‡(x, z, y) + G(2)

‡,fl,Ÿ(y, x, z).

Another component of the master formula Eq. 8 is xref,
the reference position for the moment method to calcu-
late the magnetic moment. Again, due to current con-
servation, there are many possible choices for xref. In
this work, we use the following choice for the connected
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The first complete ab-initio LQCD result for HLbL
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We report the first result for the hadronic light-by-light scattering contribution to the muon anomalous
magnetic moment with all errors systematically controlled. Several ensembles using 2þ 1 flavors of
physical mass Möbius domain-wall fermions, generated by the RBC and UKQCD collaborations, are
employed to take the continuum and infinite volume limits of finite volume lattice QEDþ QCD. We find
aHLbLμ ¼ 7.87ð3.06Þstatð1.77Þsys × 10−10. Our value is consistent with previous model results and leaves
little room for this notoriously difficult hadronic contribution to explain the difference between the standard
model and the BNL experiment.

DOI: 10.1103/PhysRevLett.124.132002

Introduction.—The anomalous magnetic moment of the
muon is providing an important test of the standard model.
The current discrepancy between experiment and theory
stands between three and four standard deviations. An
ongoing experiment at Fermilab (E989) and one planned at
J-PARC (E34) aim to reduce the uncertainty of the BNL
E821 value [1] by a factor of four, and similar efforts are
underway on the theory side [2–31]. A key part of the latter
is to compute the hadronic light-by-light (HLbL) contri-
bution from first principles using lattice QCD [32–38].
Such a calculation, with all errors under control, is
crucial to interpret the anticipated improved experimental
results [39,40].
The magnetic moment is an intrinsic property of a spin-

1=2 particle, and is defined through its interaction with an
external magnetic field B, Hint ¼ −μ · B. Here

μ ¼ −g
e
2m

S; ð1Þ

where S is the particle’s spin, q and m are the electric
charge and mass, respectively, and g is the Landé g factor.
The Dirac equation predicts that g ¼ 2, exactly, so any

difference from 2 must arise from interactions. Lorentz and
gauge symmetries tightly constrain the form of the inter-
actions,

hμðp0ÞjJνð0ÞjμðpÞi

¼ −eūðp0Þ
!
F1ðq2Þγν þ i

F2ðq2Þ
4m

½γν; γρ&qρ
"
uðpÞ; ð2Þ

where Jν is the electromagnetic current, and F1 and F2 are
form factors, giving the charge and magnetic moment at
zero momentum transfer [q2 ¼ ðp0 − pÞ2 ¼ 0], or static
limit. uðpÞ and ūðpÞ are Dirac spinors. The anomalous part
of the magnetic moment is given by F2ð0Þ alone, and is
known as the anomaly,

aμ ≡ ðg − 2Þ=2 ¼ F2ð0Þ: ð3Þ

The desired matrix element in (2) is extracted in quantum
field theory from a correlation function of fields as depicted
in the Feynman diagrams shown in Fig. 1. Here we work in
coordinate (Euclidean) space and use lattice QCD for the
hadronic part which is intrinsically nonperturbative. QED is
treated using the same discrete, finite, lattice as used for the
hadronic part, while we remove the spatial zero modes of
the photon propagator. This method is called QEDL [41]. It
is perturbative with respect to QED, i.e, only diagrams
where the hadronic part is connected to the muon by three
photons enter the calculation.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 124, 132002 (2020)
Editors' Suggestion Featured in Physics

0031-9007=20=124(13)=132002(6) 132002-1 Published by the American Physical Society

It took many years and improvements to get there . . .
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PRD93(2015)014503:

We introduce a new sampling strategy with 10x reduced noise for same cost (red
versus black):

Mµ
LbL(q) remains constant, if we try to extract F2(q2) using Eq ???, the noise for F2(q2) would still

go like 1/ q. This can be a serious problem because we are really interested in the value of F2(q
2)

in the q→0 limit. Since we always evaluate the amplitude at q =2π/L, the noise for F2(q2) would
be proportion to L.

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

Figure 22. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. Just like Fig ???, 5 other possible permutations of the three internal photons are
not shown. (L) This is the diagram that we have already calculated. (M) We need to compute sequential
source propagators at xop for each polarizations of the external photon. (R) We also need to compuate
sequential source propagators at xop, but with the external photon momentum in opposite direction, since
we need use γ5-hermiticity to reverse the direction of the propagators, which reverses the momentum of the
external photon as well.

The reason that amplitude is proportion to q is the external photon is couple to a conserved
current of a quark loop. Current conservation ensures that the amplitude vanishes if the external
momentum is zero. Although we implemented exact conserved current at xop and sum it over the
entire space time in the method described above, we didn’t compute all three possible insertions for
the external photon. So the current is only truly conserved after stochastic average over x and y. As
a result, the noise would not be zero when q =0. To fix this, we just need to compute all diagrams
in above figure, then the noise would be proportion to q as well.1 These additional diagrams are
also computationally accessible. We only need to compute sequential propagators for each possible
polarizations and momentums of the external photon. We normally compute three polarization
directions x, y, and t, which are perpendicular to the direction of the external momentum z. This
would be six times more work for the quark loop part of the computation, but the cost for the
muon part remains unchanged. We can adjust M to rebalance the cost, so the over all cost increase
might not be significant but the potential gain can be large especially in a large volume.

