GWADW: May 21-27, 2023 Hotel Hermitage, La Biodola, Isola d'Elba

Forecasting the Detection and Parameter Estimation Capabilities for different ET Designs

Ulyana Dupletsa

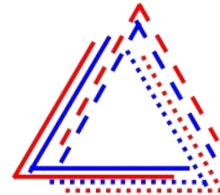
on behalf of Branchesi, Maggiore et al. (arXiv:2303.15923)

G S GRAN SASSO SCIENCE INSTITUTE

S

SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

Science with the Einstein Telescope: a comparison of different designs


Marica Branchesi,^{1,2} Michele Maggiore,^{3,4} David Alonso,⁵ Charles Badger,⁶ Biswajit Banerjee,^{1,2} Freija Beirnaert,⁷ Swetha Bhagwat^{8,9} Marie-Anne Bizouard,¹⁰ Guillaume Boileau,^{11,10} Ssohrab Borhanian,¹² Daniel David Brown,¹³ Man Leong Chan,¹⁴ Nelson Christensen,¹⁰ Giulia Cusin,^{15,3,4} Stefan L. Danilishin,^{16,17} Jerome Degallaix,¹⁸ Valerio De Luca,¹⁹ Arnab Dhani,²⁰ Tim Dietrich,^{21,22} Ulyana Dupletsa,^{1,2} Stefano Foffa,^{3,4} Gabriele Franciolini,⁸ Andreas Freise,^{23,16} Gianluca Gemme,²⁴ Boris Goncharov,^{1,2} Archisman Ghosh,⁷ Francesca Gulminelli,²⁵ Ish Gupta,²⁰ Pawan Kumar Gupta,^{16,26} Jan Harms,^{1,2} Nandini Hazra,^{1,2,27} Stefan Hild,^{16,17} Tania Hinderer,²⁸ Ik Siong Heng,²⁹ Francesco Iacovelli,^{3,4} Justin Janguart,^{16,26} Kamiel Janssens,^{10,11} Alexander C. Jenkins,³⁰ Chinmay Kalaghatgi,^{16,26,31} Xhesika Koroveshi,^{32,33} Tjonnie G. F. Li,^{34,35} Yufeng Li,³⁶ Eleonora Loffredo,^{1,2} Elisa Maggio,²² Michele Mancarella,^{3,4,37,38} Michela Mapelli,^{39,40,41} Katarina Martinovic.⁶ Andrea Maselli,^{1,2} Patrick Meyers,⁴² Andrew L. Miller,^{43,16,26} Chiranjib Mondal,²⁵ Niccolò Muttoni,^{3,4} Harsh Narola,^{16,26} Micaela Oertel,⁴⁴ Gor Oganesyan,^{1,2} Costantino Pacilio,^{8,37,38} Cristiano Palomba,⁴⁵ Paolo Pani,⁸ Antonio Pasqualetti,⁴⁶ Albino Perego,^{47,48} Carole Périgois,^{39,40,41} Mauro Pieroni,^{49,50} Ornella Juliana Piccinni,⁵¹ Anna Puecher,^{16,26} Paola Puppo,⁴⁵ Angelo Ricciardone,^{52,39,40} Antonio Riotto,^{3,4} Samuele Ronchini,^{1,2} Mairi Sakellariadou,⁶ Anuradha Samajdar,²¹ Filippo Santoliquido,^{39,40,41} B.S. Sathyaprakash,^{20,53,54} Jessica Steinlechner,^{16,17} Sebastian Steinlechner,^{16,17} Andrei Utina,^{16,17} Chris Van Den Broeck,^{16,26} and Teng Zhang^{9,17}

