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Evidence for black holes

Mass distribution of the merger detected events sorted by date
LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Tracking of orbits around the 
galactic center

Courtesy NCSA | UCLA / Keck

A view of M87* in 
polarized light

ETH Collaboration
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Exotic Compact Objects in the Universe?

(Dark) matter compact objects? (e.g. boson/axion stars).

Observational signatures of quantum  black holes:

Regular, horizonless compact objects (e.g. fuzzballs).

Quantifying black hole-ness: 

Are ther compact objects other than BHs and NSs:

Black Hole

Neutron Star

𝑅𝐸𝐶𝑂 = 𝑅𝐻(1 + 휀)

← 𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠

0
휀~𝒪 1 𝐿𝑖𝑔ℎ𝑡

𝑟𝑖𝑛𝑔𝑠

~𝒪 10−40 𝑄𝑢𝑎𝑛𝑡𝑢𝑚
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠

Fuzzball

Boson Star

Anisotropic Star

LIGO/Virgo mass-gap (GW190814, GW190521) events.

Supermassive BH seeds.

Information loss, singularities, Cauchy horizons… 

New physics at the horizon (e.g. firewalls, nonlocality). 
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How to construct ECOs

Solutions to GR
with exotic matter sources
(e.g. anisotropic stars, boson stars,
axion stars, gravastars, wormholes)

Solutions to modified gravity
(e.g. fuzzballs/microstates, 2-2 holes,
superspinars, wormholes)

Some models are phenomenological (formation, dynamics, stability?).

Some models require modified gravity only in the interior / close to the horizon → assuming GR in 
the exterior is often a good approx.

In some case there is no sharp distinction.

Examples:

Dark starsWormholes

…
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Any evidence for ECOs would imply
evidence for new physics!



Some ECO models

Boson stars: self-gravitating ‘clumps’ of energy. Can be described in classical field theory:

Fuzzballs:

𝐿 =
𝑅

16𝜋𝐺
−
1

2
𝑔𝜇𝜈𝜕𝜇𝜙

∗𝜕𝜈𝜙 −
1

2
𝑚2 𝜙 2 +

𝜆

4
𝜙 4 +⋯

- Self-interactions give rise to multiple branches of solutions which are dynamically stable.

classical BHs are ensembles of a huge number of regular, horizonless, microstategeometries

- BH entropy explained by the number of microstates.

- Motivated by (low energy truncation of) string theory.

- Can be seen as BE condensates as for ۧ|𝑝 = (𝑁, 0, … ) and large 𝑁, the pure classical Klein-Gordon 
equation is recovered in the Hartree-Fock approximation.

-Numerical simulations available.
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GW Tests: Inspiral-merger

Multipolar structure: Multipole moments analogous to their Newtonian counterpart can be defined in GR 
and characterize univocally a given matter-energy distribution. 

Tidal deformability: Tidal fields modify the shape of the bodies in binary systems affecting their 
dynamical evolution. The deformations are encoded in the “tidal Love Numbers”. 

Tidal heating: Additional dissipative channels cause the tides to transfer rotational energy from the spin to the 
orbit and can accelerate the orbital evolution significantly.

𝑀 = 𝑀0

J = 𝑆1

…

𝑄 = 𝑀2
quadrupole 
moment

𝑄𝒾𝒿 = −𝜆𝑇휀𝑖𝑗

tidal deformability

𝑔00 = −1 +
2𝑀

𝑟
+
3𝑄𝑖𝑗

𝑟3
𝑛𝑖𝑛𝑗 −

𝛿𝑖𝑗

3
+ 𝑂

1

𝑟4
− 휀𝑖𝑗𝑥𝑖𝑥𝑗 + 𝑂(𝑟3)
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Extra emission channels:  Some ECOs possess charges under a scalar or gauge fields that could be detected 
through GWs. 

Chaos/integrability: Some ECO models do not posses any equivalent of
the Carter constant, resulting in chaotic behavior of the motion of small 
bodies orbiting around them, with observational consequences.

GW Tests: Inspiral-merger

Motion in ECOs interior: If the ECO is lacking an event horizon or a hard surface, motion of test particles can take 
place inside the object and give rise to new type of orbits.

