GWADW, Elba, Italy, 23.05.2023

Digital Discovery of Interferometric Gravitational Wave Detectors

with Yehonathan Drori, Rana X. Adhikari (Caltech, LIGO)

-7

MAX PLANCK INSTITUTE FOR THE SCIENCE OF LIGHT

Mario Krenn

Artificial Scientist Lab, Theory Division

@mariokrenn6240 http://mariokrenn.wordpress.com/

Computer-designed quantum experiments

<u>MK</u>, Malik, Fickler, Lapkiewicz, Zeilinger, *PRL* **116**, 090405 (2016). <u>MK</u>, Erhard, Zeilinger, *Nature Reviews Physics* **2**, 649 (2020).

First experimental multipartite high-dimensional entanglement

New ways to control & measure photons

First multipartite high-dim entanglement in superconducting Quantum Computer

Computer-designed GW detectors: The enormous search space

Some examples (without symmetry): 3 lasers, 3 BS, 3 detectors: 1000 combinations

Computer-designed GW detectors: The enormous search space

Some examples (without symmetry):

3 lasers, 3 BS, 3 detectors: 1000 combinations

5 lasers, 5 BS, 5 detectors: 81,000 combinations (!)

Computer-designed GW detectors: The enormous search space

Mario Krenn

Some examples (without symmetry):

3 lasers, 3 BS, 3 detectors: 1000 combinations

5 lasers, 5 BS, 5 detectors: 81,000 combinations (!)

Computer-designed GW detectors: The enormous search space

Mario Krenn

Some examples (without symmetry):

3 lasers, 3 BS, 3 detectors: 1000 combinations

5 lasers, 5 BS, 5 detectors: 81,000 combinations (!)

Computer-designed GW detectors:

Discrete & continuous optimization problem:

Finding suitable topology and parameters

Computer-designed GW detectors:

Discrete & continuous optimization problem:

Finding suitable topology and parameters

Reformulation as quasi-continuous problem

Computer-designed GW detectors:

Discrete & continuous optimization problem:

Finding suitable topology and parameters

A) Universal Interferometer (UIFO) Detection Cell Ø

Voyager-like constraints

	Min	Мах
Optical path	1 cm	4 km
Mass	10 g	200 kg
Loss	5 ppm	
Transmissivity	15 ppm	
Squeezing		10 dB
Power Transmission		2 kW
Circulating power		3.5 MW

Computer-designed GW detectors: Simulation assumptions

Finesse2 (assuming plane wave, assuming free masses, single carrier frequency)

$$Sensitivity = \frac{response}{noise}$$

Response: modulating the spaces & measuring the demodulated signal at the readout

Quantum Noise: computed by Finesse

Classical noise: projecting laser noises (taken from O3 performance paper [PRD *102*(6), 062003, 2020]) of all the sources on to the readout. Thermal and seismic noise added to noise budget, from same paper.

Maximization of strain sensitivity in frequency range, under constraints

- Pool of 1000s initial conditions
- Simultaneous 1000 local optimization of parameter

(gradients & higher-order derivatives, similar to NN)

Maximization of strain sensitivity in frequency range, under constraints

- Pool of 1000s initial conditions
- Simultaneous 1000 **local** optimization of parameter

(gradients & higher-order derivatives, similar to NN)

• **Global:** Create new slightly simplified instance of good solutions

(speeds up optimization)

Maximization of strain sensitivity in frequency range, under constraints

- Pool of 1000s initial conditions
- Simultaneous 1000 **local** optimization of parameter

(gradients & higher-order derivatives, similar to NN)

- **Global:** Create new slightly simplified instance of good solutions (speeds up optimization)
- **Global:** After convergence, choice of new (good) initial condition with noise (kicks out of local minima)

Compare to: Voyager and Voyager local optimized every improvement must be new superior topology.

Maximization of strain sensitivity in frequency range, under constraints

- Pool of 1000s initial conditions
- Simultaneous 1000 **local** optimization of parameter

(gradients & higher-order derivatives, similar to NN)

- **Global:** Create new slightly simplified instance of good solutions (speeds up optimization)
- **Global:** After convergence, choice of new (good) initial condition with noise (kicks out of local minima)

Compare to: Voyager and Voyager local optimized every improvement must be new superior topology.

Computer-designed GW detectors: Results: 20Hz-5kHz

10¹

10²

Frequency [Hz]

10³

Computer-designed GW detectors: Results: 200Hz-1kHz

Computer-designed GW detectors: Results

2kHz-3kHz

800Hz-3kHz

Computer-designed GW detectors: Results

800Hz-3kHz

Computer-designed GW detectors: Conclusion

Top-Solution Setups:

Can they be conceptualized? Are they new? Are they useful? We have about 100 different solutions each might contain new ideas we could discover.

Computer-designed GW detectors: Conclusion

Top-Solution Setups:

Can they be conceptualized? Are they new? Are they useful? We have about 100 different solutions each might contain new ideas we could discover.

The larger and more complex the search space,

the larger the chances for *highly unorthodox solutions*

- Beyond free masses
- Beyond single carrier frequency
- Generalized measurements
- Two-mode squeezing & entanglement
- Nonlinear optics

Computer-designed GW detectors: Conclusion

Top-Solution Setups:

Can they be conceptualized? Are they new? Are they useful? We have about 100 different solutions each might contain new ideas we could discover.

The larger and more complex the search space,

the larger the chances for *highly unorthodox solutions*

- Beyond free masses
- Beyond single carrier frequency
- Generalized measurements
- Two-mode squeezing & entanglement
- Nonlinear optics

Speed-up exploration

- Finesse-based speedup? Other simulation frameworks?
- <u>ML-based speedup</u>: Effective neural-network surrogate model, large language models for suggesting initial conditions

Computer-designed GW detectors: aLIGO in UIFO

Computer-designed GW detectors: Noise and responsivity (Broadband)

Computer-designed GW detectors: Noise and responsivity (Narrow Band)

