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Newtonian noise
 Newtonian noise: seismic displacements may cause density 

fluctuations in the soil. These fluctuations cause a change in 
gravitational attraction.

 For a small volume element we have that the mass fluctuations 
are due to compression of p-waves; the mass fluctuation is a 
scalar object and the resulting force is in the direction of the 
volume element, not in the direction of the displacement field.

r i=(x , y , z)

Δ
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fluctuations in the soil. These fluctuations cause a change in 
gravitational attraction.

 For a small volume element we have that the mass fluctuations 
are due to compression of p-waves; the mass fluctuation is a 
scalar object and the resulting force is in the direction of the 
volume element, not in the direction of the displacement field.

 One can integrate over the total volume inside a certain 
integration radius to obtain:

 Here the surface term takes into account that if there is a 
difference in density at the integration boundary, the change of 
mass in that element is modified.
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 One can integrate over the total volume inside a certain 
integration radius to obtain:

 Here the surface term takes into account that if there is a 
difference in density at the integration boundary, the change of 
mass in that element is modified.

 Since one measures x instead of dxj/dxj one uses the divergence 
theorem, to arrive at an integral over the gravity gradients 
instead of the displacement field gradients:

 Note that the surface term when one integrates over gravity 
gradients only should be applied for rout; else you double-count.
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Seismic fields at the surface in the EU Meuse-Rhine region

 Survey data from the site study in Terziet , Nov 2017, was 
used to train and test the performance of the neural network

 We were interested in the band 0-10Hz. Data were 
downsampled to 25Hz and the instrument response was 
taken out.

 In the test, we use all sensors of the arrays, the withness 
channel is in the center of array A.

 Clearly visible – day-night differences. Note also that the 
PSDs between different nodes change: the ambient noise 
is not constant over the field.

 At any given time, the noise in any seismometer comes 
from different sources and follows different paths – one 
needs many sources simultaneously to describe the 
activity in the field, even over distances of 100 m.
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Newtonian Noise – machine learning 
 Newtonian noise: difficult to calculate from data: derivatives of the seismic displacement fields need to be 

known everywhere in a large volume (tens of cubic kilometers).

 Neural network: attempt to solve this problem by weighing/combining the full dataset (non-linear) – this 
approach may succeed if there is a way to train the network. (thesis work Vincent van Beveren, submitted 
to GQC)
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Reconstruction of displacement fields

Time traces: relevant information in the band 0-10 Hz
 Downsample to 25 sps/ 12.5 Hz
 Remove instrument response
 Calculate maximal relevant lag: for lowest wave speeds of 

100 m/s and max distances of 500 m: 5 seconds

Data (12 days of survey from Nov 2017): divide in 512 
sample records (handy for FFT)

Records: staggered with an overlap of s/2 samples – in this 
manner the full time series can be analyzed, at the cost of 
having 2 times the number of records

Typical time trace of 3 sensors and the witness sensor, containing a transient. 
The neural network makes a prediction for the witness sensor (red trace) using 
the other sensors (blue traces)

Data in the gray parts of the records may contain contributions from 
neighbouring segments and are spoiled; the central white part contains 
unspoiled results.
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Neural Network – solve for displacement field
 Keras environment (https://keras.io) and 

Google Tensorflow are used. Python 
environment.

 Operate on FFTs of the data (we expect that 
intersensor correlations are stronger in 
frequency domain than in time domain)

 Data downsampled to 25 Hz, instrument 
response removed, and scaled to have similar 
amplitudes

 First three layers weigh the events based on 
correlations in the partly overlapping bands (18 
bands, 11% overlap). Dropout occurs between 
the layers. 

 Second 2 layers: full correlations between all 
bands. Final layer just takes care of scaling 
and translation.

 Hyper parameter optimization done with Keras 
hypertuning, using Nesterov (Nadam) 
algorithm.

  Training done on a Tesla NVDIA V-100 GPU, 
66M parameters used in the final configuration.

 80 percent of the data is used for training, 20 
percent for performance analysis.

https://keras.io/
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Displacement field, surface and borehole sensor
Reconstruction of the displacement of 
a witness sensor in the survey with 
surface sensors of Nov 2017. The 
sensor layout is shown on the left. The 
plot on the right show a typical time 
trace (red) and reconstructed trace 
(right) where the bottom shows the 
measured and reconstructed power 
and 10-90 percentile bands (red and 
blue), and the measured and residual 
power after subtraction (red and 
green). The Neural network reduces 
the power by about 2 orders of 
magnitude.

Reconstruction of the vertical 
displacement field of the borehole 
sensor at 250 m depth from the 5Hz 
geophone surface sensors (survey 
layout shown on the left). Due to the 
large distance between surface 
sensors, the band width was limited to 
0-0.5 Hz. One tri-axial broadband 
seismometer at 3m depth in the 
Heimansgroeve was (blue marker) 
was also used, as well as a trillium-
T240 at the top of the borehole (black 
circle). The neural network reduces the 
power by 2 orders of magnitude.