Science Reference Paper for the CoBA study

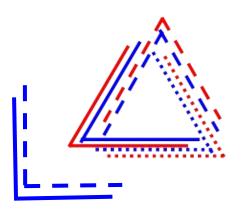
Work coordinated by Marica Branchesi and Michele Maggiore

submitted to JCAP

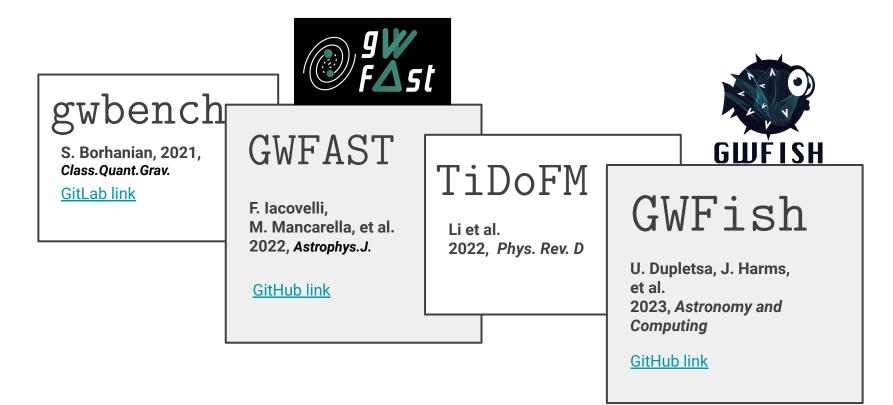
Reference Design of ET

The reference ET configuration consists of:

- Triangular shape
- 10 km arms
- 3 nested detectors in xylophone configuration: **HF + LF** (cryogenic)


Different Configurations

We want to evaluate the effect on the Science Case of:


- Changes in geometry: triangle vs 2L, different arm lengths
- Role of the low frequency instrument: what happens if we have only the HF part?

- Triangle, 10 km arms (reference design)
- 2L, 15 km arms, parallel
- 2L, 15 km arms, at 45°

- Triangle, 15 km arms
- 2L, 20 km arms, parallel
- 2L, 20 km arms, at 45°

Fisher Matrix Analysis

Starting Assumptions

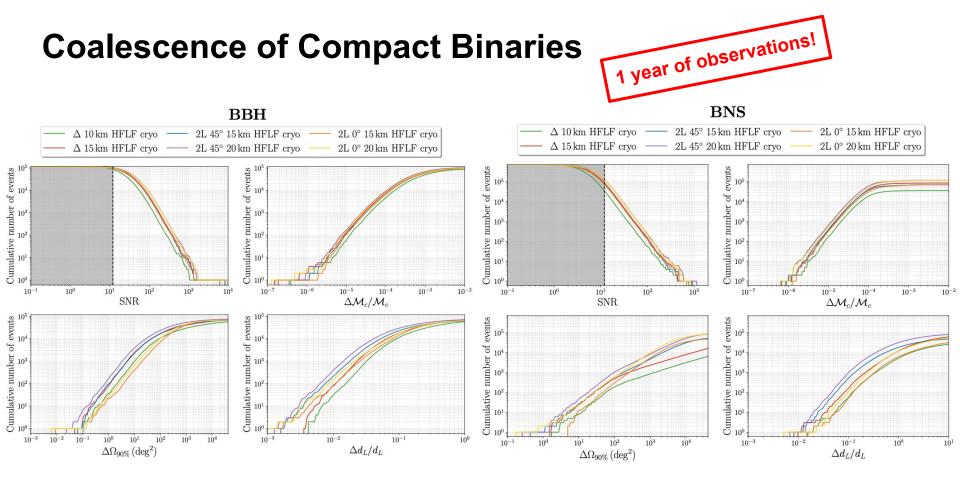

- We use waveform including higher order modes and tidal deformability parameters (for BNSs): **IMRPhenomXPHM** and **IMRPhenomD_NRTidalv2**
- The parameters of the waveform are:

$$\{ \mathcal{M}_{c}, \eta, d_{L}, \theta, \phi, \iota, \psi, t_{c}, \Phi_{c}, \chi_{1,x}, \chi_{2,x}, \chi_{1,y}, \chi_{2,y}, \chi_{1,z}, \chi_{2,z}, \Lambda_{1}, \Lambda_{2} \}$$
tidal polarizability (for BNSs only) spin parameters

- The BNS population was obtained using MOBSE (isolated binaries) with a local merger rate of 250 Gpc⁻³ yr⁻¹ (to compare to the LVK result of 10-1700 Gpc⁻³ yr⁻¹
- The BBH population was obtained using **FASTCLUSTER** (isolated evolution + dynamical formation channel)

Sensitivity Curves (provided by the ISB)

