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Overview

Six-degree-of-freedom inertial sensor that can decouple
troublesome cross-couplings and help extend the GW
detection band towards lower frequencies

Platform for torsion-bar experiments in fundamental
physics (Schroedinger-Newton).
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6D - Metal Prototype

e Suspended 3 kg mass with large moment of inertia
e Decoupled readout of all 6 degrees of freedom
e Low readout noise due to interferometric sensors

e Lastupdate in G2300542

e Concluded testing of metal prototype,
demonstrated:
o Controllability
o Sensitivity
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https://dcc.ligo.org/LIGO-G2300542

Conclusions - Controllability

e Developed multi-layered control scheme

e Need to stabilise mass relative to ISI as well as ISl itself
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Conclusions - Sensitivity

e Tilt measurement key focus of GW detector upgrades

e Our tilt sensitivity demonstrates significant gains that could be made from adopting 6D
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Next Step: Compact 6D

e Imminently starting next stage of 6D project
e Smaller mass made of fused silica: Compact 6D
o Same sensitivity as metal prototype
o Designed with LIGO BSC space constraints in mind

o Better stability - thermal fluctuations affect angular DoF - suppressed by fused silica
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Compact 6D - Frame and Sensor Design

e Frame assembly designed and being manufactured for local UoB ISI testing.

e Sensor suite of 6 BOSEMS and 6 SmarAct interferometric sensors
SmarAct

g&@ UNIVERSITYoF GRAVITATIONAL
€'y BIRMINGHAM | WAVE ASTRONOMY



Compact 6D - SmarAct Testing

e Part of our strategy to make a robust, maintainable device
e Commercially supplied, customised design

e Mechanically simple, complexity in digital domain

e Michelson interferometer using deep frequency modulation

e Morein G2202073

__________

. S SmarAct
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https://dcc.ligo.org/LIGO-G2202073

Compact 6D - SmarAct Testing

e Reached 3e-13 m/rt(Hz) sensitivity, limited by laser intensity noise
(DOI: 10.1103/PhysRevApplied.18.034040)
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https://doi.org/10.1103/PhysRevApplied.18.034040

Compact 6D - SmarAct Testing

e Next stage, swap to Toptica DFB laser - simpler, cheaper, but need current driver
e Cheap commercial current drivers (ThorLabs) are noisy
e Just tested Rich Abbott’'s custom LIGO driver - better, we're getting there
e Possible success with active noise suppression, but...
e Laser broke!
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Exploring Fundamental Physics with 6D

e 6D can be used for torsion bar fundamental physics experiments

e We test Schroedinger-Newton semi-classical gravity model — Ql <
e Nonlinear addition to Schroedinger equation

e We test one particular approach - preselection - leads to shift in resonance
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Schroedinger-Newton with 6D

e Excite RZ mode with quantum radiation pressure

e High-finesse cavity to enhance QRPN

e Maximise Q to increase detectability of resonance above classical noise floor
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Improvmg RZ

Soft RZ means we care about small changes in sources of additional rigidity
e BOSEMs hard to align to optimal (rigidity-free) position
e (Catching servo causes shifts in RZ period due to DC force

e ‘'Solved’ by carefully tuning RZ rest position to near 0 DC force
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Understanding RZ

e High Q needed for SNR and to resolve splitting
e Vertical BOSEMs induced high eddy currents - removal increased Q from 1000 to 50,000

e Problem: Ring-up time is a year!
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Optical System

e High finesse (350,000)
e Low loss (2-5 ppm)

e Observe birefringence in tantala coatings (currently working to suppress)
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Optical System

e Hierarchical locking scheme:
o Actuate on laser frequency in broad band

o Actuate on cavity (coil-magnet on optics base plate) at low frequency

o Feed-forward to RZ BOSEMs from transmission PD to compensate DC radiation
pressure buildup

o Intensity stabilisation to suppress classical RPN
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Current Outlook for 6D-SN

e (Collect more data
e Investigate optical spring effect (as RZ is already so soft)
e Already significant improvement in Q factor 10°
—RZ measured
e But how to deal with 1 year ring-up time? —SNsignal
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Conclusion

Metal 6D prototype tests concluded:
o Control scheme demonstrated

o Sensitivity is good

Compact 6D test imminent (awaiting manufacture of components):
o Stable and robust mechanical system

o Robust and cheap sensing solution

e Demonstrating 6D's use in fundamental physics

High Q, high finesse, low loss... will we have time to finish experiment?
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