Hadronic contributions to $(g - 2)_{\mu}$

Gilberto Colangelo

$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

NePSi 2023, February 15, 2023

Outline

Introduction: $(g - 2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$ Data-driven approach Lattice approach: BMW result and its consequences Window quantity: Lattice vs. data-driven

Radiative corrections

Forward-backward asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Dispersive approach to FSR in $e^+e^- \rightarrow \pi^+\pi^-$

Conclusions and Outlook

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$ Data-driven approach Lattice approach: BMW result and its consequences Window quantity: Lattice vs. data-driven

Radiative corrections

Forward-backward asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Dispersive approach to FSR in $e^+e^- \rightarrow \pi^+\pi^-$

Conclusions and Outlook

Present status of $(g - 2)_{\mu}$: experiment vs SM

Before

Introduction HVP to $(g - 2)_{\mu}$ Radiative corrections Conclusions

Present status of $(g - 2)_{\mu}$: experiment vs SM

After the Fermilab result

Present status of $(g - 2)_{\mu}$: experiment vs SM

After the Fermilab result

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice , <i>udsc</i>)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 061 (41)
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	251(59)

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice BMW(20), udsc)	7075(55)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 061 (41)
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	251(59)

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g - 2 Theory Initiative Steering Committee: GC Michel Davier (vice-chair) Aida El-Khadra (chair) Martin Hoferichter Laurent Lellouch Christoph Lehner (vice-chair) Tsutomu Mibe (J-PARC E34 experiment) Lee Roberts (Fermilab E989 experiment) Thomas Teubner Hartmut Wittig

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g-2 Theory Initiative

Workshops:

- ▶ 1st plenary meeting, Q-Center (Fermilab), 3-6 June 2017
- HVP WG workshop, KEK (Japan), 12-14 February 2018
- HLbL WG workshop, U. of Connecticut, 12-14 March 2018
- 2nd plenary meeting, Mainz, 18-22 June 2018
- ► 3rd plenary meeting, Seattle, 9-13 September 2019
- Lattice HVP workshop, virtual, 16-20 November 2020
- 4th plenary meeting, KEK (virtual), 28 June-02 July 2021
- ▶ 5th plenary meeting, Higgs Center Edinburgh, 5-9 Sept. 2022
- 6th plenary meeting, Bern, 4-8 Sept. 2023

White Paper executive summary (my own)

- QED and EW known and stable, negligible uncertainties
- HVP dispersive: consensus number, conservative uncertainty (KNT19, DHMZ19, CHS19, HHK19)
- HVP lattice: consensus number, $\Delta a_{\mu}^{\text{HVP,latt}} \sim 5 \Delta a_{\mu}^{\text{HVP,disp}}$

(Fermilab-HPQCD-MILC18,20, BMW18, RBC/UKQCD18, ETM19,SK19, Mainz19, ABTGJP20)

- $\begin{array}{l} \blacktriangleright \hspace{0.1cm} \text{HVP BMW20: central value} \rightarrow \text{discrepancy} < 2\sigma; \\ \Delta a_{\mu}^{\text{HVP,BMW}} \sim \Delta a_{\mu}^{\text{HVP,disp}} \hspace{0.1cm} \text{published 04/21} \rightarrow \text{not in WP} \end{array}$
- ► HLbL dispersive: consensus number, w/ recent improvements $\Rightarrow \Delta a_{\mu}^{\text{HLbL}} \sim 0.5 \Delta a_{\mu}^{\text{HVP}}$
- ► HLbL lattice: single calculation, agrees with dispersive $(\Delta a_{\mu}^{\text{HLbL,latt}} \sim 2 \Delta a_{\mu}^{\text{HLbL,disp}}) \rightarrow \text{final average} \qquad (\text{RBC/UKQCD20})$

Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) is O(α²), dominates the total uncertainty, despite being known to < 1%

unitarity and analyticity ⇒ dispersive approach
 ⇒ direct relation to experiment: σ_{tot}(e⁺e⁻ → hadrons)
 e⁺e⁻ Exps: BaBar, Belle, BESIII, CMD2/3, KLOE2, SND
 alternative approach: lattice, becoming competitive
 (BMW, ETMC, Fermilab, HPQCD, Mainz, MILC, RBC/UKQCD)

 \longrightarrow talks by Lehner, Sanfilippo, Szabo, Tavella

Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) is O(α²), dominates the total uncertainty, despite being known to < 1%</p>
- Hadronic light-by-light (HLbL) is O(α³), known to ~ 20%, second largest uncertainty (now subdominant)

- earlier: model-based—uncertainties difficult to quantify
- ► recently: dispersive approach ⇒ data-driven, systematic treatment
- lattice QCD is becoming competitive (Mainz, RBC/UKQCD)

