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In 2027, the Advanced Virgo Plus (AdV+) gravitational-wave detector will enter Phase Il, a thermal vertical alighment.

noise reduction upgrade involving the increase of the masses of the terminal payloads and the update  Triggered by the need for stiffer maraging blades, we present a study of the statics of these parts of the
of all the vertical oscillators in the terminal SuperAttenuators. These are based on thin elastic blades of  SuperAttenuator and of the ideal flattening loads. A simulation code allowing accurate previsions for
maraging steel designed to carry the load of the chain of pendulums and oscillate at a pre-set realistically shaped blades is presented in comparison with the experimental tests. We show that the
frequency of 1.5 Hz. An appropriate curvature is given to the blades before installation, so that they = code can be used to characterize the material, by getting an experimental value of the elastic modulus.
get flatten by the load and oscillate around a plan configuration. The design of a blade includes  Furthermore, simulations are shown of real blades in real conditions.

appropriate choices of shape, thickness and curvature that provide correct frequency, stress and
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Based on the shaped width w(/), the thickness h(/)
and the curvature radius of the unloaded blade, an
equation for the mechanical potential energy can
be written as follows:

Test 1: Profile fits and parameter tuning

The loaded blade profile is scanned and measured with a precision feeler. Data are compared to simulations and two parameters
are tuned for the best fit. For each blade, we get a value for the Young modulus and a value for the tilt angle 6(0).

In most cases experimental profile data and simulations coincide within the experimental profile uncertainty.

Blades are divided into three homogeneous samples. An average Young modulus is obtained for each sample. The standard
deviation is fully compatible with the fit uncertainty (between 3 and 6 GPa, depending on blade).
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SOME APPLICATIONS Residual curvature errors Filter tuning
Some blades in Test 1 give bad match of simulated and experimental profiles. Filters have movable blades designed to tune the device to the
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i ximl xim) To be investigated.




	Diapositiva 1

