

Lesson learned from AdvancedVirgo+ ISC Commissioning

P. Spinicelli on behalf of VIRGO collaboration

VIR-0402A-23

Dual recycled interferometer:

- Increased complexity for the control of the ITF
- Need of a new lock acquisition scheme
 - ALS

Marginally stable cavities \rightarrow Very sensitive to HOMs

- Need to minimize optical aberrations
- Offset on the control signals (mainly SRCL and MICH)
- Bistabilities of the working point (jumps)
- Lack of a proper error signal for SR alignment

Increased input power $25W \rightarrow 40W$:

Thermal effects more critical

DARM OLTF and Optical Spring

SR error signals strongly affected by HOMs

DARM OLTF different from ideal one (e.g. VIR-0223A-22, VIR-0334A-22):

- High optical spring
 - Locking issues
 - reduced stability of DARM
- Low Double cavity pole
 - Sensitivity issue
 - low high-frequency optical gain

The offset depends on the ITF aberrations (mainly recycling cavities relative mismatching and wrt the arms) \rightarrow highly dependent on thermal compensation and alignment GWADW2023 - P. Spinicelli

DARM OLTF and Optical Spring

SR error signals strongly affected by HOMs

DARM OLTF different from ideal one (e.g. VIR-0223A-22, VIR-0334A-22):

Patch solution: SRCL offset servo

SRCL hidden offset to be compensated by adding a servo on the SRCL set point to null the optical spring frequency (typical offset in the range of 5-10nm):

 \rightarrow This has allowed to have the best optical response of DARM.

Drawbacks:

- \mathbf{x} low accuracy of the servo
- ✗ increase of technical noises due to the need of working with an error signal far from 0
- ★ OS monitor uses an injected DARM line (UGF)

Implemented a solution LIGO-like to be robust against mismatch modes:

sideband-sideband beating, 25MHz signal on B1p $(81MHz-56MHz) \rightarrow additional EOM installed$

Main issues:

- No stationary behavior
- No bipolar behavior
 - not a reliable error signal.

The main reason is that the LIGO-like technique requires to have SRC with at least 20deg of Gouy phase. VIR-1107A-22

25 MHz signal anatomy

GWADW2023 - P. Spinicelli

SR in drift control

• Alignment uses double demodulation on high-frequency OLTF of DARM (to align the SR in order to maximize the DCP, i.e. lower the SRC losses)

Drawbacks:

• It requires injected lines on DARM and SR angle.

Transition between two optical states with different beam alignment/position (e.g. VIR-0039A-23):

- The bistability of the longitudinal working point has been really detrimental for the ISC commissioning → No stable locks
- Sideband power and symmetry stable only once in the good state

- ✓ Automatic detection of the jumps
- ✗ Efforts to deterministically induce jumps (acting on controls) not successful

GWADW2023 - P. Spinicelli

Long-term issue:

- Strongly dependent on the PRC/SRC stability an matching → solved with CHRoCC installation
- ETM RoC tuning improves efficiency and reliability of the jumps

Bi-stability of the WP: Jumps

- The control of the interferometer is very complex in presence of marginally stable cavities.
- Controls are strongly affected by optical defects, but so far we could control the double recycled ITF through heavy use of servos to manage the resulting offsets (SRCL, DIFFp, MICH...)
 - \succ servos on angular Dofs was needed also in the single recycled configuration (O3).
- ▶ While functioning, the stability of the ITF is highly dependent on optical aberration control

- The control of the interferometer is very complex in presence of marginally stable cavities.
- Controls are strongly affected by optical defects, but so far we could control the double recycled ITF through heavy use of servos to manage the resulting offsets (SRCL, DIFFp, MICH...)
 - \succ servos on angular Dofs was needed also in the single recycled configuration (O3).
- ▶ While functioning, the stability of the ITF is highly dependent on optical aberration control

e 600

500

450

400

 10^{-18} [(ZH)10⁻²⁰

10-22

10-24

 10^{-26}

101

Conclusions

Freq [Hz]

10²

10¹

10²

GWADW2023 P. Spinicelli -

Freq [Hz]

12

Thanks for your attention

Control loops error signals and bandwidth

Longitudinal loops:

DOF	Error Signal	Bandwidth (UGF [Hz])
MICH	B4_56MHz_I	9
SRCL	B4_56MHz_Q	3
PRCL	B2_6MHz_I	25
DARM	B1p_56MHz_I	75
CARM_Slow	RFC_6MHz_I	5
SSFS	B4_6MHz_I	5000

Angular loops:

DOF	Error Signal	Bandwidth (UGF [Hz])
DIFFp (DIFF hard)	B1p_QD_56MHz	3
COMMp (COMM hard)	$B7_QD_DC + Mirror centering$	3
DIFFm (DIFF soft)	Mirror centering	0.03
COMMm (COMM soft)	Mirror centering	0.03
PR	B2_QD_6MHz	3
BS	B1p_QD_50MHz	3
SR	Double demodulation DCP	0.03
Input beam	B2_QD_8MHz	3

Hidden offset on MICH:

- Sidebands unbalance
- Higher CMRF
- RIN coupling to DARM

A servo on the MICH working point has been implemented in order to minimize the coupling of the power stabilization to DARM

MICH offset servo

SC DARM SSFS LINE mag 100Hz mean

DARM PSTAR2 COUPLING 100Hz

DIFFp setpoint servo :

- adjustment of the the DIFFp DoF sepoints to minimize dark fringe
- Improvement of the dark fringe stability
 - ➤ needed for OMC lock