There is also another trick. When we sum over z to get the exact photon, we don’t have to sum over
the entire volume, instead, we only sum over the region where |x− y |< |x−z | and |x− y |< |y −z |.2
This trick will enhance the signal in short distance but suppress signal and noise in long distance
where the distance. This trick is called MinDis in the tables blow.

4.1 Zero Total Current Prove

Here we try to prove that the sum of a conserved current is zero if it vanishes at the boundary.

Given:

∂µjµ = 0, (19)

1. Although the current conservation is exact, in finite lattice with periodic boundry condition, around the world
effects will contribute to the noise even when the external momentum is zero. But this noise is suppressed expo-
nentially in the large volume limit. In summary, in the small q and large volume limit, the noise is roughly
O(q)+ O

(
e−mπL/2

)
.

2. We need multiply some different factors when two edges happened to have the same length.

19

Figure 9. A comparison of the results for F2(q
2)/(α/π)3 obtained in the original lattice QCD

cHLbL calculation [17] (diamonds) with those obtained on the same gauge field ensemble using the

moment method presented here (circles). The points from the original subtraction method with

q2 = (2π/24)2 = (457MeV)2 were obtained from 100 configurations and the evaluation of 81,000

point-source quark propagators for each value of the source-sink separation tsep. In contrast, the

much more statistically precise results from the moment method required a combined 26,568 quark

propagator inversions for both values of tsep and correspond to q2 = 0. The moment method value

for tsep = 32 is listed in Tab. IX.

make use of the most effective of the numerical strategies discussed above: the use of exact

photon propagators and the position-space moment method to determine F2 evaluated at

q2 = 0. Since these calculations are less computationally costly than those for QCD we

can evaluate a number of volumes and lattice spacings (all specified with reference to the

muon mass) and examine the continuum and infinite volume limits. We can then compare

our results, extrapolated to vanishing lattice spacing and infinite volume, with the known

result calculated in standard QED perturbation theory [33, 34]. This QED calculation both

serves as a demonstration of the capability of lattice methods to determine such light-by-light

scattering amplitudes and as a first look at the size of the finite-volume and non-zero-lattice-

spacing errors.

In Fig. 10 we show results for F2(0) computed for three different lattice spacings, i.e.

39

Stochastically evaluate the sum over vertices x and y :

▶ Pick random point x on lattice

▶ Sample all points y up to a specific distance r = |x − y |, see vertical red line

▶ Pick y following a distribution P(|x − y |) that is peaked at short distances
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PRD96(2017)034515:

We remove power-law like finite-volume errors by computing the muon-photon part of
the diagram in infinite volume (similar idea proposed by Mainz group)

xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ

z, �

y, � x, ⇢

xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ
z, �

y, � x, ⇢

xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ
z, �

y, � x, ⇢

Figure 5. The three di�erent possible insertions of the external photon in the connected light-by-

light diagram. While the location of the external photon vertex xop may be fixed, the other three

positions where the internal photons are connected to the quark line x, y and z must be integrated

over space-time.

z must remain close to the fixed position xop. Thus, up to exponentially small corrections

Eq. (4) can also be evaluated in a large but finite volume.

Starting with Eq. (4) we exploit the translational symmetry discussed above, and dis-

place the four arguments x, y, z and xop of the function F� by the four-vector (x + y)/2,

transforming that equation into

G�(pf , xop, pi) =

Z
d4x

Z
d4y

Z
d4z F�

�
x � y

2
, �x � y

2
, z � x + y

2
, xop � x + y

2

�

ei�q·(�x+�y)/2. (5)

=

Z
d4w

Z
d4�z

Z
d4�xop F�

�w

2
, �w

2
, �z, �xop

�
ei�q·�xope�i�q·��xop , (6)

where we have defined q = pi � pf and in the final equation we have adopted the three new

integration variables:

w = x � y, �z = z � x + y

2
, �xop = xop � x + y

2
. (7)

The critical step in our derivation replaces the factor e�i�q·��xop in Eq. (6) by (e�i�q·��xop � 1)

giving:

G�(pf , xop, pi) =

Z
d4w

Z
d4�z

Z
d4�xop F�

�w

2
, �w

2
, �z, �xop

�
ei�q·�xop

�
e�i�q·��xop � 1

�
, (8)

The extra ‘1’ term introduced into the integrand over �xop will vanish if

�

�(�xop)�
F�

�w

2
, �w

2
, �z, �xop

�
= 0 (9)

2

For this diagram separate QCD and QED expectation values are
not zero hence category two and we need to sum over all
displacements between QCD and QED part to control FV errors.
Class b.
Proposal of stochastic sampling ... in the process ... no data yet

25 / 26
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Paper in preparation using explicit pion-pole cancellation
Diagrams to calculate 3

FIG. 2. Diagrams contributing to the muon anomaly. The di-
agrams in the top row are the leading ones, and do not vanish
in the SU(3) flavor limit. Strong interactions to all orders,
including gluons connecting the quark loops and sea quark
loops which are not connected by photons, are not shown.

