

Towards a NEMO Prototype

A. W. Goodwin-Jones¹, A. Al-Jodah¹, J. Winterflood¹, H. Cao^{2,3}, B. Lassale¹, M. Chandoul¹, J. Pan¹, A. Adam¹, B. Gaudin¹, J. Liu¹, S. Key¹, J Moore¹, B. J. J. Slagmolen⁴, C. Blair¹, Ju Li¹, C. Zhao¹

1 The University of Western Australia 2 University of California, Riverside 3 University of Adelaide 4 Australian National University

Questions? Can't find me? (Email) Aaron.Jones@uwa.edu.au (WhatsApp) +61 402 830 305 (Tel) +44 773958 6008

This document has been assigned LIGO Document Number: G230123

LIGO Small Optic Suspension

We are using a LIGO SOS Suspension, with

a dummy mass for interchangeability between

Fused Silica Substrates with Ion beam coatings &

Silicon substrates with AlGaAs coatings

Contributors: AG-J, BG, CB, CZ, JL

Phase 1 - 7m 'Simple' Cavity

Objective: To develop an ultra-stable 1995nm laser system, locked to a suspended cavity with Silicon optics and AlGaAs+GaAs coatings.

7 meters

Piezo Pre-Actuation (E/W & N/S)

Piezo Pre-Actuation (Vertical)

We have developed a 5D peizo pre-actuation scheme to supress suspension point motion. A Trillium Compact 120s is placed on the optical table, and table motion is supressed using custom piezo actuation.

Contributors: JW, AA-J, AG-J, LJ, CB, BS, JL

Custom 1995nm 5W Input Laser

5W laser installed at Gingin. Laser install, commissioning & mode matching: AA, AG-J & CZ

Laser: Optics Letters, Vol 45, Iss 17, pp 4911 ono

Installed ITM

LIGO Style Control & Data System

We are using a LIGO-Style CDS system with remote access via NoMachine.

Contributors: AA-J, C.B, AG-J, BS, JL, CZ

Cryogenic ITM

Phase 2 - Coupled Cavity

Objective: To demonstrate a high-power coupled cavity, with cryogenic ITM, intracavity mode actuation and AlGaAs+GaAs coatings.

NEMO will operate with cryogenic test masses near 123 k. We have developed a cooling solution and are working to optimize the design.

Contributors: JP, BL, CZ, CB, AG-J

Thermal Suspended Active Mode Matching Stages (TSAMS)

We will use a standard TSAMS and a modified large diameter TSAMS to achieve intra-cavity mode control.

Contributors: AG-J, HC, CB, MC, JL,

>10 kW Circulating Power

Fused Silica

Contributors: AG-J, CB, BS, JL, CZ Key Optical Parameters

X

Optical Design

Silicon

Mode mismatch losses can significantly degrade sensitivity in quantum enhanced

Component	ETM	ITM	PR3	PR2	PRM
Туре	FS TM	Si TM	SAMS	SAMS	FSM
Beam Size [mm]	7.72	7.56	11.83	2.99	2.05
Gouy Phase [deg]	-64.4	63.9	-87.6	-45.0	0.0
Acc Gouy [deg]	0	128	131	138	183
Diameter [mm]	100	100	75	50	50
Curvature [m]	44.8	44.1	∞	-4	∞
Curvature [mD]	44.6	45.4	0	-500	0
Preload [mD]	N/A	N/A	+250	+250	N/A
Actuation [mD]	N/A	N/A	-97	-91	N/A
Design [mD]	N/A	N/A	+159	-347	N/A

Tune-able PRC Gouy Phase

