

Working with marginally-stable dual-recycling cavities: Finesse simulations for commissioning Virgo in O4 and beyond

<u>A. C. Green</u>^{*}, A. Bianchi, D. Brown, A. Freise, R. Maggiore, J. Perry, M. Sallé & the wider Virgo commissioning team

May 2023

VIR-0490A-23

*agreen@nikhef.nl

Virgo for O4: dual-recycled; marginally stable

O4 Virgo adds signal recycling

- Both the SRC and PRC are marginally stable
- Long history, see e.g. LIGO-G2300588 (S. Hild LVK)

Huge commissioning effort required

- As seen in several talks this week
- New length, alignment, mode matching controls
- Tolerance to imperfections is especially low due to marginally stable recycling cavities

Behaviour is extremely challenging to predict/intuit – much more complex simulations required.

Cavity stability

Cavity stability is determined by geometry (lengths & mirror curvatures)

• Resonant condition - stable reproduction of the beam shape

Describing the shape of the beam

We can represent the optical field as a series expansion of Gaussian modes (e.g. Hermite-Gauss, Laguerre Gauss)

$$E(t,x,y,z) = \sum_{j} \sum_{n,m} a_{jnm} u_{nm}(x,y,z) \exp\left(i\left(\omega_{j}t - k_{j}z\right)\right)$$

This approach works well for paraxial beams dominantly described by a fundamental Gaussian beam, with higher order modes (HOMs) representing perturbations to the beam shape.

- Both mathematical description and physically observable in e.g. cavity scans

Cavities near instability

Near geometric instability, the beam shape in the cavity is easily distorted

 Gouy phase becomes so small that mode spacing < linewidth; HOMs can also resonate

Previous studies, and experimental results e.g. H. Wang et al. <u>PRD 2018/LIGO-P1700332</u> \rightarrow

- Small imperfections e.g. surface quality create couplings to HOMs
- Couplings become larger, more chaotic, less predictable in near-unstable systems
- Usage in GW detectors needs very strict requirements on mirror surface quality + length and thermal controls
- Consistent with Virgo experience

5

Recent Finesse projects supporting Virgo commissioning

The developer team now use Finesse 3 (late-alpha) for all our work & are winding down v2 support to focus on v3 full release

Other recent topics not covered today:

• IMC baffle design

A. Bianchi, H. Yamamoto et al. - VIR-XXXX-23 (coming soon)

- Mode mismatch impact on squeezing A. C. Green et al. - <u>VIR-0310A-23</u> (preliminary)
- Tilt & Thermal actuation effects on DARM, contrast defect and common mode rejection R. Maggiore, A. C. Green, E. Tournefier et al. - various, including: <u>VIR-0801A-22</u>, <u>VIR-0282A-22</u>, <u>VIR-0470A-23</u>,...

Example: Alignment sensing and controls

Angular controls characterisation

R. Maggiore et. al VIR-1193A-22 / paper coming soon

Goal: determine how much angular motion in the detection frequency band (f > 10Hz) is converted into DARM motion.

- Project noises through a full MIMO model of the ASC loops
 - With full opto-mechanical plant and ASC control scheme model; incorporating residual angular motion, beam miscentering on each mirror
- Excellent match to O3 noise data & DARM couplings
 - Now using similar techniques to make initial predictions for ET

Examples: Alignment sensing and controls

Automatic Alignment System for the SR Mirror J. Perry, J. Casanueva et al <u>VIR-0077A-23</u> / <u>VIR-1107A-22</u>

Goal: find a sideband-sideband QPD beat signal for globally controlling SR angle

- Swap from local dither signal (low SNR, lines);
 Target robustness to mode mismatch
- Cf similar work at LIGO
- Identified new modulation frequency @ 81MHz to beat with existing 56MHz sideband (demodulate at 25MHz)
 - Resonant in PRC
 - Best optical gain (higher freqs sensor-limited)
- New modulation implemented & tested, but low SRC Gouy phase found to make the signal unreliable.