The contribution to the muon g � 2 can be calculated
with the combination of the hadronic four point function
H and the QED weighting function G [40]:

aHLbL
µ

e

m
ūs�(�0)�i

2 us(�0) (7)

= 1
V T

�

xop

�

x,y,z

1
2�i,j,k

�
xop � xref(x, y, z)

�
j

� i3e6Hk,�,�,�(xop, x, y, z)ūs�(�0)G�,�,�(x, y, z)us(�0),

where ūs�(�0), us(�0) are Dirac spinors for the outgoing
and incoming muon in the diagram. �k = �i,j,k�i�j/(2i)
is the 4 � 4 version of the Pauli matrix, �k. From the
spin structure of the muon particle, we can obtain the
expression for aHLbL

µ :

aHLbL
µ = 2me2

3
1
V T

�

xop

�

x,y,z

1
2�i,j,k

�
xop � xref(x, y, z)

�
j

� 6e4Hk,�,�,�(xop, x, y, z)Mi,�,�,�(x, y, z) (8)

where

Mi,�,�,�(x, y, z) = 1
2Tr

�1
6 i

3G�,�,�(x, y, z)�i

�
(9)

The QED weighting function G is shown diagramatically
in Fig. 3 and is expressed in terms of the free muon and
Feynman gauge photon propagators, Sµ and G:

G�,�,�(y, z, x) = lim
tsrc���,tsnk��

emµ(tsnk�tsrc) (10)

�
�

�,�,�,�xsnk,�xsrc

G(x,�)G(y,�)G(z, �)

� Sµ (xsnk,�) i��Sµ(�, �)i��Sµ(�,�)i��Sµ (�, xsrc)

As is well know, the above expression contains an infrared
divergence that vanishes after projection to its magnetic

tsrc tsnk↵, � �,� �,�

z

x y

FIG. 3. Diagramatic representation of the QED weighting
function defined in Eq. 9, following Ref. [40].

part. We can also remove this infrared divergent piece
by the following procedure:

G(1)
�,�,�(y, z, x) = 1

2G�,�,�(y, z, x) (11)

+ 1
2[G�,�,�(x, z, y)]†

In addition we can perform somewhat arbitrary subtrac-
tions to this infinite volume QED weighting function
without changing the final result due to vector current
conservation satisfied by the hadronic four point func-
tion.

G(2)
�,�,�(y, z, x) = G(1)

�,�,�(y, z, x) (12)
� G(1)

�,�,�(z, z, x) � G(1)
�,�,�(y, z, z).

Note that G
(1)
�,�,�(z, z, z) = 0, so this subtraction signif-

icantly reduces the size of the QED weighting function
when |x � z| or |y � z| is small. This is the region where
the hadronic function from the lattice calculation has the
largest discretization error. It turns out that this sub-
traction greatly reduces the discretization error. This is
the major finding of Ref. [40]. We should also note that
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�,�,�(z, x, y) + G(2)
�,�,�(z, y, x)
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�,�,�(x, z, y) + G(2)

�,�,�(y, x, z).

Another component of the master formula Eq. 8 is xref,
the reference position for the moment method to calcu-
late the magnetic moment. Again, due to current con-
servation, there are many possible choices for xref. In
this work, we use the following choice for the connected
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tion is ≠25/34. In our present computational setup, we
use the same infinite volume QCD weighting function for
both the connected and disconnected diagrams, and use
the same variable Rmax to study the partial-sum of the
connected and disconnected diagrams.[55] Therefore the
same ratio applies to the contribution to aµ. Formally,
we have:

lim
RæŒ

adiscon
µ (Rmax > R)
acon
µ (Rmax > R) = ≠1

2 · (e2u + e2d)2
e4u + e4d

= ≠25
34 .

(28)

This ratio is exact in the large Rmax limit and not a�ected
by lattice artifacts or finite volume e�ects. Therefore, we
can construct the following combination:

ano-pion
µ = adiscon

µ + 25
34a

con
µ , (29)

where the fi0 exchange contribution to ano-pion
µ vanishes

in the long distance. We plot the summand and partial-
sum of ano-pion

µ in Fig. 6. Indeed, the partial sum of
ano-pion
µ reaches the plateau much earlier than the con-

nected or disconnected diagrams. This trick of combining
the connected and disconnected with appropriate factors
to obtain a faster plateau was employed in Ref. [56]. For
ano-pion
µ , we will use 2.0 fm and 2.5 fm as the upper limit

of Rmax. The results are shown in Tab. II as “48I light no-
pion Rmax < 2.5fm” or “48I light no-pion Rmax < 2fm”.

In the upper panel of Fig. 6, we fit the summand to
the following empirical form:

f(Rmax) = A
R6

max
R3

max + C3 e
≠BRmax (30)

The fit range is from 0.5 fm to 4 fm. We use the result
of the fit to estimate the long-distance contribution to
ano-pion
µ . Since this is a completely empirical fit, we will

assign a 100% systematic uncertainty to it. The “no-
pion" results are also collected in Tab. II.

With the definition of ano-pion
µ , we obtain:

adiscon
µ = ano-pion

µ ≠ 25
34a

con
µ , (31)

atotal
µ = ano-pion

µ + 9
34a

con
µ . (32)

The advantage comes in using the early plateau value
of ano-pion

µ and combining it with acon
µ , which plateaus

at much larger Rmax. This is a “hybrid” approach to
calculate adiscon

µ and atotal
µ , which has a much smaller

statistical error than the direct combination. For acon
µ ,

we will use 4 fm as the upper limit of Rmax. The results
are shown in Tab. II as entries that start with “48I light
discon Rmax < 4fm hybrid-” and “48I light Rmax < 4fm
hybrid-”.

The fitting function form in Eq. (30) is inspired by the
function in Eq. (20) of Ref. [42]. The functional form
used here di�ers due to the meanings of Rmax and the

variable “|y|” in Ref. [42]. Also, note that the subtrac-
tion scheme of the QED weighting function is also di�er-
ent [40–42, 57]. We tried using this fit function to fit other
contributions. The results are shown in Appendix C.

