Einstein-Telescope

10km----

ET EINSTEIN TELESCOPE

200-300m below surface

GWADW Elba, May 2023 Harald Lück AEI Hannover Max-Planck Institute for Gravitational Physics Leibniz Universität Hannover, Institute for Gravitational Physics

102

Einstein Telescope

The sensitivity we're aiming for ET ELESCOPE

Many contributing noise sources:

Quantum Noise (over most of the LF band), → Squeezing 1odB FDS: similar requirements as for ET-HF but for 1550 nm and narrower bandwidth Control Noise , Newtonian Noise, suspension Thermal, scattered light, environmental noise, many unknowns! Need: large Cryo-Optics (silicon), low loss cryocooling!, coatings

- Coating thermal noise
 ¼ loss (aLIGO/AdVirgo)
- Suspension thermal noise

High squeezing level: 10 dB 1550nm / 1064 nm

- High efficiency Squeezer (>15dB)
- Low loss optics
- Faraday isolators
- Mode matching (adaptive?)
- High QE PDs
- Low loss OMC

High laser power: 3 MW

- High power lasers
- Low abs. coatings
- Low optical losses
- No point absorbers
- Good TCS, esp. BS
- Param.Inst. mitigation

Which frequencies yield what?

EINSTEIN

An important ingredient 😉

Step 9: Gravity gradient supression

DRIVER: Gravity gradient noise ACTION: ★★★MAGIC★★★ EFFECT: Decrease gravity gradient noise by a factor 50.

UNIVERSITYOF

BIRMINGHAM

((Q)) EGO

Stefan Hild

ET-General, November 2008

Slide 19

Challenging engineering New technology in cryo-cooling	ET Enabling Technologies • The multi- interferometer approach asks for two	Parameter Arm length Input power (after IMC) Arm power Temperature Mirror material Mirror diameter / thickness Mirror masses Laser wavelength SR-phase (rad)	ET-HF 10 km 500 W 3 MW 290 K fused silica 62 cm / 30 cm 200 kg 1064 nm tuned (0.0)	ET-LF 10 km 3 W 18 kW 10-20 K silicon 45 cm/ 57 cm 211 kg 1550 nm detuned (0.6)	ET EINSTEIN TELESCOPE
New technology in optics New laser technology	parallel technology developments: • ET-LF: • Underground • Cryogenics	SR transmittance Quantum noise suppression Filter cavities Squeezing level Beam shape Beam radius Scatter loss per surface Seismic isolation Seismic (for $f > 1$ Hz) Gravity gradient subtraction	10 % freq. dep. squeez. $1 \times 300 \text{ m}$ 10 dB (effective) TEM ₀₀ 12.0 cm 37 ppm SA, 8 m tall $5 \cdot 10^{-10} \text{ m/} f^2$ none	20 % freq. dep. squeez. 2×1.0 km 10 dB (effective) TEM ₀₀ 9 cm 37 ppm mod SA, 17 m tall $5 \cdot 10^{-10}$ m/ f^2 factor of a few	Evolved laser technology Evolved technology in
High precision mechanics and low noise controls High quality opto- electronics and new controls	 Silicon (Sapphire) test r Large test masses New coatings New laser wavelength Seismic suspensions Frequency dependent squeezing 	nasses • ET-HF: • High po • Large te • New coa • Therma • Frequer squeezi	wer laser est masses atings Il compensat ncy depende ng	cion ent	optics Highly innovative adaptive optics High quality opto- electronics and new controls