Destounis, Angeloni, Vaglio +, 
arXiv:2305.05691 (2023) 

Zhang+ arXiv:2108.13170 (2021) 

Grandclément, Somé+, PRD (2014)
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GW Tests: Ringdown

Prompt ringdown: superposition of quasinormal modes (QNMs)

ℎ+ + 𝑖ℎ×~
𝑖
𝐴𝑖 sin(𝜔𝑖𝑡 + 𝜑𝑖)𝑒

−𝑡/𝜏𝑖

3G/LISA → O(100-1000) events/yr allowing for BH spectroscopy

ECO smoking guns:

- Isospectrality breaking

Echoes: During the ringdown (if the remnant is compact enough to 
posses a light ring) after the prompt the ingoing part of the signal is 
partially reflected and produces a damped copy of the initial signal.

QNMs Perturbed BHs and ECOs can oscillate with characteristic complex frequencies called
quasi-normal-modes (QNMs). 

- Shift of the entire QNM spectrum

- Extra ringdown modes (e.g., extra polarizations, matter modes)

Cardoso, Pani, Nature Astronomy (2017)
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Current/future constraints

Cumulative constraint on the quadrupole moment 
of compact objects from GWTC-3. 

The red dashed line correspond to the constraint 
obtained by assuming a unique value for all the 
events. 

Relative percentage errors on the 
average tidal deformability

Λ =
1

26
1 +

12

𝑞
𝜆1 + 1 + 12𝑞 𝜆2

for equal-mass binaries at 100Mpc 
for AdLIGO and ET mass for different 
values of Λ.

AdLIGO ET

LIGO-Virgo Collaboration: arXiv:2112.06861 (2021)

Cardoso, Franzin +, PRD (2017)

𝜅𝑠 = 1/2 𝜅1 + 𝑘2 ,      𝜅 = 𝑀2/(𝑀
3𝜒2)
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Current/future constraints

Credible regions (90%) in the joint posterior 
distributions for the QNM frequency and decay time, 
for several values of the starting time of the 
ringdown.

The solid black line shows the theoretical prediction 
for remnant’s estimated mass and spin.

𝑺𝑵𝑹𝒓𝒊𝒏𝒈𝒅𝒐𝒘𝒏

LIGO-Virgo Collaboration PRD (2016)

Projected exclusion plot for the ECO reflectivity due to 
the lack of echoes in future observations with ET. ℛ is 
shown as a function of the 𝑆𝑁𝑅 in the ringdown phase 
assuming 𝑀 = 30𝑀⨀. 

The red marker corresponds to 𝑆𝑁𝑅 = 8 and ℛ = 0.9

Testa, Pani, PRD (2018)
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Quadrupole moment of boson stars (2PN)

Stationary axysimmetric spacetime ⇒
scalar mass moments M0, M2…  and current moments S1, S3… 

for a Kerr black hole 𝑀𝑙 + 𝑖𝑆𝑙 = 𝑀𝑙+1(𝑖𝜒)𝑙 𝜒 =
𝐽

𝑀2 , 𝑀 = 𝑀0

Not true for a generic compact object!

The expression for the quadrupole moment can be obtained as:

M2 = −𝜅2 𝜒,𝑀/𝑀𝐵 𝜒2𝑀3

𝜅2 = 1

quadrupole moment

𝑴𝑩 = ( 𝜆ħ/𝑚𝑆
2) 𝑀𝑝

3

Vaglio, Pacilio +, PRD (2022)
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Post-Newtonian (PN) expanded waveform in 𝑥 =
1

𝑐2
𝜋𝑀𝑓

2

3 ∼ (𝑣/𝑐)2 including finite size effects: 

ℎℋ ∼ 𝒜 𝑓 𝑒𝑖𝜓 𝑓
𝜓 𝑓 = 𝜓𝑝𝑝 𝑓 + 𝜓𝑡𝑖𝑑𝑎𝑙 𝑓 + 𝜓𝑞𝑢𝑎𝑑 𝑓 ∝ 𝑥−

5
2 

𝑛=0

7

𝛼𝑛 ∙ 𝑥
𝑛
2

Spin-quadrupole relative
corrections ∝ 𝑥2, 𝑥3 (2PN, 3PN) 

Tidal relative corrections
∝ 𝑥5, 𝑥6 (5PN, 6PN) 