<
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Wiener filter, surface displacement noise
 Wiener filter : optimal filter for linear problems

 Built from cross-correlation matrix. 
 Should give excellent predictions for 

displacement fields – Greens function between 
2 points constant for a given frequency bin.

 However: noise spectrum not constant: 
transients, day/night variations, weather 
variations – it varies in time.

 e.g 1 FFT with 1 sensor 1000* average 
amplitude (from local transient) spoils the 
result for the matrix elements involving that 
sensor

 Without taking out transients, the Wiener filter 
performs quite poorly. We set a threshold and 
took out all segments where the 15-minute 
average power in a sensor was a factor of 3 or 
more above the running average of the 
previous 7 hours, for the Wiener filter (about 2 
percent of the data).

 Neural network: outperforms Wiener filter: it 
can automatically correct for these changing 
conditions and does not need transient 
removal.

corr ij (f )=
Si

* (f )S j( f )
|S i( f )||S j( f )|

WFPred (Switness )=∑i∑ j
Corr ij

−1 corr j , witnessS j

Blue: measured PSD.
Green: Wiener-filter residuals, without any data selection
Red: Wiener filter results with data reduction: noisy segments are discarded
Orange: Neural network results, all data

For the borehole sensor, such filtering is not needed: below 0.5 Hz we did not have 
any large transients in the surface elements that yield good correlation.
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Wiener filter, borehole displacement noise

Blue: measured PSD.
Green: Wiener-filter residuals, without any data selection
Red: Wiener filter results with data reduction: noisy segments are discarded
Orange: Neural network results, all data

Neural-network and Wiener 
filter response;

Absolute performance very 
well: noise reduction integrated 
over the full band [50-500mHz]
by 2 orders of magnitude.

Neural network is a bit better in 
estimating fluctuations below 
the microseismic peak. 
(Ground tilt? Sensor drift?)

 Wiener filter needs some 
outlier removal for optimal 
performance above the 
microseismic peak, but the 
measured data has already low 
power in that range.



H.J. Bulten – Elba, GWADW May 2023 12

Newtonian-noise simulation: seismic field
No 3rd-generation GW detector available yet: train on 
synthetic data.

Active and passive seismic surveys used to 
characterize the soil and seismic noise in Terziet 
(Koley et al, GQC 35 (2022) 25008, Bader et al. GQC 
39 (2022) 25009)

We used the Elastodynamic Toolkit to calculate 
displacement fields in a radius 4km around the mirror. 
Sources isotropically distributed 6m around mirror. The 
amplitudes are drawn  from a Gaussian distribution 
with the mean such that the average observed PSDs 
are matched; observed features such as the first 
overtones and the ratio between underground and 
surface PSDs are reproduced.

The from the day-night observations we derived the 
presence of a common body-wave background. Since 
we did not have an underground network, we could not 
derive the constitution of that background. It has been 
modeled by isotropic plane waves with a p-wave speed 
of 4500 m/s and an s-wave speed of 2800 m/s; the 
speeds measured from the active and passive surveys 
in the area.
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Newtonian Noise: neural network and Wiener filter predictions
 We generated 50000 trials per frequency; 40,000 were used for 

training the network and 10,000 for determining the performance.

 Newtonian Noise: 10-m cavern radius around a mirror at 250 m 
depth; 4 km integration radius.
 The excavations of halls around the mirror and the presence of 

the arms are not included in the NN calculation, for ease of 
comparison.

 Sensor data: 132 sensors, tri-axial geophones at the surface, and 
trillium seismometers in the 2 arms. We assume that the arm 
extends 500 m downstream (we added sensor noise in the trials)

 Witness channel: the acceleration of the mirror in x and in y 
direction (we ignored acceleration in vertical direction).

Neural network: 2 pipelines; top with 3 fully connected layers each 
with 3 non-linear activation functions, bottom a linear pipeline 
without hyperparameters (same as Wiener filter: linear combinations 
of the input). Input: 1 frequency bin for 135 tri-axial sensors 
(displacement field) and 1 tri-axial witness (the mirror acceleration). 

Non-linear pipeline: can attempt to extract volume density 
fluctuations (from gradients of the seismic displacement field) by 
using combinations of sensors. Linear pipeline: Wiener filter; may 
work for surface displacements since then the density fluctuation is 
depends linearly on the component of the seismic field normal to the 
surface.
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Newtonian noise reduction; Wiener filter
 Wiener filter: expected to do well when 

surface terms dominate.
 Density fluctuations depend on the 

derivatives of the displacement field- wash 
out of isotropic noise

 Surface displacements: linear contribution.

 Largest cross-correlation value between 
mirror acceleration and sensor displacement: 
at 1Hz this occurs between the sensor in the 
tunnel 250m downstream and the mirror 
accelation: 0.609 for the horizontal 
displacement and 0.346 for the vertical 
component. 
 P-waves under an angle have the attraction 

of the density around that position in phase 
with the density fluctuations at the mirror. 
The sensors in the cavern itself 6 m away 
from the mirror exhibit smaller correlations.

