LIGO A[‡] Post-O5 Plans for LIGO

Kevin Kuns

May 22, 2023

LIGO-G2301053

Post-O5 Era

* The LSC recommended A^{\sharp} (aka CE^{\flat}) as LIGO's Post-O5 detector (T2200287).

Post-O5 Era

- * The LSC recommended A^{\ddagger} (aka CE^{\flat}) as LIGO's Post-O5 detector (T2200287).
- র ו h h h Baseline 2× reduction in CTN over A+.
- $\divideontimes\,$ Possibility of wideband tuning.

Post-O5 Era

- * The LSC recommended A^{\sharp} (aka CE^{\flat}) as LIGO's Post-O5 detector (T2200287).
- ℜ Baseline 2× reduction in CTN over A+.
- ★ Continue with current room-temperature l µm A+ technology.
- * Larger masses, higher power, more squeezing, better suspensions, more isolation.
- * All detector improvements are necessary for Cosmic Explorer.

Low Frequency Improvements

- * Test masses increased to 100 kg
- ✤ Fiber stress increased to 1.6 GPa
- ✤ Improved suspensions: "BSC Heavy Quadruple Suspensions" (BHQS)
- ✤ Same suspension length
- ✤ Improved seismic isolation with better sensors

Low Frequency Improvements

Bounce Roll

- ✤ Fiber stress increased to 1.6 GPa
- * Improved suspensions: "BSC Heavy Quadruple Suspensions" (BHQS)
- ✤ Same suspension length
- ✤ Improved seismic isolation with better sensors

Low Frequency Improvements

Bounce Roll

- 券 Test masses increased to 100 kg
- $\frac{1}{8}$ Fiber stress increased to 1.6 GPa
- * Improved suspensions: "BSC Heavy Quadruple Suspensions" (BHQS)
- ✤ Same suspension length
- * Improved seismic isolation with better sensors
- * Indirect reduction of controls noise
- * 2× suppression of Rayleigh wave Newtonian noise

Mid and High Frequency Improvements

- ♦ Can currently generate sufficient squeezing but significant progress needed to reduce optical losses and improve mode matching.
- * Increased arm power to 1.5 MW
 - Poses significant TCS challenges in simultaneously achieving necessary power recycling gain and sufficiently minimizing squeezing degradations.
- ★ 2× reduction in coating Brownian noise over the, as yet unrealized, A+ target
 ♦ Currently unspecified, but could be AlGaAs.

A^{\sharp} Wideband

 A^{\sharp} with A+ Coatings