Point particle relative terms

∝ 𝑥0 … 𝑥
7

2 (0PN, 3.5PN) 

A coherent inspiral waveform model

Post-Newtonian order

Example of an inspiral waveform 
with and without tidal effects with 
pronounced dephasing 

Pacilio, Vaglio+ PRD 2020
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Ԧ𝜃 = ℳ, 𝜂, 𝜒1, 𝜒1, 𝑀𝐵

𝑴𝑩 = (𝜆
1

2/𝑚2) 𝑀𝑝
3

Chirp mass Component spinsSymmetric
mass ratio

Projected constraints on scalar interactions

ET (𝐷𝐿 = 500 𝑀𝑝𝑐)

Δ
𝑀
𝐵
/𝑀

𝐵
[%

]

Injection and recovery of a signal with ET
(ℳ = 5𝑀⨀, 𝑞 = 0.8,𝑀𝐵 = 115𝑀⨀, 𝜒1 = 0.05, 𝜒2 = 0.35, 𝑓𝑅𝑜𝑐ℎ𝑒 = 127𝐻𝑧)

Relative percentage error on 
the effective mass parameter 

as a function of its value

Vaglio, Pacilio, + (2023) arXiv:2302.13954
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Conclusions

Exquisite constraints (percent and sub-percent level) on tidal deformability and multipole moments with 3G 
detectors.

We are living the BH era that came with discovery opportunities for new physics!

There have been dramatic improvements on ECOs on all fronts in the last few years.

Any signature of beyond-Kerrness would have striking consequences for fundamental physics.

(portal to observables quantum gravity effects? new fundamental physics?)

Evidence for light rings & measures of reflectivity with GWs/EM.
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A detection with the Einstein Telescope could constraint the fundamental couplings of the scalar

theory with percentage accuracy:

Boson stars are hypothetical compact astrophysical sources that can mimick within some 
extent the phenomenology of black holes:

BSs parameter estimation main results

Next steps and future works:

Work on a full Inspiral-Merger-Ringdown waveform and generalize to different boson star models

M. Vaglio, C. Pacilio,A. Maselli, P. Pani (2023)

Finite-size tidal and monopole-quadrupole spin effects can leave a detectable imprint in binary waveforms 
and be interpreted as signatures of departures from the black hole binary behaviour.
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Boson Stars

As in General Relativity gravity couples with energy the idea that self-gravitating ‘clumps’ of 
energy could form was first considered by Wheeler.

It was realized later by Kaup that this was not possible for the electromagnetic field but so-called
Klein-Gordon geons were found.

Ruffini and Bonazzola using second quantization for the Klein-Gordon equation, showed that if all 
scalar particles are within the same ground state ۧ|𝑝 = (𝑁, 0, … ) , the pure classical Klein-Gordon 
equation of Kaup is recovered in the Hartree-Fock approximation.

Thermal Geons - Edwin A. Power (University Coll. London), John A. Wheeler (Princeton U.)
Rev.Mod.Phys. 29 (1957), 480-495

Systems of selfgravitating particles in general relativity and the concept of an equation of state -
Remo Ruffini (Princeton U. and Princeton, Inst. Advanced Study), Silvano Bonazzola (Rome U.)
Phys.Rev. 187 (1969), 1767-1783

Klein-Gordon Geon - David J. Kaup (Maryland U.)
Phys.Rev. 172 (1968), 1331-1342

2

https://inspirehep.net/literature/47046
https://inspirehep.net/authors/2317979
https://inspirehep.net/institutions/903311
https://inspirehep.net/authors/983692
https://inspirehep.net/institutions/903139
https://inspirehep.net/literature/54980
https://inspirehep.net/authors/990983
https://inspirehep.net/institutions/903139
https://inspirehep.net/institutions/903138
https://inspirehep.net/authors/1015885
https://inspirehep.net/institutions/903168
https://inspirehep.net/literature/54295
https://inspirehep.net/authors/2346730
https://inspirehep.net/institutions/902990


Boson stars are stationary configurations of a massive, complex scalar field, bound by gravity that:  

- Are regular (no singularity at the center, no event horizon)

Can be described in classical field theory:

- Can be almost as compact as Black Holes and can mimick their phenomenology

- Could stand for some fraction of the dark matter content of the Universe

Boson Stars: A possible candidate

𝑉 𝜙 2 = 𝑚2 𝜙 2 + 𝜆 𝜙 4

𝐿 =
𝑅

16𝜋𝐺
−
1

2
𝑔𝜇𝜈𝜕𝜇𝜙

∗𝜕𝜈𝜙 −
1

2
𝑚2 𝜙 2 +

𝜆

4
𝜙 4 +⋯

The potential can contain interaction terms such as:

Radial profile of a boson star

Scalar fields like these arise in many extensions of the Standard 
Model, String scenarios and comsological models!
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The gravitational waveform from a binary coalescence can be thought as divided in three stages

Stages of a binary coalescence

Inspiral Merger Ringdown

Post-Newtonian expansion

in weak gravity
𝐺𝑀

𝑐2𝑑

and small velocities
𝑣

𝑐
.

Numerical Relativity 3+1 non-linear simulations
Description of the final remnant as
an oscillating perturbed object
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Some of the candidates

Proca stars Hairy Black Holes Fuzzballs

Exotic
Compact 
Objects . . . Boson stars Wormholes

The actual paradigm is that an astrophysical compact object, which is hevier than few solar masses, 
is a Black Hole.

Are there other compact sources compatible with current observations? -> Exotic Compact Objects

Astrophysical processes are not that sensitive to the geometry near the horizon: we need Gravitational Waves!



The presence of the companion induces a quadrupole moment in the star as response to 
the external tidal field: 

𝑄𝒾𝒿 = −𝜆𝑇휀𝑖𝑗 𝜆𝑇 is the tidal deformability

𝑔00 = −1 +
2𝑀

𝑟
+
3𝑄𝑖𝑗

𝑟3
𝑛𝑖𝑛𝑗 −

𝛿𝑖𝑗

3
+ 𝑂

1

𝑟4
− 휀𝑖𝑗𝑥𝑖𝑥𝑗 + 𝑂(𝑟3)

The same happens in General Relativity and can be studied as a perturbation problem of 
the spherically symmetric background spacetime:

Tidal deformability

𝜆𝑇(M,𝑀𝐵)
for boson stars 𝑴𝑩 = ( 𝜆ħ/𝑚𝑆

2) 𝑀𝑝
3
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Ԧ𝜃 = ℳ, 𝜂, 𝜒1, 𝜒1, 𝑀𝐵Spins alligned with 𝐿 ⇒

Chirp mass

Component spins
Symmetric mass ratio

Parameter estimation

Parameter estimation allows to reconstruct the template parameters from a given signal buried
in noise.  

ℳ =
𝑀1𝑀2

3
5

𝑀1 +𝑀2

1
5

𝜂 =
𝑀1𝑀2

(𝑀1+𝑀2)
2

𝜒1/2 = (Ԧ𝐽1/2/𝑀1/2
2 ) ⋅ 𝐿

9

𝑴𝑩 = ( 𝜆ħ/𝑚𝑆
2) 𝑀𝑝

3



Post-Newtonian expanded waveform in 𝑣 = 𝜋𝑀𝑓
1

3 consistently including finite size effects: 

A coherent inspiral waveform model

Inspiral Merger Ringdown

ℎ ∼ 𝒜 𝑓 𝑒𝑖𝜓 𝑓

𝒜(𝑓) =
𝑀𝑡

2

𝐷𝐿

𝜋𝜂

30
𝑣−7/6

(0PN)

𝜓 𝑓 = 2𝜋𝑓𝑡𝑐 − 𝜙𝑐 −
𝜋

4
+ 𝑣−5 

𝑛=0

7

𝛼𝑛𝑣
𝑛 at 3.5PN

+ quadrupole corrections at 2PN, 3PN and 3.5PN 

+ tidal corrections at 5PN and 6PN Lackey and L. Wade, Phys. 
Rev. D, 91, (2015) 4 043002

C.K. Mishra et.al, Phys. Rev. 
D, 93, 8 (2016), 084054

Krishnendu et.al, Phys. Rev. 
Lett.,119,9 (2017) 091101

Point 
particle
+spin

Finite size 
effects



𝑄𝒾𝒿 = −𝜆𝑇휀𝑖𝑗

𝑀

𝑀𝐵
=

2

8 𝜋
−0.828 +

20.99

logΛ
−

99.1

logΛ 2 +
149.7

logΛ 3

𝜆𝑇 is the tidal deformability

Tidal deformability of boson stars (5PN)