 \longrightarrow talks by Lehner, Verplanke

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$ Data-driven approach Lattice approach: BMW result and its consequences Window quantity: Lattice vs. data-driven

Radiative corrections Forward-backward asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Dispersive approach to FSR in $e^+e^- \rightarrow \pi^+\pi^-$

Conclusions and Outlook

Ş

HVP contribution: Master Formula

Unitarity relation: simple, same for all intermediate states

 $\mathrm{Im}\bar{\Pi}(q^2) \propto \sigma(e^+e^- \to \mathrm{hadrons}) = \sigma(e^+e^- \to \mu^+\mu^-)R(q^2)$

Analyticity $\left[\bar{\Pi}(q^2) = \frac{q^2}{\pi} \int ds \frac{\mathrm{Im}\bar{\Pi}(s)}{s(s-q^2)}\right] \Rightarrow$ Master formula for HVP

$$\Rightarrow a_{\mu}^{\text{hvp}} = \frac{\alpha^2}{3\pi^2} \int_{s_{th}}^{\infty} \frac{ds}{s} K(s) R(s)$$

K(s) known, depends on m_{μ} and $K(s) \sim \frac{1}{s}$ for large s

Comparison between DHMZ19 and KNT19

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
$\kappa^+\kappa^-$	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
K _S K _L	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^{0}\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without cc)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7,\infty){ m GeV}$	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\mathrm{DV+QCD}}$	692.8(2.4)	1.2

2π : comparison with the dispersive approach

The 2π channel can itself be described dispersively \Rightarrow more constrained theoretically Ananthanarayan, Caprini, Das (19), GC, Hoferichter, Stoffer (18)

Energy range	ACD18	CHS18	DHMZ19	KNT19
$\begin{array}{l} \leq 0.6 {\rm GeV} \\ \leq 0.7 {\rm GeV} \\ \leq 0.8 {\rm GeV} \\ \leq 0.9 {\rm GeV} \\ \leq 1.0 {\rm GeV} \end{array}$		110.1(9) 214.8(1.7) 413.2(2.3) 479.8(2.6) 495.0(2.6)	110.4(4)(5) 214.7(0.8)(1.1) 414.4(1.5)(2.3) 481.9(1.8)(2.9) 497.4(1.8)(3.1)	108.7(9) 213.1(1.2) 412.0(1.7) 478.5(1.8) 493.8(1.9)
[0.6, 0.7] GeV [0.7, 0.8] GeV [0.8, 0.9] GeV [0.9, 1.0] GeV		104.7(7) 198.3(9) 66.6(4) 15.3(1)	104.2(5)(5) 199.8(0.9)(1.2) 67.5(4)(6) 15.5(1)(2)	104.4(5) 198.9(7) 66.6(3) 15.3(1)
$ \begin{array}{c} \leq 0.63 {\rm GeV} \\ [0.6, 0.9] {\rm GeV} \\ [\sqrt{0.1}, \sqrt{0.95}] {\rm GeV} \end{array} $	132.9(8)	132.8(1.1) 369.6(1.7) 490.7(2.6)	132.9(5)(6) 371.5(1.5)(2.3) 493.1(1.8)(3.1)	131.2(1.0) 369.8(1.3) 489.5(1.9)

WP(20)

Combination method and final result

Complete analyses DHMZ19 and KNT19, as well as CHS19 (2π) and HHK19 (3π) , have been so combined:

- central values are obtained by simple averages (for each channel and mass range)
- the largest experimental and systematic uncertainty of DHMZ and KNT is taken
- ► 1/2 difference DHMZ-KNT (or BABAR-KLOE in the 2π channel, if larger) is added to the uncertainty

Final result:

$$a_{\mu}^{ ext{HVP, LO}} = 693.1(2.8)_{ ext{exp}}(2.8)_{ ext{sys}}(0.7)_{ ext{DV+QCD}} imes 10^{-10} = 693.1(4.0) imes 10^{-10}$$

The BMW result

State-of-the-art lattice calculation of $a_{\mu}^{\text{HVP, LO}}$ based on

- current-current correlator, summed over all distances, integrated in time with appropriate kernel function (TMR)
- using staggered fermions on an L ~ 6 fm lattice (L ~ 11fm used for finite volume corrections)
- at (and around) physical quark masses
- including isospin-breaking effects

Data-driven Lattice au

The BMW result

Borsanyi et al. Nature 2021, \longrightarrow talk by Szabo

Data-driven Lattice au

The BMW result

Borsanyi et al. Nature 2021, \longrightarrow talk by Szabo

awin

The BMW result

Article

The BMW result

Weight functions for window quantities

Present status of the window quantities

Lattice calculations of a_{μ}^{win} , circa 2021

D. Giusti, talk at Lattice 2021

Present status of the window quantities

Now several lattice calculations confirm BMW's result

 \longrightarrow talk by Sanfilippo

Present status of the window quantities

Now several lattice calculations confirm BMW's result

 \longrightarrow talk by Sanfilippo

Data-driven Lattice a...

