A table-top experiment for implementing EPR conditional squeezing in 2nd and 3rd Generation GW detectors

Francesco De Marco (Sapienza University of Rome and INFN Rome) on behalf of the EPR-SIPS Team

GWADW (Gravitational-Wave Advanced Detectors Workshop) 21-27 May 2023 - Isola d'Elba (Italy)

Introducing EPR-SIPS team

Valeria Seguino (PI) Martina De Laurentis University of Naples "Federico II" & INFN-Naples

F. De Marco et al. - EPR conditional squeezing

Mateusz Bawaj University of Perugia and INFN-Perugia

Università degli Studi di Perugia

- Hojae Ahn (KHU)
- Sungho Lee (KASI)
- Soojong Pak (KHU)
- June-Gyu Park (Yonsei University)

Sapienza University of Rome & INFN-Rome

APIENZA

Università di Roma

- Sumin Lee (KHU)
- Yunjong Kim (KASI)

Fiodor Sorrentino University of Genova **INFN-Genova**

Barbara Garaventa **INFN-Genova**

GWADW2023 - Isola d'Elba (Italy)

2

Quantum Noise Reduction in GW detectors

- **Quantum Noise (QN)** limits the sensitivity of GW detectors in a wide range of their spectrum
- Frequency-Dependent Squeezed (FDS) light provides broadband QN reduction

Electromagnetic field quadratures:

- X quadrature → Amplitude (Radiation Pressure Noise)
- Y quadrature → Phase (Shot Noise)

FDS with Filter Cavity

- Squeezing ellipse can be rotated in a frequency-dependent manner with a detuned linear cavity (Filter Cavity)
- Central rotation angle @ ~50 Hz implies
 - Long cavity L=285 m
 - High finesse F=11000
- Round-trip losses in AdV+ FC: 50-90 ppm

Zhao - Report VIR-1133A-22 (2022)

FDS with Filter Cavity

- Squeezing ellipse can be rotated in a frequency-dependent manner with a detuned linear cavity (Filter Cavity)
- Central rotation angle @ ~50 Hz implies
 - Long cavity L=285 m
 - High finesse F=11000
- Round-trip losses in AdV+ FC: 50-90 ppm Zhao - Report VIR-1133A-22 (2022)

Credits: Virgo Coll. - Report VIR-0596A-19 (2019) and Di Pace - Phys. Scr. 96 124054

EPR proposal: a little bit of "history"

Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement

Yiqiu Ma¹*, Haixing Miao², Belinda Heyun Pang¹, Matthew Evans³, Chunnong Zhao⁴, Jan Harms^{5,6}, Roman Schnabel⁷ and Yanbei Chen¹

EPR proposal: a little bit of "history"

Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement

Yiqiu Ma^{1*}, Haixing Miao², Belinda Heyun Pang¹, Matthew Evans³, Chunnong Zhao⁴, Jan Harms⁵⁶, Roman Schnabel⁷ and Yanbei Chen¹

Südbeck et al. - Nature Phot. 14 240-244 (2020)

ARTICLES https://doi.org/10.1038/s41566-019-0583-3

Demonstration of interferometer enhancement through Einstein-Podolsky-Rosen entanglement

Jan Südbeck, Sebastian Steinlechner⁽³⁾, Mikhail Korobko⁽³⁾ and Roman Schnabel⁽³⁾

nature

photonics

Yap et al. - Nature Phot 14, 223-226 (2020)

Generation and control of frequency-dependent squeezing via Einstein-Podolsky-Rosen entanglement

Min Jet Yap⊙*, Paul Altin, Terry G. McRae, Bram J. J. Slagmolen, Robert L. Ward and David E. McClelland⊙

Experimental demonstrations (2020)

LETTERS

https://doi.org/10.1038/s41566-019-0582

EPR proposal: a little bit of "history"

Südbeck et al. - Nature Phot. 14 240-244 (2020)

ARTICLES https://doi.org/10.1038/s41566-019-0583-

Demonstration of interferometer enhancement through Einstein-Podolsky-Rosen entanglement

Jan Südbeck, Sebastian Steinlechner[®], Mikhail Korobko[®] and Roman Schnabel[®]

nature

photonics

ARTICLES PUBLISHED ONLINE: 15 MAY 2017 | DOI: 10.1038/NPHYS4118

nature physics

Generation and control of frequency-dependent squeezing via Einstein-Podolsky-Rosen entanglement

Min Jet Yap³*, Paul Altin, Terry G. McRae, Bram J. J. Slagmolen, Robert L. Ward and David E. McClelland

Experimental demonstrations (2020)

Table-top experiment in a small-scale interferometer (ongoing at EGO)

- Optical simulations and design
- Laboratory work •

Pros:

- More compact and cheaper
- More flexible vs SR
- Avoids FC optical losses

Cons:

- 2 squeezed beams to be handled
- 3 dB penalty w.r.t. optimal squeezing rotation ellipse

F. De Marco et al. - EPR conditional squeezing

F. De Marco et al. - EPR conditional squeezing

1. Signal and idler are vacuum squeezed beams, EPR-entangled and detuned by Δ

2. The idler acquires frequencydependence in SIPS due to its detuning

 Combined measurement with optimal filter gain transfers the frequency dependence to the signal via EPR entanglement

- More compact and cheaper
- More flexible vs SR
- Avoids FC optical losses

- 2 squeezed beams to be handled
- 3 dB penalty w.r.t. optimal squeezing rotation ellipse