Structure of the Work

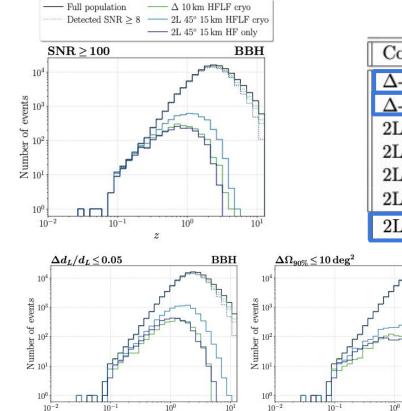

Contents

1 Introduction

2 Detector geometries and sensitivity curves

3	Coa	lescence of compact binaries
	3.1	Binary Black Holes
		3.1.1 Comparison between geometries
		3.1.2 Effects of a change in the ASD
		3.1.3 Golden events
	3.2	Binary Neutron Stars
		3.2.1 Comparison between geometries
		3.2.2 Effects of a change in the ASD
		3.2.3 Golden events
		3.2.4 Dependence on the population model
	3.3	ET in a network of 3G detectors
4	М	
4		lti-messenger astrophysics
	4.1	
	4.2	Gamma-ray bursts: joint GW and high-energy detections
		4.2.1 Prompt emission
		4.2.2 Afterglow: survey and pointing modes
	4.3	Kilonovae: joint GW and optical detections
5	Sto	chastic backgrounds
	5.1	Sensitivity to isotropic stochastic backgrounds
	5.2	Angular sensitivity
	5.3	Astrophysical backgrounds
	5.4	Impact of correlated magnetic, seismic and Newtonian noise
		5.4.1 Seismic and Newtonian Noise
		5.4.2 Magnetic noise

6	Imp	Impacts of detector designs on specific science cases						
	6.1	Physic	cs near the BH horizon					
		6.1.1	Testing the GR predictions for space-time dynamics near the horizon					
		6.1.2	Searching for echoes and near-horizon structures					
		6.1.3	Constraining tidal effects and multipolar structure	1				
	6.2 Nuclear physics							
		6.2.1	Radius estimation from Fisher-matrix computation	1				
		6.2.2	Full parameter estimation results	8				
		6.2.3	Connected uncertainty of nuclear-physics parameters	8				
		6.2.4	Postmerger detectability	8				
		6.2.5	Conclusions: nuclear physics with ET	8				
	6.3	Popul	ation studies	8				
		6.3.1	Merger rate reconstruction	8				
		6.3.2	Constraints on PBHs from high-redshift mergers					
		6.3.3	Other PBH signatures					
	6.4 Cosmology							
		6.4.1	Hubble parameter and dark energy from joint GW/EM detections					
		6.4.2	Hubble parameter and dark energy from BNS tidal deformability	1				
		6.4.3	Hubble parameter from high-mass ratio events	1				
	6.5	Cosm	ological stochastic backgrounds	1				
		6.5.1	Cosmic Strings	1				
		6.5.2	First-order phase transition	1				
		6.5.3	Source separation	1				
	6.6	Conti	nuous waves	1				
		6.6.1	CWs from spinning neutron stars	1				
		6.6.2	Transient CWs	1				
		6.6.3	Search for dark matter with CWs	1				
		6.6.4	Conclusions	1				
7	The	e role e	of the null stream in the triangle-2L comparison	1				