Data-driven Lattice $a_{\mu}^{\rm win}$

Present status of the window quantities

Now several lattice calculations confirm BMW's result

Individual-channel contributions to a_{μ}^{win}

Channel	total	window
$\pi^+\pi^-$	504.23(1.90)	144.08(49)
$\pi^+\pi^-\pi^0$	46.63(94)	18.63(35)
$\pi^+\pi^-\pi^+\pi^-$	13.99(19)	8.88(12)
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.15(74)	11.20(46)
$\kappa^+\kappa^-$	23.00(22)	12.29(12)
K _S KL	13.04(19)	6.81(10)
$\pi^{0}\gamma$	4.58(10)	1.58(4)
Sum of the above	623.62(2.27)	203.47(78)
[1.8, 3.7] GeV (without cc)	34.45(56)	15.93(26)
$J/\psi, \psi(2S)$	7.84(19)	2.27(6)
$[3.7,\infty)$ GeV	16.95(19)	1.56(2)
WP(20) / GC, El-Khadra et al. (22)	693.1(4.0)	229.4(1.4)
BMWc Mainz/CLS ETMc	707.5(5.5)	236.7(1.4) 237.3(1.5) 235.0(1.1)
RBC/UKQCD		235.6(0.8)

Numbers for the channels refer to KNT19 - thanks to Alex Keshavarzi for providing them

 $\Delta a_{\mu}^{\text{HVP, LO}} = 14.4(6.8)(2.1\sigma),$

$$\Delta a_{\mu}^{
m win} \sim$$
 6.5(1.5) (\sim 4.3 σ)

Consequences of the BMW result

A shift in the value of $a_{\mu}^{\text{HVP, LO}}$ would have consequences:

- $\blacktriangleright \Delta a_{\mu}^{\mathsf{HVP, LO}} \quad \Leftrightarrow \quad \Delta \sigma (e^+ e^- \to \mathrm{hadrons})$
- ► $\Delta \alpha_{had}(M_Z^2)$ is determined by an integral of the same $\sigma(e^+e^- \rightarrow hadrons)$ (more weight at high energy)
- changing a^{HVP, LO} necessarily implies a shift in Δα_{had}(M²_Z): size depends on the energy range of Δσ(e⁺e⁻ → hadrons)
- a shift in $\Delta \alpha_{had}(M_Z^2)$ has an impact on the EW-fit
- ► to save the EW-fit $\Delta\sigma(e^+e^- \rightarrow hadrons)$ must occur below \sim 1 (max 2) GeV

Crivellin, Hoferichter, Manzari, Montull (20)/Keshavarzi, Marciano, Passera, Sirlin (20)/Malaescu, Schott (20)

or the need for BSM physics would be moved elsewhere

 $\sigma(e^+e^-
ightarrow \pi^+\pi^-)$ and $F_{\pi}^{V}(s)$

- ▶ Below 1 2 GeV only one significant channel: $\pi^+\pi^-$
- Strongly constrained by analyticity and unitarity $(F_{\pi}^{V}(s))$
- ► $F_{\pi}^{V}(s)$ parametrization which satisfies these \Rightarrow small number of parameters GC, Hoferichter, Stoffer (18)
- ► $\Delta a_{\mu}^{\text{HVP, LO}}$ \Leftrightarrow shifts in these parameters analysis of the corresponding scenarios GC, Hoferichter, Stoffer (21)

Data-driven Lattice a

Vector form factor of the pion

$$\langle \pi^i({\it p}')|V^k_\mu(0)|\pi^l({\it p})
angle=i\epsilon^{ikl}({\it p}'+{\it p})_\mu F^V_\pi({\it s})\qquad {\it s}=({\it p}'-{\it p})^2$$

Analyticity:

$$e^{-i\delta(s)}F_{\pi}^{V}(s) \in \mathbb{R} \text{ for } s+i\varepsilon, 4M_{\pi}^{2} \leq s < \infty$$

Exact solution:

Omnès (58)

$$\mathcal{F}^{\mathcal{V}}_{\pi}(s) = \mathcal{P}(s)\Omega(s) = \mathcal{P}(s)\exp\left\{rac{s}{\pi}\int_{4M_{\pi}^2}^{\infty}rac{ds'}{s'}rac{\delta(s')}{s'-s}
ight\} \;\;,$$