Non-linear cavities: SHG and OPO

- The frequency of an electromagnetic wave can be modified only via non-linear propagating medium, i.e. $\chi^{(2)} \neq 0$
- We will use two identical hemilithic optical cavities
 - Second-Harmonic Generator (SHG) generates green pump beam
 - Optical Parametric Oscillator (OPO) generates vacuum squeezed EPR-entangled beams
- The green beam has to be power-controlled (Mach-Zehnder) and purely Gaussian (mode cleaner)

Both the cavities are ready for use: SHG with MC-G and MZ are installed on the bench

GWADW2023 - Isola d'Elba (Italy)

MAIN laser MC-IR HD signal AUX laser AUX laser MC-IR HD idler

Mode Cleaner (MC) IR cavities

- A mode cleaner (MC) cavity is used to reflect out the Higher Order Modes (HOMs) in the transverse intensity profile of a laser
- We have 3 MC-IR in our setup, for the most sensitive parts
 - Homodyne Detectors for Local Oscillators of signal and idler (KASI team)
 - SIPS Interferometer (Roma1 team)

Credits: Chang-Hee Kim

Mode Cleaner (MC) IR cavities

- A mode cleaner (MC) cavity is used to reflect out the Higher Order Modes (HOMs) in the transverse intensity profile of a laser
- We have 3 MC-IR in our setup, for the most sensitive parts
 - Homodyne Detectors for Local Oscillators of signal and idler (KASI team)
 - SIPS Interferometer (Roma1 team)

Credits: Chang-Hee Kim

MC-IR for SIPS

- Delivers up to 3.9 W to SIPS
- HOMs suppression >20 dB

Mechanical design Credits: M. Perciballi D C-C(1:1) 0 0 0 367,00

All the MC-IR are ready to be integrated in the EPR setup

F. De Marco et al. - EPR conditional squeezing

Mode-Matching Telescopes (MMTs)

- The beam mode exiting from the OPO cavity needs to be matched to the Gaussian eigenmode of the interferometer
- One step before: linear test cavity (design and production by Naples team)

MT2

waist 406.8um

W(

p-pol

LCBtc

ogc

CB

MT1

M2

- 1. Test cavity MMT designed and produced by KASI-KHU team: ready in July 2023
- 2. SIPS MMT: to be designed

SIPS interferometer

- SIPS (Suspended Interferometer for Ponderomotive Squeezing) was initially conceived for ponderomotive squeezing (design and production by Roma1 and Naples team)
- Configuration: non-recycled Michelson Fabry-Perot interferometer
- Now it will be used to test the EPR squeezing

Credits: Di Pace *et al.* - Eur. Phys. J. D 74, 227 (2020) and Giacoppo - PhD thesis (2023)

Setup

F. De Marco et al. - EPR conditional squeezing

Noise budget for End Mirror 1", 10g: new monolithic suspensions

SIPS interferometer

- SIPS (Suspended Interferometer for Ponderomotive Squeezing) was initially conceived for ponderomotive squeezing (design and production by Roma1 and Naples team)
- Configuration: non-recycled Michelson Fabry-Perot interferometer
- Now it will be used to test the EPR squeezing

Credits: Di Pace et al. - Eur. Phys. J. D 74, 227 (2020) and Giacoppo - PhD thesis (2023)

Setup

F. De Marco et al. - EPR conditional squeezing

Noise budget for End Mirror 1", 10g: new monolithic suspensions

GWADW2023 - Isola d'Elba (Italy)

SIPS interferometer

- SIPS (Suspended Interferometer for Ponderomotive Squeezing) was initially conceived for ponderomotive squeezing (design and production by Roma1 and Naples team)
- Configuration: non-recycled Michelson Fabry-Perot interferometer
- Now it will be used to test the EPR squeezing

Credits: Di Pace *et al.* - Eur. Phys. J. D 74, 227 (2020) and Giacoppo - PhD thesis (2023)

Setup

F. De Marco et al. - EPR conditional squeezing

Noise budget for End Mirror 1", 10g: new monolithic suspensions

SIPS interferometer - local control

- SIPS local control will be improved with new mechanics and 4 suspension wires for each mirror <u>Giacoppo - PhD thesis (2023)</u>
- Readout: optical lever

 Tests with previous design carried out with dummy mirror

> Pre-alignment of the end mirror Credits: <u>Giacoppo et al.</u> - Phys. Scr. 96 114007 (2021)

Next goal: improving the 10 nrad and 0.1 µm performance of the previous system

Etalon

An etalon is used for separating the outgoing signal and idler beams

It has been already developed, produced and tested by APC-Paris

Credits: Nguyen et al. - Appl. Opt. 61 17 (2022)

The etalon is currently on the EPR optical bench at EGO

Etalon

- An etalon is used for separating the outgoing **signal** and **idler** beams
- It has been already developed, produced and tested by APC-Paris team

Credits: Nguyen et al. - Appl. Opt. 61 17 (2022)

The etalon is currently on the EPR optical bench at EGO

Conclusions and outlook

 We are implementing a table-top prototype to test EPR conditional squeezing scheme in a small-scale suspended interferometer

- Most of the main optical elements are already designed and produced
- Further steps to be taken include the improvement of several elements
- Optical simulations are needed to support the experimental goal
- An EPR squeezer will be even more important for 3rd generation detectors (e.g. Einstein Telescope and Cosmic Explorer)

Thank you for your attention

Email: <u>francesco.demarco@roma1.infn.it</u>

VIR-0482A-23

We are here!