The remaining finite volume, pion mass, and non-
zero lattice spacing corrections will be studied in Sec-
tions IV D, IV E, and IV F.

B. Strange quark contribution
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FIG. 7. Strange quark contributions computed on the 48I
ensemble from the connected diagrams, the disconnected dia-
grams, and the total. The upper plot shows the corresponding
summands and the lower plot shows the partial sum.

The contributions from the strange quark connected
diagrams, the disconnected diagrams, and the sum of the
two contributions are plotted in Fig. 7. Note the strange
quark disconnected diagrams include diagrams where one
or both loops are strange quark loops, while the light
quark disconnected diagrams discussed in the previous
section only contain light quarks. As seen in the fig-
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Long-distance pion-pole cancels in ano−pion
µ such that it can be evaluated at shorter

distances. Only less noisy connected diagram remains.
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Status and impact of hadronic vacuum polarization contribution
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Dispersive, e+e− → hadrons (20+ years
of experiments)

Ab-initio lattice QCD(+QED) calculations
are maturing

Difficult problem: scales from 2mπ to sev-
eral GeV enter; cross-checks needed at high
precision

Hybrid window method restricts scales that
enter from lattice/dispersive data

Now first published lattice result with sub-percent precision available (BMW20), cross-checks are crucial to
establish or refute high-precision lattice methodology (same situation as for HLbL)
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Diagrams – Isospin limit 2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the �� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m, �m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the �� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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x

(a) M

x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

Diagrams – QED corrections

and fit d�.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d� and E� and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E� and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.
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Figure 1: QED corrections
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Figure 2: SIB corrections
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Diagrams – Strong isospin breaking
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FIG. 1. The diagrams of a complete calculation of aHVP LO
µ when formulated as an expansion around an isospin-symmetric

limit. In the isospin-symmetric limit, there is a quark-connected (left) and quark-disconnected contribution (right). For the
QED- and strong-isospin-breaking (SIB) corrections, we indicate the photon vertices that connect to the muon with filled dots
and only show the respective sub-diagrams. For the QED corrections, one has to enforce the exchange of gluons between the
quark loops in diagram F to avoid double-counting of higher-order HVP contributions. For the SIB corrections, the crosses
denote scalar operator insertions to allow for a linear correction in the respective quark masses.

can be defined, which gives the same value of aHVP LO
µ in the continuum limit. We use both versions to scrutinize the

continuum extrapolation.

The correlator C(t) is computed in lattice QCD+QED at physical pion mass with non-degenerate up- and down-
quark masses including up-, down-, strange-, and charm-quark contributions. The missing bottom-quark contributions
are estimated using perturbative QCD.

B. Euclidean windows

In the following, we suppress the leading-order HVP LO label for brevity. Following [31], we define Euclidean
windows that partition the contributions of time-slices t in Eq. (1) into short-distance (SD), window (W), and long-
distance (LD) contributions. To make the quantities well-defined at non-zero lattice spacing, we introduce smearing
kernels with width �. We write

aµ = aSD
µ + aW

µ + aLD
µ , (6)
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We present a first-principles lattice QCDþ QED calculation at physical pion mass of the leading-order
hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total
contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects
is aHVP LO

μ ¼ 715.4ð18.7Þ × 10−10. By supplementing lattice data for very short and long distances with
R-ratio data, we significantly improve the precision to aHVP LO

μ ¼ 692.5ð2.7Þ × 10−10. This is the currently
most precise determination of aHVP LO

μ .

DOI: 10.1103/PhysRevLett.121.022003

Introduction.—The anomalous magnetic moment of the
muon aμ is defined as the deviation of the Landé factor gμ
from Dirac’s relativistic quantum mechanics result,
aμ ¼ ½ðgμ − 2Þ=2&. It is one of themost precisely determined
quantities in particle physics and is currently known both
experimentally (BNL E821) [1] and from a standard model
theory calculation [2] to approximately1=2parts permillion.
Interestingly, the standard model result aSMμ deviates

from the experimental measurement aexptμ at the 3–4σ level,
depending on which determination of the leading-order
hadronic vacuum polarization aHVP LO

μ is used. One finds
[3–6]

aexptμ − aSMμ ¼ 25.0ð4.3Þð2.6Þð6.3Þ × 10−10 ½3; 4&;
31.8ð4.1Þð2.6Þð6.3Þ × 10−10 ½4; 5&;
26.8ð3.4Þð2.6Þð6.3Þ × 10−10 ½4; 6&; ð1Þ

where the quoted errors correspond to the uncertainty in
aHVP LO
μ , aSMμ − aHVP LO

μ , and aexptμ . This tension may hint at
new physics beyond the standard model of particle physics
such that a reduction of uncertainties in Eq. (1) is highly
desirable. New experiments at Fermilab (E989) [7] and
J-PARC (E34) [8] intend to decrease the experimental

uncertainty by a factor of 4. First results of the E989
experiment may be available before the end of 2018 [9]
such that a reduction in uncertainty of the aHVP LO

μ con-
tribution is of timely interest.
In the following, we perform a complete first-principles

calculation of aHVP LO
μ in lattice QCDþ QED at physical

pion mass with nondegenerate up and down quark masses
and present results for the up, down, strange, and charm
quark contributions. Our lattice calculation of the light-
quark QED correction to aHVP LO