P(s) a polynomial ⇔ behaviour of $F_{\pi}^{V}(s)$ for $s \to \infty$ (or zeros) ► normalization fixed by gauge invariance:

$$F_{\pi}^{V}(0) = 1$$
 $\stackrel{\text{no zeros}}{\Longrightarrow}$ $P(s) = 1$

• $e^+e^- \rightarrow \pi^+\pi^-$ data \Rightarrow free parameters in $\Omega(t)$

Omnès representation including isospin breaking

Omnès representation including isospin breaking

Omnès representation

$$F_{\pi}^{V}(s) = \exp\left[rac{s}{\pi}\int_{4M_{\pi}^{2}}^{\infty}ds'rac{\delta(s')}{s'(s'-s)}
ight] \equiv \Omega(s)$$

Split elastic ($\leftrightarrow \pi\pi$ phase shift, δ_1^1) from inelastic phase

$$\delta = \delta_1^1 + \delta_{\mathrm{in}} \quad \Rightarrow \quad F_{\pi}^V(s) = \Omega_1^1(s)\Omega_{\mathrm{in}}(s)$$

Eidelman-Lukaszuk: unitarity bound on δ_{in}

$$\begin{split} \sin^2 \delta_{\text{in}} &\leq \frac{1}{2} \Big(1 - \sqrt{1 - r^2} \Big) , \ r = \frac{\sigma_{e^+e^- \to \neq 2\pi}^{l=1}}{\sigma_{e^+e^- \to 2\pi}} \Rightarrow s_{\text{in}} = (M_{\pi} + M_{\omega})^2 \\ \rho - \omega - \text{mixing} \qquad \qquad F_V(s) = \Omega_{\pi\pi}(s) \cdot \Omega_{\text{in}}(s) \cdot G_{\omega}(s) \\ G_{\omega}(s) &= 1 + \epsilon \frac{s}{s_{\omega} - s} \qquad \text{where} \qquad s_{\omega} = (M_{\omega} - i\Gamma_{\omega}/2)^2 \end{split}$$

Fit results

Fit results

Data-driven Lattice a^{win}

Fit results

Fit results

GC, Hoferichter, Stoffer (21)

Tension [BMW20 vs e^+e^- data] stronger for KLOE than for BABAR

Change
$$\sigma(e^+e^- \to \pi^+\pi^-)_{|_{\sqrt{s} < 1 \text{GeV}}}$$
 to agree w/ BMW

GC, Hoferichter, Stoffer (21)

Change $\sigma(e^+e^- o \pi^+\pi^-)_{|_{\sqrt{s}<1GeV}}$ to agree w/ BMW

GC, Hoferichter, Stoffer (21)

$$10^{4} \Delta \alpha_{\text{had}}^{(5)}(M_{Z}^{2}) = \begin{cases} 272.2(4.1) & \text{EW fit} \\ 276.1(1.1) & \sigma_{\text{had}}(s) \end{cases}$$

Change $\sigma(e^+e^- \rightarrow \pi^+\pi^-)_{\mid_{\sqrt{s}<1GeV}}$ to agree w/ BMW

GC, Hoferichter, Stoffer (21)

Change $\sigma(e^+e^- o \pi^+\pi^-)_{|_{\sqrt{s}<1GeV}}$ to agree w/ BMW

GC, Hoferichter, Stoffer (21)

How does the change in $(2\pi, < 1 \text{GeV})$ affect a_{μ}^{win} ?

Channel	total	window
$\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}\pi^{0}$ $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ $K^{+}K^{-}$	504.23(1.90) 46.63(94) 13.99(19) 18.15(74) 23.00(22)	144.08(49) 18.63(35) 8.88(12) 11.20(46) 12.29(12)
$rac{\kappa_{S}\kappa_{L}}{\pi^{0}\gamma}$	13.04(19) 4.58(10)	6.81(10) 1.58(4)
Sum of the above	623.62(2.27)	203.47(78)
$\begin{matrix} [1.8, 3.7] \mathrm{GeV} \ (\text{without} \ c \bar{c}) \\ J/\psi, \ \psi(2S) \\ [3.7, \infty) \mathrm{GeV} \end{matrix}$	34.45(56) 7.84(19) 16.95(19)	15.93(26) 2.27(6) 1.56(2)
WP(20) / GC, El-Khadra et al. (22)	693.1(4.0)	229.4(1.4)
BMWc Mainz/CLS ETMc RBC/UKQCD	707.5(5.5)	236.7(1.4) 237.3(1.5) 235.0(1.1) 235.6(0.8)

Numbers for the channels refer to KNT19 - thanks to Alex Keshavarzi for providing them

 $\Delta a_{\mu}^{\text{HVP, LO}} = 14.4(6.8)(2.1\sigma),$

$$\Delta a_{\mu}^{
m win} \sim$$
 6.5(1.5) (\sim 4.3 σ)

How does the change in $(2\pi, < 1 \text{GeV})$ affect a_{μ}^{win} ?

