

Contribution ID: 66 Type: Presentation

Compact low-frequency optomechanical accelerometers for GW detectors

We will report our progress on the development of our compact low-frequency optomechanical accelerometers, which consist of monolithically fabricated mechanical resonators that are read out by miniaturized heterodyne laser interferometers. The resonators are made of fused-silica, with a test mass of approximately $2.5 \, \text{grams}$ and a mechanical quality factor of $4.77 \times 10^5 \, \text{at}$ $4.7 \, \text{Hz}$.

We have conducted comparison measurements with a commercial low-frequency seismometer to an excellent agreement, the Nanometrics T120 Horizon. A benchtop prototype exhibits measured noise floors in the order of 82 pico-g/ $\sqrt{\text{Hz}}$ at 0.4 Hz in our laboratory.

We will present recent updates on this optomechanical accelerometer, including up to date measurements of the resonator and interferometer sensitivity, as well as that of the combined system.

Primary author: GUZMAN, Felipe (Texas A&M University)

Presenter: GUZMAN, Felipe (Texas A&M University)

Session Classification: Low Frequency Noise, Control and Sensing 1

Track Classification: Low Frequency Noise: Low Frequency Sensing and Control