Percolation(s) on Complex Networks

“a physicist’s guide to prepare a critically good coffee”
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- Goal: explore the basic notions of percolation theory and
complex networks theory, and how they can come together

SAP]ENZ/A\ CENTRO RICERCHE

UNIVERSITA DI ROMA ENRICO FERMI




suggested read

Pe rCOIatlo n — Introduction to percolation theory, D. Stauffer

‘ = active node

Something is happening here: “spanning” cluster

O = inactive node
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Percolation theory

the existence of large clusters

— studies how the structural properties of networks change if we remove (or
add, switch on/off, burn, activate/deactivate, occupy...) some nodes

— Applications in epidemic spreading, forest fires, flow in porous media, tumorigenesis...

— simplest model that exhibits a phase transition
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Percolation and cancer (source: Shin, D., et al., Nat Commun 8, 1270 (2017))



Basic definitions and standard tools

#nodes in the LC

Order parameter: size of the largest component  § —

N

Control parameter: fraction of active nodes ¢

Critical point: where we observe a “phase transition” ¢C

Critical exponent: /6 | > S ~y (¢ _ ¢C)ﬁ

Task: understand how the order parameter varies if we vary the control parameter

S(@)vs ¢ S(9)
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A “typical” plot in percolation theory
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Vs giant component

Phase transition only in the “thermodynamic limit” N _> _|_ OO

— we call the largest component a “giant component” above the critical point
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Now we can make the perfect coffee!

active node =

(“Flatland’s” coffee just for the sake of simplicity)

Sub-critical (=no coffee!) Critical (=perfect coffee!) Super-critical (=watery coffeel!)

At the critical point we maximize the ratio between
. > Fractals!
surface of coffee grains and volume of water flow



suggested read

Complex NEtworkS — Networks: an introduction, M. E. J. Newman

— non-trivial topological features

- that do not occur in simple networks such as lattices or random graphs but
often occur in networks representing real systems (typically with a power-law
degree distribution) like: %

- Internet

- Human brain p(k) ~U k'—’y

- Social networks

- Neural Networks(—machine learning)

- Epidemic Networks

degree = number of neighbors

a~s~s.0\”‘a"“\f\W




Examples of complex networks: internet

Computer Network (source: Wikipedia)




Examples of complex networks: the brain
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Human Brain Network (source: Hagmann, P., et al., (2008), PLoS biology, 6(7), €159)

10



Examples of complex networks: social networks

A social network (source: Wikipedia)
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Percolation + complex networks

Question: is the network robust with respect to the failure of some nodes?

Answer: percolation theory!

- Epidemic threshold (failure = vaccination)

- Computer virus spreading (failure = infection)
- Power grid

- Road networks (failure = road closing)

!

Many real-world applications

— percolation transition
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Random Networks

simple enough to be tractable, but
/ complex enough to describe reality
We need models

Degree distribution

I”

How can we “model” real-world complex networks?

& p(k) ~ k™7

We generate random networks which
share some of the features we observe

Necessary to obtain analytical results
and to perform numerical simulations
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Which networks should we use?

# short loops

Naive Mean Field

Bethe approx.

44 2 > 14
denseness



Generating functions formalism

Callaway, D. S., Newman, M. E., Strogatz, S. H., & Watts, D. J.

. ) (2000), PRL 85(25), 5468.
Analytical solution for uncorrelated random graph

with a given degree distribution
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Generating functions: a powerful tool
in probability and combinatorics

and
’ ~
depends only on the shape of the degree

distribution — universality 15



Percolation on random networks

‘ = active node

Q = inactive node
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Cumulative Merging Percolation (CMP)

- A “long-range” model PRE 105, 054310 (2022)

= growing interaction range
—arbitrary distant nodes can interact
The generating functions formalism fails!
* Mass of the clusters
= Percolation occurs in a degree ordered way
— all nodes with degree larger than the threshold are active
= Algebraic growth:

() = (m/ o)

T m) =1+ 0In(m/k,)

= Scaling arguments + numerical simulations

= Two competing mechanisms— their behaviour depends on the
parameters
— New critical exponents

Application to epidemic spreading O{ and 5

(epidemic transition of the SIS model on complex networks)
C.Castellano, R.Pastor-Satorras PRX 10, 011070 (2020?
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CMP: the two mechanisms at work

. Extended-DOP mechanism

Il. Distant isolated nodes merging
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CMP: main results

= New critical exponents for logarithmic growth
= Phase-transition from an “finite-threshold” phase to
a “infinite-threshold” phase

109 < . y ’ [ 7
& ! DOP —e— 10 (S . b ~ ,I
10-1 : I - = (:,),/ ]
B §=05 1 , _
s| § = a(v)]
1072 |
10=3 | 6 y
% < ”I
v —4
LI] 10 i = ~ 4 [ ,,,’ 4
10= ¢ L Finite threshold |
oo LI 2
1076 | . . 3
! MMMEQ}:!}}Q
10-7 | ! S 0 .
. : . :
10! (ka)POF 102 3 1 5 6 7 8 ) 10
ka ¥

= Future research:
= Study the cluster merging process for uniform percolation
= Study the process on simpler networks topology
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Thank you for your time!
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