Channel	total	window
	518.6 46.63(94) 13.99(19) 18.15(74) 23.00(22) 13.04(19)	148 18.63(35) 8.88(12) 11.20(46) 12.29(12) 6.81(10)
$\pi^0 \gamma$	4.58(10)	1.58(4)
Sum of the above	638.0	207.5
$[1.8, 3.7] ext{ GeV} ext{ (without } car c) \ J/\psi, \ \psi(2S) \ [3.7, \infty) ext{ GeV}$	34.45(56) 7.84(19) 16.95(19)	15.93(26) 2.27(6) 1.56(2)
WP(20) / GC, El-Khadra et al. (22)	707.5	233.4
BMWc Mainz/CLS ETMc RBC/UKQCD	707.5(5.5)	236.7(1.4) 237.3(1.5) 235.0(1.1) 235.6(0.8)

Numbers for the channels refer to KNT19 - thanks to Alex Keshavarzi for providing them

$$\Delta a_{\mu}^{ extsf{HVP, LO}} = \mathbf{0}, \qquad \Delta a_{\mu}^{ extsf{win}} \sim \mathbf{2.5}$$

What does this tell us about \sqrt{s} -range of $\Delta \sigma(e^+e^-)$?

- ∆σ(e⁺e⁻) all < 1 GeV does not allow one to satisfy simultaneously Δa^{HVP, LO}_μ = 0 and Δa^{win}_μ = 0
- $\Delta \sigma(e^+e^-)$ must happen < 2 GeV (EWFit)

Weight function \in (0.5, 0.65)

► assume reasonable shape of $\Delta \sigma(e^+e^-)$ (no negative shifts) ⇒ at least 40% of $\Delta a_{\mu}^{\text{HVP, LO}} = 14.4$ from above 1 GeV

 \longrightarrow see also talk by De Santis

What does this tell us about \sqrt{s} -range of $\Delta \sigma(e^+e^-)$?

Channel	total	window
$\begin{array}{c} \pi^{+}\pi^{-} \\ \pi^{+}\pi^{-}\pi^{0} \\ \pi^{+}\pi^{-}\pi^{+}\pi^{-} \\ \pi^{+}\pi^{-}\pi^{0}\pi^{0} \\ K_{KL} \\ \kappa_{KL} \\ \pi^{0}\gamma \end{array}$	504.23(1.90) 46.63(94) 13.99(19) 18.15(74) 23.00(22) 13.04(19) 4.58(10)	144.08(49) 18.63(35) 8.88(12) 11.20(46) 12.29(12) 6.81(10) 1.58(4)
Sum of the above	623.62(2.27)	203.47(78)
	34.45(56) 7.84(19) 16.95(19)	15.93(26) 2.27(6) 1.56(2)
WP(20) / GC, El-Khadra et al. (22)	693.1(4.0)	229.4(1.4)
BMWc Mainz/CLS ETMc RBC/UKQCD	707.5(5.5)	236.7(1.4) 237.3(1.5) 235.0(1.1) 235.6(0.8)

Numbers for the channels refer to KNT19 - thanks to Alex Keshavarzi for providing them

Fermilab/HPQCD/MILC result

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$ Data-driven approach Lattice approach: BMW result and its consequences Window quantity: Lattice vs. data-driven

Radiative corrections

Forward-backward asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Dispersive approach to FSR in $e^+e^- \rightarrow \pi^+\pi^-$

Conclusions and Outlook

Radiative corrections to $e^+e^- \rightarrow \pi^+\pi^-$

Initial State Radiation:

can be calculated in QED in terms of $F_{\pi}^{V}(s)$

Radiative corrections to $e^+e^- ightarrow \pi^+\pi^-$

Final State Radiation:

requires hadronic matrix elements beyond $F_{\pi}^{V}(s)$ known in ChPT to one loop

Kubis, Meißner (01)

Radiative corrections to $e^+e^- ightarrow \pi^+\pi^-$

Interference terms:

also require hadronic matrix elements beyond $F_{\pi}^{V}(s)$

Radiative corrections to $e^+e^- \rightarrow \pi^+\pi^-$

Interference terms:

also require hadronic matrix elements beyond $F_{\pi}^{V}(s)$ other than in the 1 π -exchange approximation;

do not contribute to the total cross section because *C*-odd but to the forward-backward asymmetry