Λ = Λ
𝑀

𝑀𝐵

Dimensionless tidal Λ = 𝜆𝑇/𝑀
5 for BSs (N. Sennett et al., Phys. Rev. D, 96, 2 (2017 ) 024002)

The companion induces a quadrupole moment as response to the external tidal field: 

𝑟𝑅𝑜𝑐ℎ𝑒

𝑓𝑅𝑜𝑐ℎ𝑒 =
𝑐3

𝜋𝐺𝑀𝑀⊙

1

𝑞2
+ 𝑞 + 3 1 +

1

𝑞

𝒞2
𝛾

3
2

𝐻𝑧

We fixed the maximum frequency of the waveform to that
corresponding to the Roche radius: 

𝒞2 = Compactness of the secondary 𝛾 = Numerical factor 𝛾 ∼ 2



Injection and recovery of a signal with 
the Einstein Telescope  (𝑆𝑁𝑅 = 130):

- ℳ = 10𝑀⨀

- 𝑞 = 0.8
- 𝑀𝐵 = 255𝑀⨀

- 𝜒1 = 0.05
- 𝜒2 = 0.35
- 𝒇𝑹𝒐𝒄𝒉𝒆 = 𝟓𝟎𝑯𝒛

Parameter estimation - Results



Multipole moments in General Relativity

The Newtonian potential satisfy the Laplace equation ∇2𝑉 = 0,:

𝑌𝑘
𝑙 𝜃, 𝜑 𝑟𝑘 polinomial of degree k in (𝑥1, 𝑥2, 𝑥3) = (𝑟 sin 𝜃 cos𝜑 , 𝑟 sin 𝜃 sin𝜑 , 𝑟 cos 𝜃) ⇒

෨𝑉 𝑥𝑎 = 

𝑘=0

∞
𝑥𝑎1 …𝑥𝑎𝑘

𝑘!
𝜕𝑎1 …𝜕𝑎𝑘

෨𝑉 ቚ
𝑟=0

𝑉 𝑅, 𝜃, 𝜑 = 

𝑘=0

∞



𝑙=−𝑘

𝑘
𝑀𝑘,𝑙𝑌𝑘

𝑙 𝜃, 𝜑

𝑅𝑘+1
෨𝑉 𝑟, 𝜃, 𝜑 = 

𝑘=0

∞



𝑙=−𝑘

𝑘

𝑀𝑘,𝑙𝑌𝑘
𝑙 𝜃, 𝜑 𝑟𝑘

𝑅 → 1/𝑟

𝑀𝑘,𝑙 ↔ 𝜕𝑎1 …𝜕𝑎𝑘
෨𝑉 ቚ

𝑟=0

There is a correspondence between multipole moments and these quantities at infinity! 

Consider now the Taylor expansion of ෨𝑉:

This definition have been generalized to stationary and asimptotically flat spacetimes in General 
Relativity Geroch 1970, Hansen 1974. 
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Bayesian parameter estimation on injected signals with the inspiral template 

Parameter estimation

𝑝 Ԧ𝜃 𝑑 =
𝜋 Ԧ𝜃 ℒ(𝑑| Ԧ𝜃,ℋ)

𝑑𝑚𝜃𝜋 Ԧ𝜃 ℒ(𝑑| Ԧ𝜃,ℋ)
posterior

prior likelyhood

evidence

ℒ 𝑑 Ԧ𝜃,ℋ = exp −
1

2
(𝑑 − ℎℋ( Ԧ𝜃)|𝑑 − ℎℋ( Ԧ𝜃))

ℎ1 ℎ2 = 4𝑅𝑒න
𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥 ℎ1(𝑓)ℎ2(𝑓)

𝑆𝑛(𝑓)
𝑑𝑓

ℎℋ ∼ 𝒜 𝑓 𝑒𝑖𝜓 𝑓

Sensitivity curves for Adv Virgo and the Einstein TelescopeThe Likelihood is assumed to be a multivariate 
Gaussian in the signal parameters:

Where we have introduced the product:

Detector Sensitivity
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Gravitational waves from binary systems are routinely observed by LIGO/Virgo. 

