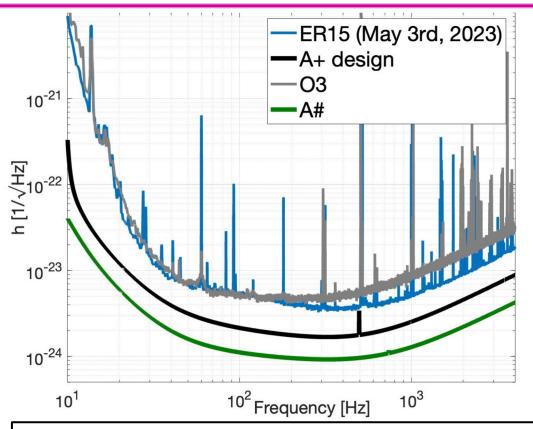
LIGO

A# Sensitivity Goals

LSC Post-O5 study: A# design


- 1 um laser wavelength, room temperature, fused silica masses
- Stepping stone toward Cosmic
 Explorer and ET HF

A♯ versus A+: Low frequencies: close to a factor of 2 reduction

- Larger test mass (40 kg → 100 kg) for lower radiation pressure
- Higher stress fibers to reduce thermal noise
- Improved seismic isolation to reduce excess control noise

A♯ versus A+: Mid frequencies: close to a factor of 2 reduction

Improve coating thermal noise a
 factor of 2 below A+ design level

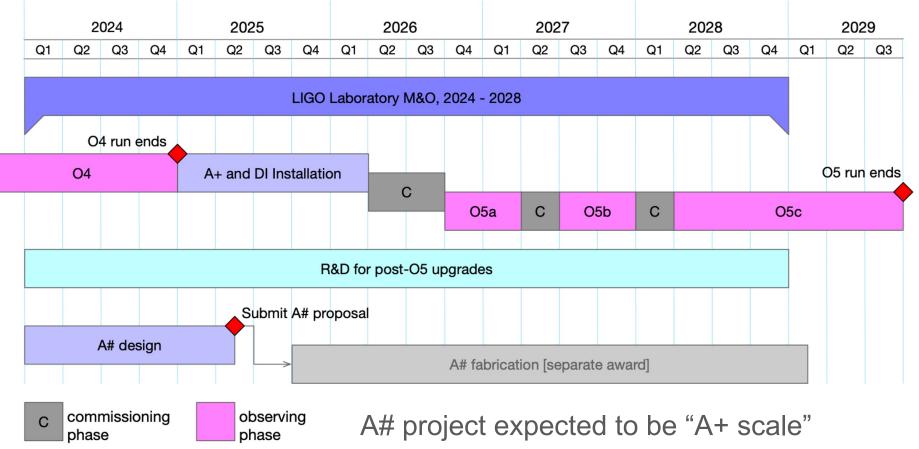
A♯ versus A+: High frequencies: factor of 2 reduction

- Higher laser power (**1.5 MW** arm power, x4 current)
- Improved thermal effect compensation
- Improved squeezed light injection (10 dB, 6 dB current)

Barsotti, LIGO A#, GWADW Panel, Elba 2023

Adapted from Gabriele Vajente

- Inability to operate at the power level of 1.5 MW in the arms
 - Thermal distortions in the test masses can we really get rid of point absorbers?
 - Parametric instabilities
 - Control problems associated with radiation pressure should be mitigated by larger test masses
- Insufficient compensation of thermal distortions at 1.5 MW
 Resulting optical loss would limit squeezing (particularly at high frequencies)
- No improvements in coating thermal noise
 - AlGaAs doesn't work out: has excess noise, or can't fund the large-scale development
 - No improvements in amorphous material mechanical loss
- Inability to identify & mitigate low-frequency technical/mystery noises


- Suspension re-design, incorporate lessons learned
- Seismic isolation improvements
- High power lasers
- Thermal compensation system (sensors and actuators)
- Parametric instabilities mitigation strategy
- 10 dB frequency-dependent squeezing "challenge"
 - Long list of degradation mechanisms to further mitigate
 - Active wavefront control (sensors and actuators)
 - ...

LIGO

- Coating research
- Control noise reduction
- Long term optimal interferometer tuning

LIGO Timeframe for A# development

Detailed costing not yet done

Barsotti, LIGO A#, GWADW Panel, Elba 2023

LIGO 1 um, fused silica @ room temperature

	Arm power	Test Mass Weight	Coating Target	Squeezing
A#	1.5 MW	100 kg	Best available (target x4 better than adv)	10 dB
Virgo_nEXT	1.5 MW	105 kg	Best available	10.5 dB
ET_HF	3 MW	200 kg	Best available (X2.7 better than adv)	10 dB
Cosmic Explorer	1.5 MW	320 kg	Best available (X2 better than adv)	10 dB