μ is the first such calcu-
lation performed at physical pion mass. In addition, we
replace lattice data at very short and long distances by
experimental eþe− scattering data using the compilation of
Ref. [10], which allows us to produce the currently most
precise determination of aHVP LO

μ .
Computational method.—The general setup of our non-

perturbative lattice computation is described in Ref. [11].
We compute

aμ ¼ 4α2
Z

∞

0
dq2fðq2Þ½Πðq2Þ − Πðq2 ¼ 0Þ&; ð2Þ

where fðq2Þ is a known analytic function [11] and Πðq2Þ is
defined as

P
xe

iqxhJμðxÞJνð0Þi ¼ ðδμνq2 − qμqνÞΠðq2Þ
with sum over space-time coordinate x and JμðxÞ ¼
i
P

f Q fΨ̄fðxÞγμΨfðxÞ. The sum is over up, down, strange,
and charm quark flavors with QED charges Q up;charm ¼ 2=3
and Q down;strange ¼ −1=3. For convenience we do not
explicitly write the superscript HVP LO. We compute
Πðq2Þ using the kernel function of Refs. [12,13]
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Lattice QCD – Time-Moment Representation

Starting from the vector current Jµ(x) = i
∑

f QfΨf (x)γµΨf (x) we may
write

aHVP LO
µ =

∞∑

t=0

wtC (t)

with

C (t) =
1

3

∑

x⃗

∑

j=0,1,2

⟨Jj(x⃗ , t)Jj(0)⟩

and wt capturing the photon and muon part of the HVP diagrams
(Bernecker-Meyer 2011).

The correlator C (t) is computed in lattice QCD+QED at physical pion
mass with non-degenerate up and down quark masses including up,
down, strange, and charm quark contributions. The missing bottom
quark contributions are computed in pQCD.

11 / 21



Window method (introduced in RBC/UKQCD 2018)

We also consider a window method. Following Meyer-Bernecker 2011
and smearing over t to define the continuum limit we write

aµ = aSDµ + aWµ + aLDµ

with

aSDµ =
∑

t

C (t)wt [1−Θ(t, t0,∆)] ,

aWµ =
∑

t

C (t)wt [Θ(t, t0,∆)−Θ(t, t1,∆)] ,

aLDµ =
∑

t

C (t)wtΘ(t, t1,∆) ,

Θ(t, t ′,∆) = [1 + tanh [(t − t ′)/∆]] /2 .

All contributions are well-defined individually and can be computed from
lattice or R-ratio via C (t) = 1

12π2

∫∞
0

d(
√
s)R(s)se−

√
st with

R(s) = 3s
4πα2σ(s, e

+e− → had).

aWµ has small statistical and systematic errors on lattice!
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We compute the standard Euclidean window of the hadronic vacuum polarization using multiple
independent blinded analyses. We improve the continuum and infinite-volume extrapolations of
the dominant quark-connected light-quark isospin-symmetric contribution and address additional
sub-leading systematic e↵ects from sea-charm quarks and residual chiral-symmetry breaking from
first principles. We find aW

µ = 235.56(65)(50) ⇥ 10�10, which is in 3.8� tension with the recently
published dispersive result of aW

µ = 229.4(1.4)⇥10�10 [1] and in agreement with other recent lattice
determinations. We also provide a result for the standard short-distance window. The results
reported here are unchanged compared to our presentation at the Edinburgh workshop of the g-2
Theory Initiative in 2022 [2].

PACS numbers: 12.38.Gc

I. INTRODUCTION

The anomalous magnetic moment of the muon aµ is defined as the relative deviation of the muon’s Landé factor
gµ from Dirac’s relativistic quantum mechanics result, aµ = gµ/2 � 1. It is one of the most precisely determined
quantities in particle physics and has exhibited a persistent tension between the experimentally measured value and
the Standard Model theory result.

In order to reduce the experimental uncertainties, substantial e↵orts are currently undertaken at Fermilab (E989)
and planned at J-PARC (E34) [3]. In 2021 the Fermilab experiment released first results [4] confirming the previously
best result obtained by the BNL E821 experiment [5] and reducing the experimental uncertainty from 0.54 ppm to
0.46 ppm. Over the next few years, the Fermilab experiment aims to reduce the uncertainty further to approximately
0.14 ppm [6].

The Standard Model result provided by the Muon g-2 Theory Initiative [7–27] currently has an uncertainty of
0.37 ppm and is in 4.2� tension with the experimental value. A further reduction of the theory uncertainty by at least
a factor of two is therefore needed [28] to match the expected experimental progress over the next few years. More
than 90% of the theory uncertainty is due to the leading-order hadronic vacuum polarization (HVP) contribution
such that a reduction of its uncertainty is particularly pressing.

The leading-order HVP contribution a
HVP LO
µ can be related to e

+
e
� decays using a dispersion relation such that, to

the degree that there is no new physics in e
+
e
� decays, it can be used to represent the Standard Model theory result.