Examples: Mode matching & thermal actuation

The CHRoCC

A. C. Green, A. Bianchi, D. Brown, J. Degallaix et. al.

New thermal actuator targeting PRC beam shape:

"central heating radius of curvature correction"

Goal: assess if the CHRoCC actuator could be used without introducing significant new defects

Combined effort for different aspects & cross-checking:

- FFT (OSCAR) good for distorted beams, especially higher-spatial-frequencies
- modal models (Finesse) distorted beams, controls and transfer functions

Examples: Mode matching & thermal actuation

The CHRoCC

A. C. Green, A. Bianchi, D. Brown et. al.

- *Residual* effect on powers, gains, DARM <u>VIR-0738A-22</u>
- Also when off-centre by up to 15mm VIR-0943A-22
 - Both show good agreement with OSCAR
- <u>Convergence</u> testing <u>VIR-0944A-22</u> considered e.g.
 DARM spring frequency, error signal offsets, circulating power

Outcome: minor effect on in-detection-band DARM. Now an active, successful part of Virgo O4 TCS.

Similar techniques are also used for assessing **performance of new optics with imperfect surface quality** A. C. Green , J. Degallaix, S. Steinlechner, et al.

VIR-0909B-22 / VIR-1049A-22

Key challenge: the Operating Point

To detect GWs the detector length degrees of freedom must be locked at its operating point

- Obvious, key part of commissioning
 - Resisting environmental effects, maintaining sensitivity
- Also an essential step in our simulations
 - Understanding how controls behave
 - But also, critically, the operating point depends on the detailed phase relations of HOMs in the interferometer

All interferometer behaviours change rapidly when **offsets** are introduced

• Imperfections, especially in marginally stable cavities, affect error signals - so offsets are often produced

Impact on DARM

The DARM TF is often our most sensitive test case for detector performance

Common feature: Optical spring in DARM TF is distorted by defects - in experiment & simulations

 \rightarrow we want to understand exactly the mechanism, and confirm that DOF offsets are behind many of the issues we observe

Impact on DARM

Optical spring: radiation pressure effect driven by microscopic cavity length detuning

- Shouldn't be influenced by other degrees of freedom, but clearly is
- Clear flag: optical defects & resulting HOMs change the offsets of the length degrees of freedom, affecting the spring
- E.g. 2m PR RoC mis-tuning
 - Blue: DOF error signals zero (by 'lock dragging')
 - Red: DOFs optimized to restore DARM TF

Offsets in DoF tunings (red-blue):

DoF	Offset [pm]
CARM	0.01
DARM	0.00
PRCL	18.0
MICH	15.4
SRCL	1015.8

Current status

We've begun a **dedicated programme**:

Investigate how, fundamentally, HOMs cause offsets - & what this means for future detector design

Initial phase: simple test case of a single cavity (Masters project, P. Hapke / R. Maggiore)

- Mismatch or tilt injected beam vs cavity eigenmode
- Even in this simple case, see an offset
- Origin appears to be phase shift in 00 mode of carrier when light couples into HOM(s)
- I.e. a fundamental behaviour for cavities with defects
- Severity depends on cavity stability another reason to favour geometrically stable designs

Next: scaling up towards full detector configurations - watch this space...

Looking ahead: Virgo's future

In line with our experiences, we contributed to "The Need for Stable Recycling Cavities in Virgo-nEXT" <u>VIR-0047A-23</u> (& talk <u>LIGO-G2300588</u>):

- current commissioning and simulation experience of marginally stable RCs
 - As you've heard this week
- Other likely positive consequences of moving to stable RCs e.g. meeting squeezing loss targets, simpler telescope designs, and efficient simulations

I.e. it would be extremely challenging to meet Virgo(_nEXT)'s goals without this change - news in this direction sounds very positive

Looking ahead: future simulation requirements

The problems we encounter in current and future detectors are increasingly complex (whether due to cavity stability, or other effects e.g. high thermal distortion) - so simulations become more essential.

Open question*:

*since we conveniently have an optical simulations workshop at Nikhef in <2 weeks time...

what do we require of interferometer simulations to achieve our 3G detector goals?

Some opening thoughts:

- Efficiency, speed
- Cross-compatibility & cross-checking; integrations with e.g. FEM softwares, pyGWINC, ...
- Person-power & accessibility; Open source, maintenance, documentation, ...
- Missing physics e.g. polarisation/birefringence, ...?

This publication is part of the project "Smoothing the Optical Bumps in the Road for Future Gravitational- Wave Detectors" with project number VI.Veni.212.047 which is financed by the Dutch Research Council (NWO).