 A_{FB} RC for $e^+e^- \rightarrow \pi^+\pi^-$

Dispersive approach to FSR

 A_{FB} RC for $e^+e^- \rightarrow \pi^+\pi^-$

Dispersive approach to FSR

Neglecting intermediate states beyond 2π , unitarity reads

$$\begin{array}{lll} \frac{{\rm Disc}F_{\pi}^{V,\alpha}(s)}{2i} & = & \frac{(2\pi)^4}{2}\int d\Phi_2 F_{\pi}^V(s)\times T_{\pi\pi}^{\alpha*}(s,t) \\ & + & \frac{(2\pi)^4}{2}\int d\Phi_2 F_{\pi}^{V,\alpha}(s)\times T_{\pi\pi}^*(s,t) \\ & + & \frac{(2\pi)^4}{2}\int d\Phi_3 F_{\pi}^{V,\gamma}(s,t) T_{\pi\pi}^{\gamma*}(s,\{t_i\}) \end{array}$$

Dispersive approach to FSR

Neglecting intermediate states beyond 2π , unitarity reads

$$egin{array}{rll} rac{{
m Disc} {\cal F}_{\pi}^{V,lpha}(s)}{2i} &=& rac{(2\pi)^4}{2}\int d\Phi_2 {\cal F}_{\pi}^V(s) imes T_{\pi\pi}^{lpha*}(s,t) \ &+& rac{(2\pi)^4}{2}\int d\Phi_2 {\cal F}_{\pi}^{V,lpha}(s) imes T_{\pi\pi}^*(s,t) \ &+& rac{(2\pi)^4}{2}\int d\Phi_3 {\cal F}_{\pi}^{V,lpha}(s,t) T_{\pi\pi}^{\gamma*}(s,\{t_i\}) \end{array}$$

 \Rightarrow need $T^{\alpha}_{\pi\pi}$ as well as $T^{\gamma}_{\pi\pi}$ and $F^{V,\gamma}_{\pi}$ as input

 A_{FB} RC for $e^+e^- \rightarrow \pi^+\pi^-$

Dispersive approach to FSR

Neglecting intermediate states beyond 2π , unitarity reads

$$egin{array}{rll} rac{{
m Disc} {F}_{\pi}^{V,lpha}(s)}{2i}&=&rac{(2\pi)^4}{2}\int d\Phi_2 {F}_{\pi}^V(s) imes {T}_{\pi\pi}^{lpha*}(s,t)\ &+&rac{(2\pi)^4}{2}\int d\Phi_2 {F}_{\pi}^{V,lpha}(s) imes {T}_{\pi\pi}^*(s,t)\ &+&rac{(2\pi)^4}{2}\int d\Phi_3 {F}_{\pi}^{V,lpha}(s,t){T}_{\pi\pi}^{\gamma*}(s,\{t_i\}) \end{array}$$

⇒ need $T^{\alpha}_{\pi\pi}$ as well as $T^{\gamma}_{\pi\pi}$ and $F^{V,\gamma}_{\pi}$ as input The DR for $F^{V,\alpha}_{\pi}(s)$ takes the form of an integral equation

 A_{FB} RC for $e^+e^- \rightarrow \pi^+\pi^-$

Forward-backward asymmetry

$$\frac{d\sigma_0}{dz} = \frac{\pi \alpha^2 \beta^3}{4s} (1 - z^2) \left| F_{\pi}^V(s) \right|^2, \qquad \beta = \sqrt{1 - \frac{4M_{\pi}^2}{s}}, \qquad z = \cos\theta$$
$$A_{\text{FB}}(z) = \frac{\frac{d\sigma}{dz}(z) - \frac{d\sigma}{dz}(-z)}{\frac{d\sigma}{dz}(z) + \frac{d\sigma}{dz}(-z)}$$

$$\frac{d\sigma}{dz}\bigg|_{C\text{-odd}} = \frac{d\sigma_0}{dz} \Big[\delta_{\text{soft}}(m_{\gamma}^2, \Delta) + \delta_{\text{virt}}(m_{\gamma}^2)\Big] + \frac{d\sigma}{dz}\bigg|_{\text{hard}}(\Delta)$$

$$\delta_{\text{soft}} = \frac{2\alpha}{\pi} \left\{ \log \frac{m_{\gamma}^2}{4\Delta^2} \log \frac{1+\beta z}{1-\beta z} + \log(1-\beta^2) \log \frac{1+\beta z}{1-\beta z} + \dots \right\}$$