Opportunity to test the nature of compact objects with unprecedented accuracy!

LISA (Laser Interferometer Space Antenna) –
Launch expected in 2034

- Cluster of 3 spacecrafts in heliocentric orbit

- Equilater triangle with 5 ∙ 106𝑘𝑚 arm lenght

- Sensitivity band ~ 0.1 mHz − 1 Hz

ET (Einstein Telescope) – Contruction will start 
in 2026  

- Ground-based, triangle-shaped interferometer

- 10 𝑘𝑚 arm length (LIGO-Virgo ~ 3 𝑘𝑚) 

- Sensitivity band ~ 1 Hz − 104Hz

In the near future:

Gravitational-wave astronomy era

4



Maximum mass and ergoregions

Increasing the vaue of the winding

number 𝑠 =
𝜆

𝑚

−1

× 𝑛𝑟 , it is

possible to exceed significantly the
non-spinning maximum mass limit
𝑀 ∼ 0.06𝑀𝐵

The model allows for configurations featuring
ergoregions in the (linearly) stable branch.

The multipolar structure of fast rotating boson stars:  Massimo Vaglio, 
Costantino Pacilio, Andrea Maselli, Paolo Pani, arXiv:2203.07442 (2022)



To have stationarity and axysimmetry the field must satisfy:

azimuthal winding number

frequency

𝜙 = 𝜙0 𝑟, 𝜃 𝑒𝑖 𝑛𝑟𝜑−Ω𝑡

Families of (rotating) Boson Stars

Different families of BSs, correspond to different potenatials in the lagrangian:

- Mini BSs

- Massive BSs

- Solitonic BSs

𝑉 𝜙 2 = 𝑚2 𝜙 2

𝑉 𝜙 2 = 𝑚2 𝜙 2 + 𝜆 𝜙 4

𝑉 𝜙 2 = 𝑚2 𝜙 2 1 −
2 𝜙 2

𝜎2

𝑀𝑚𝑎𝑥~
𝑀𝑝

2

𝑚

𝑀𝑚𝑎𝑥~
𝑀𝑝

3

𝑚2
𝜆
1
2

𝑀𝑚𝑎𝑥~
𝑀𝑝

4

𝑚𝜎2

𝐽 = 𝑛𝑟𝑁 The angular momentum is quantized!

(Neutron Stars: Equation Of State          Boson Stars: Self-interactions 𝑉 𝜙 2 )

Normalized energy-density of a 
BS in a transversal section



Universal Relations for Boson Stars?

I-Love-Q Relations in Neutron Stars and their Applications to Astrophysics, 
Gravitational Waves and Fundamental Physics - Kent Yagi and Nicolàs Yunes

Neutron Stars feature simple relations linking their moment of inertia, the tidal deformability 
and the quadrupole moment which do not depend sensitively on the star’s internal structure. 

We found the reduced quadrupole and octupole moments are simply connected to the tidal
deformability of the boson star



Universal Relations for Boson Stars?

The relation between 𝜅2 and 𝜎3 appears remarkably to be independent on the spin 𝜒

These relations have many applications and are especially useful to break degeneracies 
among parameters that characterize gravitational waveforms. 



Integration and multipole moments

Coordinates 𝑞 = 𝑟/(1 + 𝑟), 𝜇 = cos 𝜃 𝑞, 𝜇  ∈ 0,1 Compactified

Grid 𝑛𝑞 × 𝑛𝜇 Fixed equally spaced

Derivatives − Five points central

Integration − Trapezoidal rule

𝜌(𝑟, 𝜇) = 

𝑛=0

∞

−2
𝑀2𝑛

𝑟2𝑛+1
𝑃2𝑛 𝜇 + higher orders 𝜔(𝑟, 𝜇 ) = 

𝑛=1

∞

−
2

2𝑛 − 1

𝑆2𝑛−1
𝑟2𝑛+1

𝑃2𝑛−1
1 𝜇

sin 𝜃
+ higher orders

Mass and current moments {M0, M2… }, {S1, S3… } can be read off:



The dashed lines correspond to the values reported in F. D. Ryan, Phys. Rev. D 55, 6081 (1997)

Consistency with previous results

Our findings about the quadrupole moments agree with previous results, when using the same grid 𝑛𝑞 ×

𝑛𝜇 = 1600 × 160, but there is a deviation when 𝑛𝜇 is increased up to the saturation value 𝑛𝜇 ∼ 20000.