Coalescence of Compact Binaries: Golden Events

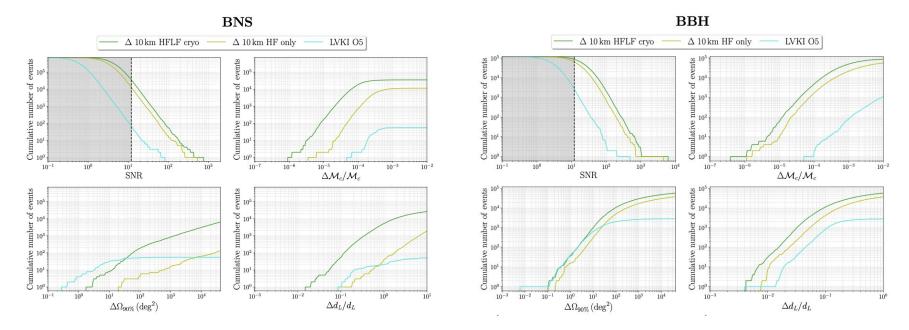
BBH

 10^{1}

z

 10^{-1}

z

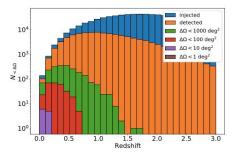

Configuration	$SNR \ge 100$
Δ -10km-HFLF-Cryo	2298
Δ -15km-HFLF-Crvo	5730
2L-15km-45°-HFLF-Cryo	4933
2L-20km-45°-HFLF-Cryo	8828
2L-15km-0°-HFLF-Cryo	5143
2L-20km-0°-HFLF-Cryo	8551
$2L-15$ km- 45° -HF	1987

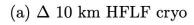
The full population contains 1.2 x 10⁵ BBH events!

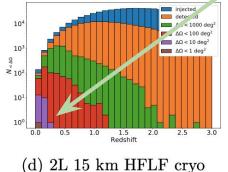
Coalescence of Compact Binaries

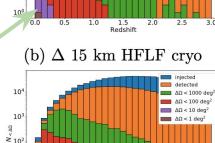
- The reference design of 10 km has remarkable performance, improving by orders of magnitude with respect to 2G
- The 2L-15 km-45° configuration improves by a further factor of 2-3, especially for distance and sky localization
- The 2L-15km-0° configuration is disfavored, because of the poor angular localization capabilities

Coalescence of Compact Binaries: Iosing LF




- LF sensitivity is particularly important for BNSs as they stay for a longer time in bandwidth
- The reference triangle-10 km design is well superior LVK-O5 even if we have only HF sensitivity, except for angular localization


Multi-Messenger Astronomy


The key parameters to take into account are:

- Ability to localize the source
- Number of joint detections (SNR > 8)
- Reached redshift
- Pre-merger detection and parameter estimation

104

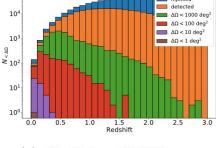
103

g

≥ 10

10¹

injected


detected

 $\Delta 0 < 1000 \text{ deg}^2$

 $\Delta \Omega < 100 \text{ deg}^2$

 $\Delta \Omega < 10 \text{ deg}^2$

 $\Delta \Omega < 1 \text{ deg}$

(e) 2L 20 km HFLF cryo

The 2L-15km-45° is comparable to Δ -15km and is better than Δ -10km

Multi-Messenger Astronomy: HF only

		ה, וו		ra) consit	inite d	lotootor		-axis events
$\Delta\Omega_{90\%}({ m deg}^2)$	Full (HFLF cryo) sensiti $\Delta \Omega_{90\%}(\text{deg}^2)$ All orientation BNSs			-			angle $\Theta_v < 15^\circ$	
	$\Delta 10$	$\Delta 15$	2L 15	2L 20	$\Delta 10$	$\Delta 15$	2L 15	2L 20
10	11	27	24	45	0	1	2	5
40	78	215	162	350	8	22	20	33
100	280	764	644	1282	26	74	68	133
1000	2112	5441	7478	13482	272	632	1045	1725
			HF sens	itivity d	ector	s		
$\Delta\Omega_{90\%}({ m deg}^2)$	Al	l orient	ation B	NSs	BNSs	with v	viewing a	angle $\Theta_v < 15^{\circ}$
	$\Delta 10$	$\Delta 15$	$2L \ 15$	$2L\ 20$	$\Delta 10$	$\Delta 15$	$2L \ 15$	2L 20
10	0	1	5	5	0	0	2	2
40	4	10	20	47	0	5	6	17
100	14	53	76	144	7	33	35	64
1000	145	548	1662	3378	80	336	672	1302

- Significantly smaller number of well-localized events (<100deg²), especially for the Δ-configurations
- For the on-axis events the percentage decrease of well-localized events is smaller than that for randomly oriented events
- 2L-15km-HF and
 2L-20km-HF are worse than
 ∆-10km-cryo for randomly oriented systems
- 2L-15km-HF is comparable to the full Δ-10km-cryo for on-axis events