Calculation of δ_{virt} in the 1π -exchange approximation

cut the diagrams in the t (or u) channel

▶ represent the subamplitude $e^+e^- \rightarrow \pi^+\pi^-$ dispersively

$$rac{F_{\pi}^V(s)}{s} = rac{1}{s-m_{\gamma}^2} - rac{1}{\pi}\int_{4M_{\pi}^2}^{\infty} ds' \, rac{{
m Im} F_{\pi}^V(s')}{s'} rac{1}{s-s'}$$

which leads to

GC, Hoferichter, Monnard, Ruiz de Elvira (22)

$$\begin{split} \delta_{\text{virt}} &= \bar{\delta}_{\text{virt}} \left(m_{\gamma}^2, m_{\gamma}^2 \right) - \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\text{Im} F_{\pi}^V(s')}{s'} \left[\bar{\delta}_{\text{virt}} \left(s', m_{\gamma}^2 \right) + \bar{\delta}_{\text{virt}} \left(m_{\gamma}^2, s' \right) \right] \\ &+ \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\text{Im} F_{\pi}^V(s')}{s'} \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds'' \frac{\text{Im} F_{\pi}^V(s'')}{s''} \bar{\delta}_{\text{virt}}(s', s''), \end{split}$$

Calculation of δ_{virt} in the 1 π -exchange approximation

GC, Hoferichter, Monnard, Ruiz de Elvira (22)

$$\begin{split} \bar{\delta}_{\text{virt}} &= -\frac{\text{Re}F_{\pi}^{V}(s)}{2\beta^{2}s(1-z^{2})|F_{\pi}^{V}(s)|^{2}}\frac{\alpha}{\pi} \\ &\times \text{Re}\bigg[4t(M_{\pi}^{2}-t)\left(C_{0}(m_{\theta}^{2},t,M_{\pi}^{2},s',m_{\theta}^{2},M_{\pi}^{2})+C_{0}(m_{\theta}^{2},t,M_{\pi}^{2},s'',m_{\theta}^{2},M_{\pi}^{2})\right) \\ &-4t\bigg(sC_{0}(m_{\theta}^{2},s,m_{\theta}^{2},m_{\theta}^{2},s',s'')-tC_{0}(M_{\pi}^{2},s,M_{\pi}^{2},M_{\pi}^{2},s',s'')\bigg) \\ &+4(M_{\pi}^{2}-t)\Big((M_{\pi}^{2}-t)^{2}+M_{\pi}^{4}+t(s'+s''-u)\Big) \\ &\times D_{0}(m_{\theta}^{2},m_{\theta}^{2},M_{\pi}^{2},M_{\pi}^{2},s,t,s',m_{\theta}^{2},s'',M_{\pi}^{2})-(t\leftrightarrow u)\bigg] \\ &+(\text{Re}\rightarrow\text{Im}) \end{split}$$

Numerical analysis

GC, Hoferichter, Monnard, Ruiz de Elvira (22)

GVMD describes well preliminary CMD3 data

Ignatov, Lee (22)

Numerical analysis

GC, Hoferichter, Monnard, Ruiz de Elvira (22)

Figure courtesy of F. Ignatov

Dispersive treatment of FSR in $e^+e^- \rightarrow \pi^+\pi^-$

$$egin{array}{rll} rac{{
m Disc} {\cal F}_{\pi}^{V,lpha}(s)}{2i} &=& rac{(2\pi)^4}{2}\int d\Phi_2 {\cal F}_{\pi}^V(s) imes T_{\pi\pi}^{lpha*}(s,t) \ &+& rac{(2\pi)^4}{2}\int d\Phi_2 {\cal F}_{\pi}^{V,lpha}(s) imes T_{\pi\pi}^*(s,t) \ &+& rac{(2\pi)^4}{2}\int d\Phi_3 {\cal F}_{\pi}^{V,lpha}(s,t) T_{\pi\pi}^{\gamma*}(s,\{t_i\}) \end{array}$$

Long digression \Rightarrow $T^{\alpha}_{\pi\pi}$

Approximation: only 2π intermediate states for $F_{\pi}^{V,\gamma}$ and $T_{\pi\pi}^{\gamma}$:

All subamplitudes known $\Rightarrow F_{\pi}^{V,\gamma}$ and $T_{\pi\pi}^{\gamma}$

Evaluation of $F_{\pi}^{V,\alpha}$

Having evaluated all the following diagrams

J. Monnard, PhD thesis 2021

Impact on $a_{\mu}^{\rm HVP}$

Ideally: use calculated RC in the data analysis (future?).

