Pulsar Timing Arrays GWADW2023 - Isola d'Elba

Golam Shaifullah

i do not know what it is about you that closes and opens; only something in me understands the voice of your eyes is deeper than all roses -- E. E. Cummings

It's not a bird, it's not a plane, definitely not LGM

Pulsars are like giant flywheels in space, their compact masses give rise to **incredibly stable rotation**.

On each rotation, the pulsar beam produces a 'pulse' at Earth, and the photons in that pulse can be assigned a time-of-arrival.

Models, models, models

TOAs can be predicted using a model with the following (sets of) parameters:

- astrometric,
- pulsar rotation and
- **binary** (when applicable).

Apart from these each pulsar is affected by:

- Dispersive delays due to the intervening plasma
- Red noise (low frequency) processes
- Pulsar jitter

High precision pulsar timing

Once we have estimates of pulsar properties, we can predict <u>very precisely</u> when the next pulse will arrive. Or the one after 20 million rotations.

When pulses are averaged this precision quickly tends to tens of microseconds to tens of nanoseconds.

Pulsar timing arrays

 TOA stability scales with number of rotations averaged – use millisecond pulsars (MSPs)!

 Single pulsars are 'jittery' and affected by noise, use an array of MSPs

FreqBayesTM pulsar timing:

- Observe a pulsar
- De-disperse
- Stack
- Average
- Make a template
- Cross-correlate
- Line up your TOAs
- Repeat for another 20 100 sources
- Sprinkle post-docs for flavour
- Bake for ~30 years, turning it over once or twice a decade.

PTA noise sources

Figure adapted from Verbiest & Shaifullah, 2018, CQG

- plot shows part of fig. 33 from Colpi & Sesana, 2017

A whisper in the crowd

Verbiest & Shaifullah 2018 **Dispersion Measure** 100 Lam et al. 2018 Rotating Pulsar MJ D Donner et al. 2020 Turbulent IISM Relative Bandwidth PSR J2016+1948 Frequency (MHz) Solar wind component RFI (Terrestrial + Satellite) LNA $f_{\rm I}$ Filter Dual Pol. 0.2 0.8 Horn Feed **Pulse Phase** Parabolic Reflector $\mathrm{DM} \equiv \int_0^d n_e dz \, \mathrm{cm}^{-3} \, \mathrm{pc}$

 $\Delta t \simeq 4.15 imes 10^6 \left(rac{
m DM}{
m cm^{-3}\,pc}
ight) \left(rac{f^{-2}}{
m MHz}
ight)
m ms$

58000

EPTA data combination 2.0

- 5+1 telescopes.
- Augmented with the EPTA-DR1 (Desvignes et al, 2016).
- New data spanning ~10 years (a total of 24.5)
- Double the observing bandwidth
- Coherent dedispersion
- Two to ten times **greater observing cadence**
- <u>Significantly boost timing sensitivity</u>
- Combine only **25**+**7** out of 42 sources

EPTA + InPTA

- New data spanning ~3 years
- Overlap of 10 sources
- Significantly improves DM sensitivity
- Simultaneous low and high frequency!

Obligatory timing residuals plot

*

|1909-3744 - rms res = 1.82 us

Divide, assemble, conquer, repeat.

Testing our tools

Dynesty PTMCMC

How can we get better?

Shaifullah, Wang et al, (in prep)

Fumagalli, Shaifullah et al, (in prep)

The PTA world

IPTA DR3

- Add data from 5 PTAs:
 - o EPTA
 - NANOGrav
 - o PPTA
 - o InPTA
 - MPTA (MeerKAT)
- Two independent data combination pipelines
- 115 pulsars, down to <100 ns for a few pulsars (~5)
- Greater sky coverage!
- More pulsar pairs for angular correlation searches.
- Lots of TOAs
- Loads of compute
- Currently working on "Early Data Release" (eDR3),
 which includes the 20 best/longest-timed pulsars
- Nearly all 20 pulsars have been preliminarily combined

J1909-3744 (Wrms = 0.631 μ s) post-fit

- "All our papers are going through the review process and will be publicly released in few months, please bear with us for a bit longer."
- All PTAs see a common, uncorrelated signal
- Exciting times ahead!
- IPTA "Early Data Release" (eDR3),
 which includes the 20
 best/longest-timed pulsars is
 nearing completion.