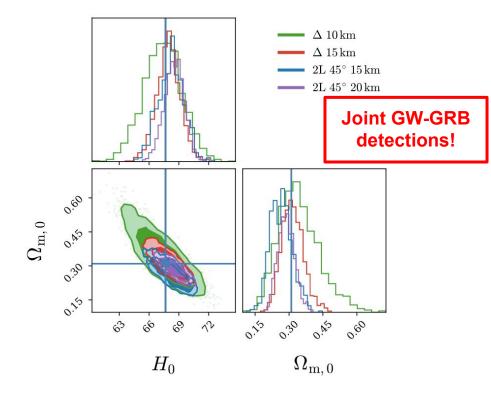
Multi-Messenger Astronomy: Pre-Merger Detections

	Full (HFLF	cryo) sen	sitivity de	etectors				
Configuration	$\Delta\Omega_{90\%}$	All ori	All orientation BNSs			BNSs with $\Theta_v < 15^\circ$		
Comgutation	$[deg^2]$	$30 \min$	10 min	1 min	30 min	10 min	1 min	
	10	0	1	5	0	0	0	
$\Delta 10 \mathrm{km}$	100	10	39	113	2	8	20	
	1000	85	293	819	10	34	132	
	All detected	905	4343	23597	81	393	2312	
	10	1	5	11	0	1	1	
$\Delta 15 \mathrm{km}$	100	41	109	281	6	14	36	
	1000	279	806	2007	33	102	295	
	All detected	2489	11303	48127	221	1009	4024	
	10	0	1	8	0	0	0	
OI 15 km misslimed	100	20	54	169	2	7	26	
2L 15 km misaligned	1000	194	565	1399	23	73	199	
	All detected	2172	9598	39499	198	863	3432	
	10	2	4	15	1	1	2	
2L 20 km misaligned	100	39	118	288	7	19	47	
Detections	1000	403	1040	2427	47	128	346	
within z=1.5	All detected	4125	17294	56611	363	1588	4377	

Pre-merger detections are critical to detect the prompt/early multi-wavelength emission in order to:

- Probe the central engine of GRBs, and in particular to understand the jet composition, the particle acceleration mechanism, the radiation and energy dissipation mechanisms (VHE prompt CTA/ET synergy see Banerjee et al., 2023)
- To probe the structure of the outer sub-relativistic ejecta, early UV emission (ULTRASAT/UVEX/DORADO synergy)

Similar performances for on-axis events!

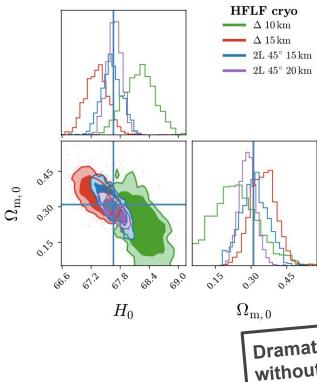

Without LF

within z=1.5

	HF s	ensitivity	detectors				
Configuration	$\Delta\Omega_{90\%}$	All orientation BNSs			BNSs with $\Theta_v < 15^\circ$		
Comgutation	$[deg^2]$	30 min	$10 \min$	1 min	30 min	$10 \min$	$1 \min$
	100	0	0	0	0	0	0
$\Delta 10 { m km}$	1000	0	0	4	0	0	1
	All detected	0	3	317	0	0	26
	100	0	0	2	0	0	0
$\Delta 15 { m km}$	1000	0	0	10	0	0	4
	All detected	2	8	891	0	1	84
	100	0	0	0	0	0	0
2L 15 km misaligned	1000	0	0	7	0	0	3
	All detected	0	7	743	0	1	69
	100	0	0	3	0	0	0
$2\mathrm{L}~20~\mathrm{km}$ misaligned	1000	0	0	13	0	0	6
	All detected	2	11	1535	0	1	146
Detections							

No localized pre-merger detections!