Quick estimate of the impact:

thanks to M. Hoferichter and P. Stoffer

- 1. remove RC from the measured $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$
- 2. fit with the dispersive representation for $F_{\pi}^{V}(s)$
- 3. insert back the RC

The impact on $a_{\mu}^{\rm HVP}$ is evaluated by comparing to the result obtained by removing RC with $\eta(s)$ calculated in sQED

$$10^{11}\Delta a_{\mu}^{\rm HVP} = \begin{cases} 10.2 \pm 0.5 \pm 5 & \text{FsQED} \\ 10.5 \pm 0.5 \pm (?) & \text{triangle} \\ 13.2 \pm 0.5 & \text{full} \end{cases}$$

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$ Data-driven approach Lattice approach: BMW result and its consequences Window quantity: Lattice vs. data-driven

Radiative corrections Forward-backward asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Dispersive approach to FSR in $e^+e^- \rightarrow \pi^+\pi^-$

Conclusions and Outlook

Conclusions

- Current status of the (g 2)_μ: 4.2σ discrepancy between SM (WP20) and experiment (BNL+FNAL)
- Data-driven evaluation of the HVP contribution (WP20): 0.6% error ⇒ dominates the theory uncertainty
- ► Recent lattice calculation [BMW(20)] has reached a similar precision but differs from the dispersive one (=from e⁺e⁻ data). If confirmed ⇒ discrepancy with experiment ∖ below 2σ
- For the intermediate window BMW has been confirmed by other lattice collaborations (Aubin et al., Mainz, ETMc, RBC/UKQCD, Fermilab-HPQCD-MILC) Disagreement with data-driven worse than for the total: puzzle!
- Evaluation of the HLbL contribution based on the dispersive approach: 20% accuracy. Two recent lattice calculations [RBC/UKQCD(20), Mainz(21)] agree with it

Outlook

- The Fermilab experiment aims to reduce the BNL uncertainty by a factor four \Rightarrow potential 7σ discrepancy
- Improvements on the SM theory/data side:
 - HVP data-driven:

Other e^+e^- experiments are available or forthcoming: SND, BaBar, Belle II, BESIII, CMD3 \Rightarrow Error reduction Model-independent evaluation of RadCorr underway MuonE will provide an alternative way to measure HVP

HVP lattice:

calculations with precision \sim BMW for $a_{\mu}^{\text{HVP, LO}}$ are awaited Discrepancy with data-driven for a_{μ}^{win} must be understood

- HLbL data-driven: goal of ~ 10% uncertainty within reach
- ► HLbL lattice: RBC/UKQCD ⇒ similar precision as Mainz. Good agreement with data-driven evaluation.

Future: Muon g - 2/EDM experiment @ J-PARC

Backup Slides

Calculating the HLbL contribution

The HLbL contribution is a very complex quantity

4-point function of em currents in QCD

early on, it has been calculated with models

Hayakawa-Kinoshita-Sanda/Bijnens-Pallante-Prades (96), Knecht, Nyffeler (02), Melnikov, Vainshtein (04)

a data-driven approach, like for HVP, has only recently been developed and used

GC, Hoferichter, Procura, Stoffer=CHPS (14,15,17), Hoferichter, Hoid, Kubis, Leupold, Schneider (18)

Iattice QCD is becoming competitive

RBC/UKQCD (20), Mainz (21)
HLbL contribution: Master Formula

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{48\pi^2} \int_0^{\infty} dQ_1 \int_0^{\infty} dQ_2 \int_{-1}^{1} \sqrt{1-\tau^2} \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)$$

 Q_i^{μ} are the Wick-rotated four-momenta and τ the four-dimensional angle between Euclidean momenta:

$$Q_1 \cdot Q_2 = |Q_1| |Q_2| \tau$$

The integration variables $Q_1 := |Q_1|, Q_2 := |Q_2|$.

GC, Hoferichter, Procura, Stoffer (15)

T_i: known kernel functions

Improvements obtained with the dispersive approach

Contribution	PdRV(09) Glasgow consensus	N/JN(09)	J(17)	WP(20)
π^0, η, η' -poles π, K -loops/boxes S-wave $\pi\pi$ rescattering	114(13) -19(19) -7(7)	99(16) -19(13) -7(2)	95.45(12.40) -20(5) -5.98(1.20)	93.8(4.0) -16.4(2) -8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
scalars tensors axial vectors <i>u, d, s</i> -loops / short-distance	 15(10) 	 22(5) 21(3)	1.1(1) 7.55(2.71) 20(4)	} - 1(3) 6(6) 15(10)
c-loop	2.3	-	2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

significant reduction of uncertainties in the first three rows

CHPS (17), Masjuan, Sánchez-Puertas (17) Hoferichter, Hoid et al. (18), Gerardin, Meyer, Nyffeler (19)

- 1 2 GeV resonances affected by basis ambiguity and large uncertainties Danikin, Hoferichter, Stoffer (21)]
- asymptotic region recently addressed, Melnikov, Vainshtein (04), Nyffeler (09), WP still work in progress
 Bijnens et al. (20,21), Cappiello et al. (20), Leutgeb, Rebhan (19,21)

Situation for HLbL