The Muon g-2 Theory Initiative result quoted above uses this method to determine the HVP contribution. One can
also relate the HVP contribution to hadronic ⌧ decays, however, this requires precise first-principles knowledge of the
needed isospin rotation. Our collaboration is working on such a calculation [29] and we will report on related progress
in a separate publication. Finally, the HVP contribution can be computed from first principles using systematically
improvable lattice QCD+QED methods.
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Blinding

▶ 2 analysis groups for ensemble parameters (not blinded)

▶ 5 analysis groups for vector-vector correlators (blinded, to
avoid bias towards other lattice/R-ratio results)

▶ Blinded vector correlator Cb(t) relates to true correlator C0(t)
by

Cb(t) = (b0 + b1a
2 + b2a

4)C0(t) (1)

with appropriate random b0, b1, b2, different for each analysis
group. This prevents complete unblinding based on previously
shared data on coarser ensembles.
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Relative unblinding 15

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

A B C D E RBC/UKQCD 23

aµ
W(t0 = 0.4 fm, t1 = 1.0 fm, Δ = 0.15 fm)

FIG. 8. Result of the relative unblinding procedure for aW
µ inlcuding the preferred prescription RBC/UKQCD 23 described in

Sec. IV D. The data is normalized to the RBC/UKQCD 23 prescription. The inner error bars show the statistical uncertainty,
the outer error bars show the statistical and systematic uncertainties added in quadrature.

Finding 1: The correlator C ll has significantly larger a2/t2 and a4/t4 errors compared to C lc. These errors also
noticeably a↵ect aW

µ . In Fig. 7, we plot the dimensionless t3C(t) to highlight this e↵ect.

Finding 2: Mean-field improved lattice perturbation theory finds the discretization errors of C ll to be approximately
double the discretization errors of C lc.

Finding 3: When analyzing aSD
µ , where both a2 and a4 coe�cients were determined, the size of the a4 coe�cient is

substantially larger for C ll compared to C lc.

Finding 4: The continuum extrapolation is sensitive to how finite-volume corrections are applied to the individual
ensembles. This is an important e↵ect in our analyses since the new finest 96I ensemble has a larger physical
volume compared to the 64I and 48I ensembles.

D. Preferred prescription

Based on the findings outlined in Sec. IV C, the collaboration decided on the following principles for the combined
analysis that will be used for the full unblinding. First, when using C ll, we always add a a4 term to the fits. Second,
we use the Hansen-Patella finite-volume corrections instead of the data-driven fits to e�m⇡L since we expect the
Hansen-Patella formalism to more precisely map out the volume dependence.

These principles are then implemented in the following prescription for aW
µ . For the vector current renormalization

factor, we use ZV as well as Z?
V with t? = 1 fm. For the weight functions we use ŵt as well as wt. For the continuum

extrapolation, we perform a simultaneous fit to the C ll and C lc data sets using

fll(a
2) = c0 + c1a

2 + c2a
4 , (38)

flc(a
2) = c0 + c3a

2 (39)

as well as

fll,↵(a2) = c0 + c1a
2↵s(µ = 1/a) + c2a

4 , (40)

flc,↵(a2) = c0 + c3a
2↵s(µ = 1/a) . (41)

We therefore perform 8 fits in total. We take the average of the minimum and maximum result as the central value for
our prediction. We take the di↵erence of the central value to the maximum as our systematic error for the continuum
extrapolation. In Fig. 8, we show the final result of the relative unblinding for each group as well as the preferred
prescription, labelled RBC/UKQCD 23. For aSD

µ the results of groups A and B were close to identical and we adopt
the prescription of group A as the preferred result.
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Full unblinding on August 31st, 2022
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FIG. 10. Continuum extrapolation of aW,iso,conn,ud
µ ⇥ 1010. On the left, we show the 8 fits of our preferred prescription. On

the right, we show the fit through the two data points already available in Ref. [31] with lower statistical precision.

Colangelo et al. 2022
BMW 2020/KNT

Aubin et al. 2019/CL/KNT
RBC/UKQCD 2018/FJ
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ETMC 2022
Mainz 2022
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RBC/UKQCD 2018

 224  226  228  230  232  234  236  238  240
aµ

W(0.4 fm, 1.0 fm, 0.15 fm) × 1010

FIG. 11. Comparison of the total intermediate window contribution. For historical completeness, we also show results that
are superseded by newer results of the same collaboration at the top in gray. Dispersive resuls are shown in purple, lattice
results are shown in green. The inner error bars show the statistical uncertainty, the outer error bars show the statistical and
systematic uncertainties added in quadrature. RBC/UKQCD 2018 [31], ETMC 2021 [73], BMW 2020 [30], Mainz 2022 [75],
ETMC 2022 [76], RBC/UKQCD 2018/FJ [78], Aubin et al. 2019/CL/KNT [79], BMW 2020/KNT [80], Colangelo et al. 2022
[1].

prediction for the total intermediate window contribution

aW
µ = 235.56(65)(50) ⇥ 10�10 (44)

with statistical (left) and systematic (right) errors given separately. This can be compared with other lattice results
as well as results based on the R-ratio, see Fig. 11. Our result is in 3.8� tension with the recently published dispersive
result of aW

µ = 229.4(1.4) ⇥ 10�10 [1] and in agreement with recent lattice results [30, 75, 76].