Dependence on the integration grid

𝜒 = 0.1 𝜒 = 0.075Due to numerical erros, we found a 

non-zero value of 𝑀2
(𝑜𝑓𝑓)

≡ 𝑀2 𝜒 = 0

In the plots (top panels):

𝑘2
(𝑟𝑎𝑤)

= 𝑀2
(𝑟𝑎𝑤)

/(𝜒2𝑀3)

𝑘2
(𝑜𝑓𝑓)

= 𝑀2
(𝑜𝑓𝑓)

/(𝜒2𝑀3)

and their percentage difference (bottom 
panels), for fixed 𝑀 = 0.04𝑀𝐵 , 𝑛𝑞 =

1600 and two values of 𝜒. 

Extracting the quadrupole moments for 
slow spinning configurations requires
more angular precision.  



Solution!Initial 𝑓

New 𝑓

Source 
𝑆

𝑛

𝑛 + 1

Evaluate Integrate

𝑓 𝑥 = න𝐺 𝑥, 𝑥′ 𝑆 𝑓, 𝜕𝑓, 𝑥′ 𝑑𝑥′

𝑟′, 𝜃′

𝜌, 𝛾, 𝜔, 𝛼

The equations can be solved iteratively:

Self consistent field method

Automatically satisfies aymptotic flatness conditions for reasonable sources!

𝜌 = −
1

4𝜋
𝑒−

𝛾
2න

0

∞

𝑑𝑟′න
−1

1

𝑑𝜇′න
0

2𝜋

𝑑𝜙′𝑟′𝑆𝜌 𝑟′, 𝜇′
1

𝑟 − 𝑟′
Es:



It is possible to get rid of the coupling constants trought the following rescalings:

Consequently we have the following change in the relevant expressions: 

Physical quantities can be derived multiplying the rescaled ones by:

𝑡 =
𝜆
1
2

𝑚2
ǁ𝑡 𝑠 =

𝜆
1
2

𝑚
ǁ𝑠 𝑃 =

𝑚4

𝜆
෨𝑃 𝜙 2 =

𝑚2

𝜆
෨𝜙
2

𝑟 =
𝜆
1
2

𝑚2 ǁ𝑟 Ω = 𝑚෩Ω 𝜖 =
𝑚4

𝜆
ǁ𝜖 𝜔 =

𝑚2

𝜆
1
2

𝜔

෨𝑃 =
1

4
෨𝜙
4 ǁ𝜖 = ෨𝜙

2
+
3

4
෨𝜙
4 ෨𝜙

2
= 𝑀𝑎𝑥 0,

෩Ω − ෪𝑠𝜔
2

𝑒𝛾+𝜌
−

𝑒𝛾−𝜌෪𝑠2

෪𝑟2 sin 𝜃2
−𝑚2

𝑑෪𝑠2 = −𝑒𝛾+𝜌𝑑 ෩𝑡2 + 𝑒2𝛼 𝑑෪𝑟2 +෪𝑟2𝑑𝜃2 + 𝑒𝛾−𝜌෪𝑟2 sin 𝜃2 𝑑𝜙 − 𝜔𝑑 ǁ𝑡 2

𝜆
1
2

𝑚2 ≡ 𝑀𝐵

Backup Slide – Coordinate rescaling



Inspiral Merger Ringdown

Binary Boson Star signal

Multipole moments enter in the PN expansion in 𝑣 = 𝜋𝑀𝑓
1

3 of the inspiral signal:

Gravitational-wave detectors as particle-physics laboratories: Constraining scalar interactions with a coherent inspiral 
model of boson star binaries, Costantino Pacilio, Massimo Vaglio, Andrea Maselli, Paolo Pani. Phys.Rev. D 102 (2020) 8, 083002