 At 10 Hz: maximal correlation with the 
vertical surface displacement at x=-400m, 
value of 0.14 only. Next-highest for the 
sensor at x=-200 m. The largest correlation 
for an underground sensor at 10 Hz occurs 
for a sensor in the 60-deg. Arms at x= 7m, 
y=-11m ; with values of 0.098 and 0.089 for 
accelerations in the x and y directions, 
respectively.
 Surface sensors dominate; at 10 Hz the 

PSD at the surface is 4-5 orders of 
magnitude above the PSD in the borehole. 

The amplitude of the mirror acceleration in x-direction (red histogram) 
compared to the residuals using the Wiener filter prediction (blue histogram). 
The distance between the RMS of these amplitude distributions are shown; 
noise reductions between 26dB (1Hz) and 1dB (10 Hz) are obtained. 
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Newtonian noise reduction; Neural network
 The neural network has non-linear 

layers and activations, and outperforms 
a Wiener filter, especially at 10 Hz.

 We believe that this is due to the non-
linear relation between displacement 
fields and mirror acceleration

(the density fluctuation in a volume 
element is 90 (+k) or 270 (-k) degrees 
out of phase with the displacement 
field for p-waves; For a Wiener filter, 
one expects that the cross correlation 
approaches zero for integrating over 
an isotropic field)

 We verified that the  neural network can 
reduce the (uncorrelated) acceleration 
in both x and y direction with the same 
efficiency as for a single acceleration.

The amplitude of the mirror acceleration in x-direction (red histogram) 
compared to the residuals using the Wiener filter prediction (blue histogram). 
The distance between the RMS of these amplitude distributions are shown; 
noise reductions between 26dB (1Hz) and 1dB (10 Hz) are obtained. 

ξ j=Aei (k x j−ω t )⇒δρ=ik ξ jρdV
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Training
 The neural network (and also the Wiener filter) 

requires training; there must be a witness channel 
available.

 With 3 co-located arms, one can make an error 
signal for the change in a single arm length.

 The change in arm length depends only on the 
accelerations of the input and end mirrors in the 
direction of the arms; for co-located arms that is only 
on 2 variables (whereas the signal in a single 
interferometer depends the longitudinal accelerations 
at all FP mirrors; 4 variables)

 For the neural network, the expected performance to 
reduce the noise for 2 independent parameters (the 
longitudinal accelerations at the ends of 1 arm) is 
mathematically of the same complexity as reducing 
the mirror acceleration in 2 perpendicular directions.

 We therefore expect that a good NN reduction is 
feasible with a neural network and a modest number 
of seismometers in the tunnels and on the surface; In 
the order of 500 in our study

Arm A Arm B

Arm C

SCA=ΔC−Δ A=(Δ x2C−Δ x1C)−1/2(Δ x3 A−Δ x1 A)+1 /2√3 (Δ y3 A−Δ y1A )
S AB=Δ A−ΔB ; SBC=Δ B−ΔC
Δ x2C−x1C=1/2(SCA−SAB−SBC )

1C 2C

1A

3A 3B

2B
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Summary and outlook
 We have shown that neural networks are a promising tool to subtract Newtonian noise:

 The neural network can correctly predict seismic displacement data at a random location, if trained; we have shown 
that for both a borehole sensor and surface sensors

 The neural network even outperforms a Wiener filter, often considered optimal, since it does not need outlier removal 
or pre-cleaning of the data set.

 The neural network was tested against a synthetic data set. This set contained 135 hypothetical sensors on the 
surface and in the interferometer arms; and data were provided by solving the elasto-dynamic toolkit equations for the 
soil and noise as measured in the EU Meuse-Rhine region
● Caveats: for body waves we do not have a good characterization at present, since we did not perform a survey with more than 1 

underground sensor. The PSD of the underground sensor was matched with a plane-wave bodywave background which may be too 
simplistic

● Furthermore, the underground cavern structures for a realistic interferometer were not modeled. We expect that the presence of 
excavations along the arms reduce the Newtonian noise significantly, but a realistic optimization needs a final design and also 
rescattering from the tunnel walls need to be numerically studied

 Newtonian noise depends on the gradients of the seismic displacement field. Therefore, we believe that 
a neural network is better suited than a Wiener filter for NN-subtraction.
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Backup slide
 EDT toolkit calculations with the 

soil parameters as determined 
from the seismic surveys in the 
German-Belgium-Dutch EU-
region [Koley et al, GQC35, 
25008; Bader et al, GQC39, 
25009].

shown are the horizontal (blue) 
and vertical displacements (red) 
from a horizontal source with a 
force of 1Nm as a function of 
radial distance of the source. The 
black curves show the same for a 
vertical displacement resulting 
from a vertical force at the 
surface with a harmonic 
frequency of 5 Hz.

The displacement fields are 
plotted for depths of 0m (solid 
lines), 25m (dotted lines) and 250 
m (hashed lines)

Note that the amplitudes do not 
linearly decrease as a function of 
distance, there are complicated 
interference effects from the 
layered structure of the soil. 
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