B. Short-distance window aSD
µ

For the short-distance window aSD
µ in the isospin-symmetric limit with t0 = 0.4 fm and � = 0.15 fm, we find the

up and down quark-connected contribution to be

aSD,iso,conn,ud
µ = 48.7(0.5)(1.6) ⇥ 10�10 (45)

in the BMW20 world and

aSD,iso,conn,ud
µ = 49.0(0.6)(1.4) ⇥ 10�10 (46)

24 data points enter new continuum extrapolation, in 2018 had only 2 data points

Already generating data at two finer lattice spacings (a2/fm2 = 0.0017, 0.003)
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Isospin symmetric standard window in context

16

Fermilab/HPQCD/MILC 2023
RBC/UKQCD 2023

ETMC 2022
Mainz 2022

ChiQCD 2022 OV/HISQ
ChiQCD 2022 OV/DWF

Aubin et al. 2022
LM 2020

BMW 2020
ETMC 2021

Aubin et al. 2019
RBC/UKQCD 2018

 195  200  205  210  215
aµ

W,iso,conn,ud(0.4 fm, 1.0 fm, 0.15 fm) × 1010

FIG. 9. Comparison of the up and down quark, connected, isospin-symmetric contribution to the intermediate window. For
historical completeness, we also show results that are superseded by newer results of the same collaboration at the top in gray.
The inner error bars show the statistical uncertainty, the outer error bars show the statistical and systematic uncertainties
added in quadrature. RBC/UKQCD 2018 [31], Aubin et al. 2019 [32], ETMC 2021 [73], BMW 2020 [30], LM 2020 [34], Aubin
et al. 2022 [35], �QCD 2022 [74], Mainz 2022 [75], ETMC 2022 [76], Fermilab/HPQCD/MILC 2023 [77].

V. ABSOLUTE UNBLINDING

After the collaboration converged on the preferred prescription described in Sec. IV D, the analysis was frozen and
the absolute unblinding was performed. To this end, the unblinded data sets were distributed to the analysis groups,
who then re-ran their analysis without modifications. The results were presented by our collaboration already at the
Edinburgh workshop of the g-2 Theory Initiative [2] in 2022 and are stated without modifications in the following.

A. Intermediate-distance window aW
µ

For the intermediate-distance window aW
µ in the isospin-symmetric limit with t0 = 0.4 fm, t1 = 1.0 fm, and � = 0.15

fm, we find the up and down quark-connected contribution to be

aW,iso,conn,ud
µ = 206.36(44)S(42)C(01)FV(00)m⇡ FV(08)@m C(00)WF order(03)mres

⇥ 10�10 (42)

in the BMW20 world and

aW,iso,conn,ud
µ = 206.46(53)S(43)C(01)FV(01)m⇡ FV(09)@m C(00)WF order(03)mres ⇥ 10�10 (43)

in the RBC/UKQCD18 world. We separately quote the statistical uncertainties (S), the continuum limit uncertainties
(C), the finite-volume uncertainties for the vector correlators (FV), the finite-volume uncertainties of the measured
pion masses (m⇡ FV), the uncertainties associated with the linear corrections to the line of constant physics (@m C),
the uncertainties from the discretization of the Wilson flow equation (WF order), as well as the uncertainties due to
the non-zero chiral symmetry breaking (mres). The uncertainties from the ensemble-parameter and renormalization-
factor determinations are fully propagated in the quoted uncertainties. In Fig. 9, we compare Eq. (42) with previously
published results. In this work, we consistently use the BMW20 world for comparison plots of isospin-symmetric
contributions.

Compared to our earlier result presented in Ref. [31], where aW
µ was defined and computed for the first time, we

increase the basis for our continuum extrapolation from 2 data points over two lattice spacings to 24 data points over
three lattice spacings. If we were to repeat the continuum extrapolation through the 2 data points already available
in Ref. [31] with lower statistical precision, we obtain a result consistent with the earlier work of aW,iso,conn,ud

µ =

202.9(1.4) ⇥ 10�10. This is shown in Fig. 10. The approximate 2� upward shift compared to Ref. [31] can therefore
dominantly be attributed to our improved continuum extrapolation.

In Ref. [31], we also computed the QED, strong-isospin-breaking, strange, charm, and quark-disconnected contribu-
tions to the intermediate window quantity. These contributions are much smaller in magnitude and their uncertainties
due to the continuum extrapolation are much smaller in absolute terms compared to aW,iso,conn,ud

µ . By combining
these contributions with our improved light quark-connected, isospin-symmetric result of Eq. (43), we obtain our
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Adding back the QED+SIB parts calculated in RBC/UKQCD2018
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FIG. 10. Continuum extrapolation of aW,iso,conn,ud
µ ⇥ 1010. On the left, we show the 8 fits of our preferred prescription. On

the right, we show the fit through the two data points already available in Ref. [31] with lower statistical precision.
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FIG. 11. Comparison of the total intermediate window contribution. For historical completeness, we also show results that
are superseded by newer results of the same collaboration at the top in gray. Dispersive resuls are shown in purple, lattice
results are shown in green. The inner error bars show the statistical uncertainty, the outer error bars show the statistical and
systematic uncertainties added in quadrature. RBC/UKQCD 2018 [31], ETMC 2021 [73], BMW 2020 [30], Mainz 2022 [75],
ETMC 2022 [76], RBC/UKQCD 2018/FJ [78], Aubin et al. 2019/CL/KNT [79], BMW 2020/KNT [80], Colangelo et al. 2022
[1].

prediction for the total intermediate window contribution

aW
µ = 235.56(65)(50) ⇥ 10�10 (44)

with statistical (left) and systematic (right) errors given separately. This can be compared with other lattice results
as well as results based on the R-ratio, see Fig. 11. Our result is in 3.8� tension with the recently published dispersive
result of aW

µ = 229.4(1.4) ⇥ 10�10 [1] and in agreement with recent lattice results [30, 75, 76].

