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Computer-designed quantum experiments

MK, Malik, Fickler, Lapkiewicz, Zeilinger, PRL 116, 090405 (2016).
MK, Erhard, Zeilinger, Nature Reviews Physics 2, 649 (2020).
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Computer-designed GW detectors:
The enormous search space

Some examples (without symmetry):
3 lasers, 3 BS, 3 detectors: 1000 combinations
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Discrete & continuous optimization problem:

Reformulation as quasi-continuous problem

Finding suitable topology and parameters
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Computer-designed GW detectors:

Discrete & continuous optimization problem:

Finding suitable topology and parameters

A) Universal Interferometer (UIFO)
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Voyager-like constraints
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Computer-designed GW detectors:
Simulation assumptions

Finesse2 (assuming plane wave, assuming free masses, single carrier frequency)

e s response
Sensitivity = #

Response: modulating the spaces & measuring the demodulated signal at the readout
Quantum Noise: computed by Finesse
Classical noise: projecting laser noises (taken from O3 performance paper

[PRD 102(6), 062003, 2020]) of all the sources on to the readout.
Thermal and seismic noise added to noise budget, from same paper.
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Global & Local optimization

Maximization of strain sensitivity in frequency range, under constraints
* Pool of 1000s initial conditions
e Simultaneous 1000 local optimization of parameter
(gradients & higher-order derivatives, similar to NN)
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Computer-designed GW detectors:
Results: 20Hz-5kHz

m— Solution Quantum Moise
= \/oyager Quantum Noise
== Baseline Quantum Noise
83.3 °/o —_ 10—23
[[LI 36W —% e
15 ppm = 1.34% I g
g
Side-pumped c 107
ide- s
L-shaped (inverted BS) 3AMW, 4km | 3
e 0.21 % <= 140 ppm 10-7 | | |
36W 10! 10? 103
3MW,4km 1kW - Frequency [Hz]
e ! sz i
15 ppm 0.202% | ~° " 95%
15 ppm Solution Total Noise
Solution Quantum Noise
Seismic
- 10dB  n23 Coating Thermal
g 10 Solution Laser Noise
m 5 Voyager Total Noise
= Voyager Quantum Noise
s Baseline Total Noise
. . . . . . é Baseline Quantum MNoise
Coating thermal noise limits this improvement 8 Ly
5 -
10—25

101 10? 103
Frequency [Hz]



Mario Krenn

Computer-designed GW detectors:
Results: 200Hz-1kHz
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Computer-designed GW detectors:
Results
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Computer-designed GW detectors:
Results

800Hz-3kHz
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Computer-designed GW detectors:
Conclusion

Top-Solution Setups:
Can they be conceptualized?
Are they new?
Are they useful?

We have about 100 different solutions
each might contain new ideas we could
discover.
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Computer-designed GW detectors:
Conclusion

Top-Solution Setups:
Can they be conceptualized?
Are they new?
Are they useful?

We have about 100 different solutions
each might contain new ideas we could
discover.

The larger and more complex the search space,
the larger the chances for highly unorthodox solutions

* Beyond free masses * Generalized measurements
* Beyond single carrier frequency « Two-mode squeezing & entanglement
* Nonlinear optics

Speed-up exploration
* Finesse-based speedup? Other simulation frameworks?

 ML-based speedup: Effective neural-network surrogate model,
large language models for suggesting initial conditions




Computer-designed GW detectors
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Computer-designed GW detectors:
Noise and responsivity (Broadband)

== Solution Quantum Noise
= Solution w/o squeezing
* Shot Noise

= Baseline Quantum Noise
= Baseline w/o squeezing
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== Solution Responsivity

== = Solution w/o radiation pressure

== Baseline Responsivity

=== Baseline w/o without radiation pressure

10t

102
Frequency [Hz]

103



Readout quantum noise [W/VHz]

Mario Krenn

Computer-designed GW detectors:
Noise and responsivity (Narrow Band)
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