𝜓 𝑓 = 𝜓𝐵𝐻 𝑓 + 𝜓𝜅2 𝑓 + 𝜓Λ 𝑓

𝜓𝑘2 = −
75

64

𝜅2
1𝑀1

2𝜒1
2 + 𝜅2

2𝑀2
2𝜒2

2

𝑀1𝑀2
𝜋𝑀𝑡𝑓

−1/3
Leading order

ℎ ∼ 𝒜 𝑓 𝑒𝑖𝜓 𝑓

Reduced Quadrupole



𝑀𝑚𝑎𝑥(𝜒 ∼ 0) ≈ 0.06𝑀𝐵 ≈ 0.06
𝜆

𝑚2 ≈ 0.06
𝜆ℏ

𝑚𝑆
2 𝑀𝑃

3 ≈ 105𝑀⊙ 𝜆ℏ
MeV

𝑚𝑆

2

𝑀𝑚𝑎𝑥 ≈ 0.06 1 + 0.76𝜒2 𝑀𝐵

We want to explore the possibility of constraining the BS coupling with future observations:

⇒

We can cover the whole spectrum of sources for LISA and ET varying 𝜆 and 𝑚𝑠

Backup Slide – Mass scale



We used a Fisher matrix approach and a Post Newtonian expanded waveform to estimate the 
uncertainty with which 𝑀𝐵 can be measured by LISA and ET in the following scenario: 

Backup Slide – Parameter Estimation

𝑄 = −𝜅 𝜒,𝑀/𝑀𝐵 𝜒2𝑀3

The expression for the quadrupole moment as a funtion of mass, spin of the BS:

Ԧ𝜃 = 𝒜, 𝑡𝑐 , 𝜙𝑐 , logℳ , log 𝜂 , 𝜒𝑠, 𝜒𝑎 , 𝑀𝐵

can be used within parameter estimation to measure directly the effective coupling from GWs
observation of BS binaries :

Mass scaleIndividual masses Spins

0.06𝑀𝐵 = ൝
1 − 100𝑀⨀ 𝐸𝑇

104 − 106𝑀⨀ 𝐿𝐼𝑆𝐴
𝑀1, 𝑀2 ∼ 0.05𝑀𝐵 , 0.06𝑀𝐵 𝜒1, 𝜒2 = ൞

(0.1,0)
(0.6,0.3)
(0.9,0.8)



𝒬𝒾𝒿 = −𝜆𝑇휀𝑖𝑗

෩Λ =
16

13
1 +

12

𝑞

𝑀1
5

𝑀𝑡
5 Λ1 + 1 + 12𝑞

𝑀2
5

𝑀𝑡
5 Λ2

𝑀

𝑀𝐵
=

2

8 𝜋
−0.828 +

20.99

logΛ
−

99.1

log Λ 2 +
149.7

log Λ 3

N. Sennett et al., Phys. Rev. D, 96, 2 (2017 ) 024002

To include the tidal deformability in the waveform we exploited the relation:

where  Λ = 𝜆𝑇/𝑀
5 and 𝜆𝑇 is defined as

Λ will affect the waveform through an effective combination of the values of each BS

Backup Slide – Tidal deformability



ET (𝐷𝐿 = 500 𝑀𝑝𝑐) LISA (𝐷𝐿 = 1 𝐺𝑝𝑐) 

The errors on 𝑀𝐵for ET and LISA are at the percent and sub-percent level in the 
most optimistic configurations: 

Δ𝑀𝐵/𝑀𝐵[%]

Backup Slide – Constraining scalar interactions



Correction factors to correctly match the Geroch-Hansen multipole moments

Backup Slide – Multipole moments

𝜌(𝑟, 𝜇) = 

𝑛=0

∞

−2
𝑀2𝑛

𝑟2𝑛+1
𝑃2𝑛 𝜇 + higher orders 𝜔(𝑟, 𝜇 ) = 

𝑛=1

∞

−
2

2𝑛 − 1

𝑆2𝑛−1
𝑟2𝑛+1

𝑃2𝑛−1
1 𝜇

sin 𝜃
+ higher orders

𝑀2𝑛 =
1

2
න
0

𝑟

𝑑𝑟′ 𝑟′ 2𝑛+2න
0

1

𝑑𝜇′𝑃2𝑛 𝜇′ 𝑆𝜌 𝑟′, 𝜇′ 𝑆2𝑛−1 =
1

4𝑛
න
0

𝑟

𝑑𝑟′ 𝑟′ 2𝑛+2 ×න
0

1

𝑑𝜇′ sin 𝜃′ 𝑃2𝑛−1
1 𝜇′ 𝑆𝜔 𝑟′, 𝜇′

⇒
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