B. Short-distance window aSD
µ

For the short-distance window aSD
µ in the isospin-symmetric limit with t0 = 0.4 fm and � = 0.15 fm, we find the

up and down quark-connected contribution to be

aSD,iso,conn,ud
µ = 48.7(0.5)(1.6) ⇥ 10�10 (45)

in the BMW20 world and

aSD,iso,conn,ud
µ = 49.0(0.6)(1.4) ⇥ 10�10 (46)

3.8σ tension between lattice and e+e− → hadrons
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Short-distance window also computed

Stability tested against α4
s massless QCD calculation Chetyrkin &

Maier, 2011: 18
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FIG. 12. Stability plot of Eq. (48) for t0 = 0.4 fm and � = 0.15 fm. The massless perturbative QCD result is taken from
Ref. [72]. The correction from zero quark mass to non-zero quark mass is obtained from a linear extrapolation in the quark
mass using ensembles 48I, 1, and 4. The horizontal lines give the result of lattice QCD without combination with perturbative
QCD. Only the quark-connected isospin-symmetric up and down quark contribution is shown.

in the RBC/UKQCD18 world. We can substantially improve this result by replacing the very shortest distances
with perturbative QCD. Such a hybrid result of perturbative and non-perturbative QCD is still a first-principles
determination but may combine the strength of both approaches. In addition, the study of the consistency of lattice
QCD and perturbative QCD at short distances may play an important role in understanding the origin of the tension
for aW

µ described in Sec. VA.
To establish a hybrid method, we use the additive property of the windows, i.e.,

aSD
µ (t0, �) = aSD

µ (tp, �) + aW
µ (tp, t0, �) . (47)

We can then evaluate the first term in perturbative QCD at O(↵4) [72] and the second term in lattice QCD, i.e., we
write

aSD
µ (t0, �) = aSD,pQCD

µ (tp, �) + aW
µ (tp, t0, �) . (48)

In Fig. 12, we study this separation as a function of tp. To the degree that perturbative QCD agrees with lattice QCD
at distance tp, the plot should exhibit a plateau. We find that lattice QCD and perturbative QCD are consistent
within 1.5 ⇥ 10�10 up to 0.4 fm. For a related study of matching perturbative QCD to short-distance vector current
correlators, see Ref. [81]. If we choose tp = 0.1 fm, we find

aSD,iso,conn,ud
µ = 48.51(43)(53) ⇥ 10�10 (49)

in the BMW20 world and

aSD,iso,conn,ud
µ = 48.70(52)(59) ⇥ 10�10 (50)

in the RBC/UKQCD18 world. This is our preferred prescription for aSD,iso,conn,ud
µ . We compare Eq. (49) to previous

results in Fig. 13. The hybrid method reduces the large discretization errors for the short-distance window and
specifically also reduces the logarithmic discretization errors described in Refs. [82] and [83].

Finally, we note that the short-distance correlator is insensitive to the quark mass, see Fig. 14. This motivates a
new approach to study the continuum limit of the HVP. Since discretization errors largely cancel in the di↵erence
between vector currents evaluated at di↵erent quark masses, we proposed a mass-splitting approach in Ref. [84]. In
this approach, we generate pairs of ensembles with m⇡ and M⇡ with M⇡ � m⇡ to compute

aµ(m⇡) = aµ(m⇡) � aµ(M⇡)| {z }
⌘�aµ

+aµ(M⇡) . (51)
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Short-distance window in context
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FIG. 13. Comparison of our preferred result with previous determinations. For historical completeness, we also show results
that are superseded by newer results of the same collaboration at the top in gray. The inner error bars show the statistical
uncertainty, the outer error bars show the statistical and systematic uncertainties added in quadrature. ETMC 2021 [73],
ETMC 2022 [76].
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FIG. 14. Mass dependence of the vector correlator on a lattice with a�1 = 1.73 GeV. At very short distances, the vector
correlator is e↵ectively independent of the quark mass.

This allows us to consider the continuum limit of �aµ and aµ(M⇡) separately. The costly term �aµ can then be
calculated at coarser lattice spacings compared to aµ(M⇡). This method will be used in upcoming improvements to
the present calculation.

C. Isospin-symmetric scheme dependence

For comparisons of quantities defined in an isospin-symmetric world, it is crucial to precisely match the definitions
of the isospin-symmetric point. In Sec. II C, we defined two hadronic schemes to define the isospin-symmetric world
that match results previously presented by the RBC/UKQCD and BMW collaborations. In previous sections, we
presented our results separately for both schemes. In this section, we provide results for the correlated di↵erence of
the BMW20 minus the RBC/UKQCD18 world. For the intermediate window we find

�aW,iso,conn,ud
µ = �0.10(24)(07) ⇥ 10�10 (52)

and for the short-distance window we find

�aSD,iso,conn,ud
µ = �0.33(36)(36) ⇥ 10�10 (53)

using the lattice results of Eqs. (45) and (46). We can therefore not yet resolve the di↵erence in isospin-symmetric
schemes and they can be viewed as compatible at the current precision.

D. Retrospective discussion of the blinding procedure

In the current paper, we performed a blinded analysis as described in Sec. II D. The goal of this procedure was
to eliminate psychological bias that may have influenced systematic decisions of the analysis groups to favor either
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Summary:

▶ In isospin symmetric limit SD and standard windows are
converging within lattice QCD.

▶ Tension for standard window with dispersive approach.

▶ Working on LD update. Possibly available this summer.

▶ Working on update to QED+SIB as well, possibly available
this fall.

▶ Also: τ decays; on-going project for needed QED+SIB
corrections

▶ Our final goal: match or surpass final FNAL experimental
precision
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