Cosmology: ET + THESEUS

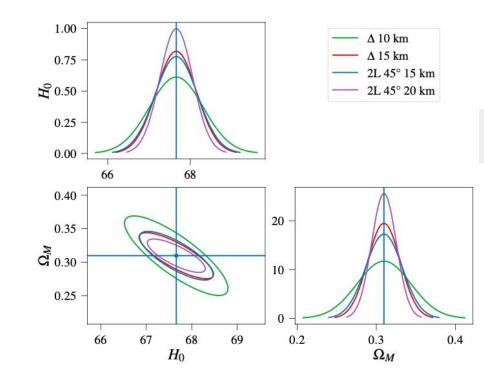

- 5 years of observations
- **75 joint detections** in the configuration 2L-20km-cryo
- Solid and conservative results based on prompt GRB observations

Configuration	$\Delta H_0/H_0$	$\Delta\Omega_M/\Omega_M$
Δ -10km	0.057	0.546
Δ -15km	0.035	0.290
$2L-15km-45^{\circ}$	0.040	0.370
$2L-20km-45^{\circ}$	0.029	0.276

Cosmology: ET + VRO

Joint GW-kilonova detections

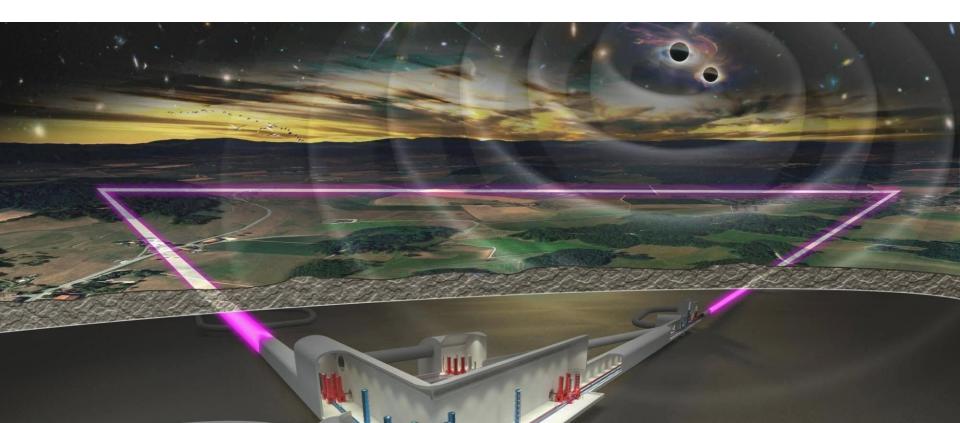
- 1 year of observations (larger number of joint detections expected)
- **115 joint detections** for 2L-20km-cryo
- Dependence on BNS merger rate normalization



HFLF cryogenic				
Configuration	$\Delta H_0/H_0$	$\Delta\Omega_M/\Omega_M$		
Δ -10km	0.009	0.832		
Δ -15km	0.007	0.303		
$2L-15km-45^{\circ}$	0.006	0.370		
$2L-20km-45^{\circ}$	0.004	0.243		

HF only					
Configuration	$\Delta H_0/H_0$	$\Delta\Omega_M/\Omega_M$			
Δ -10km	0.065	1.23			
Δ -15km	0.057	1.86			
$2L-15km-45^{\circ}$	0.066	1.31			
$2L-20km-45^{\circ}$	0.031	1.22			

Cosmology from BNS Tidal Deformability


- Assuming that the nuclear EOS is known
- The source-frame mass can be determined from the measurement of tidal deformability
- Direct measurement of z from the GW signal
- Sub-percent error on H₀ with a single year of observing run with ET alone

Configuration	$\Delta H_0/H_0$	$\Delta\Omega_M/\Omega_M$
Δ -10km	$9.63 imes10^{-3}$	1.10×10^{-1}
Δ -15km	$7.20 imes 10^{-3}$	$6.62 imes 10^{-2}$
$2L-15$ km- 45°	$7.59 imes 10^{-3}$	7.47×10^{-2}
$2L-20km-45^{\circ}$	$5.90 imes10^{-3}$	5.04×10^{-2}

CoBA Conclusions

- All the triangular and 2L geometries that have been investigated can be the baseline of a **superb 3G detector**, that will allow to improve by orders of magnitude compared to 2G detectors
- The 2L-15km-45° configuration in general offer a better scientific return with respect to the Δ-10km, and has a similar performance on all parameters (for both BBHs and BNSs) to the Δ-15km
- The **low frequency sensitivity** is crucial for exploiting the full potential of ET. In the HF-configuration only, independently of the chosen geometry, several scientific targets would be lost or significantly diminished

Thank you!

