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LIGO Hanford Observatory

LIGO Livingston Observatory
Voyager IFO schematic, from Voyager White Paper
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Voyager Cryogenics

4

Voyager ETM chamber design, from Voyager White Paper

• Si mirrors
• 2 layers of radiative 

shielding
• Conductively cooled via 

heat extraction path
• Shields extend into beam 

tube
• Radiative cooling of test 

mass (TM) from inner 
shield (IS)

• Quasi-monolithic 
suspension: cold Si blade 
springs and Si ribbons

https://arxiv.org/abs/2001.11173
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Why 2 phases? 

• Despite best efforts, unexpected challenges can 
arise with new technologies
• We don’t need DRFPMI to learn things
• Ex: phase noise in Si substrate

• Integrate Phase I lessons into Phase II à
optimize for low noise
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Phase I
Warm PUM (SiO2)
2-stage metal wire suspension
SiO2/Ta2O3 coating
FPMI configuration

K. Arai
~45 K

~160 K
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Thermal Modeling

12

Suspension
• Heat flow along wires to PUM and TM
Cooling
• IS/OS cooled by separate coolers
• TM cooled radiatively by IS
• View factor from OS to TM via holes in IS
Heating
• Chamber and beam tube heat OS/IS
• View factor from beam tube to TM through IS snout
Laser heating
• 100 mW TM absorption
• 10 ppm scattering off of TM to IS

TM

OS

Cooler

Cooler

ISSnout

PUM

TM

Laser

Chamber/
beamtube,

295K
Table,
295K

Beamtube,
295K

Inner Shield

Outer Shield

Cooler

CoolerPenultimate 
mass

Cage

Test mass

Legend
             Conductive link
——— Radiative link



Thermal Modeling
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Main heat loads on test mass: beam tube, laser
• Snout extensions of rad shields buffer RT 

radiation from beam tube
• Tradeoff: longer = better RT shielding; 

shorter = less thermal mass to cool
• Shield end-to-end length: 1 m

• Can cool with laser off

What cooler do we select?
à Consider cooling and vibration 
requirements
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What’s the best we can do?

• Radiative cooling limit: 
• !=1
• 0 K environment fully 

enclosing sample
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What’s the best we can do?

• Radiative cooling limit: 
• !=1
• 0 K environment fully 

enclosing sample

• Mariner time to 123 K: ~20 h
• Voyager time to 123 K ~68 h 

(< 3 days)

LLO pumpdown: ~18 days
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Typical LLO Pump down, from Voyager White Paper

https://arxiv.org/abs/2001.11173


Cooling Requirements

1. Time to cool Si optic to 123 K should be comparable to vacuum pump down time
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Goal #1 !123K ~ 24 h
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Mariner Goals

Voyager Goals
Dependent on TM 
barrel emissivity



TM Barrel Emissivity
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J. Reis, O. Aguiar G2101151

• Is bare Si enough?
• Voyager TM effective emissivity: ! ≈ 0.685

https://dcc.ligo.org/LIGO-G2101151
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• Is bare Si enough?
• Voyager TM effective emissivity: ! ≈ 0.685
• Mariner TM effective emissivity: ! ≈ 0.685

Mariner 
with internal 
reflections

https://dcc.ligo.org/LIGO-G2101151


TM Barrel Emissivity

• High emissivity barrel coating
• à maximizes radiative coupling 

between TM and cold shielding
• Black Si

• Surface modification of Si – creates 
needle-shaped structure

• !~0.8
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J. Reis, O. Aguiar G2101151

• Is bare Si enough?
• Voyager TM effective emissivity: ! ≈ 0.685
• Mariner TM effective emissivity: ! ≈ 0.685

Mariner 
with internal 
reflections

https://dcc.ligo.org/LIGO-G2101151


• Cool Si samples in tabletop cryostat
• Extract cooldown times to 123 K

• Estimate emissivities
• Test bonding methods

à Cryostat upgrades in progress to 
simplify thermal modeling and 
increase cooling efficiency
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Cooling Tests



Vibration Considerations
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R. Ross, Vibration suppression 
of advanced space cryocoolers

Vibration spectrum generated by a BAe 80K Oxford-style, linear-drive 
compressor with a 40-Hz drive frequency.

https://www2.jpl.nasa.gov/adv_tech/coolers/Cool_ppr/SPIE2002-Cryocooler%20Vibe%20Overview.pdf


Vibration Considerations
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Sunpower Inc.

Sunpower CryoTel DS 30

R. Ross, Vibration suppression 
of advanced space cryocoolers

Vibration spectrum generated by a BAe 80K Oxford-style, linear-drive 
compressor with a 40-Hz drive frequency.

https://www.sunpowerinc.com/products/stirling-cryocoolers/cryotel-cryocoolers/ds-30
https://www2.jpl.nasa.gov/adv_tech/coolers/Cool_ppr/SPIE2002-Cryocooler%20Vibe%20Overview.pdf


Mariner Cooldown
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Goal #1 !123K <~ 24 h
Goal #2 Pcool, 123K ≥ 0.7 W

• Sunpower DS 30 (Stirling) 
cryocooler 

• High emissivity (0.9) 
coating on Si barrel

• High emissivity (0.9) 
coating on inner shield 
(inner surface) 

• Laser off during cooldown
• !123K ~ 30 h
• Pcool, 123K = 1 W
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Voyager Cooldown
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• Need ~1 kW cooling 
power at 123 K
• Multiple coolers?
• LN2?

• High emissivity (0.9) 
coating on Si barrel

• High emissivity (0.9) 
coating on inner shield 
(inner surface) 

• Laser off during cooldown
• !123K ~ 92 h
• Pcool, 123K = 11 W

Goal #1 !123K <~ 18 d
Goal #2 Pcool, 123K ≥ 10 W



Voyager Cooldown
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Goal #1 !123K <~ 18 d
Goal #2 Pcool, 123K ≥ 10 W

• Need ~1 kW cooling 
power at 123 K
• Multiple coolers?
• LN2?

• High emissivity (0.9) 
coating on Si barrel

• High emissivity (0.9) 
coating on inner shield 
(inner surface) 

• Laser off during cooldown
• !123K ~ 92 h
• Pcool, 123K = 11 W



Future Work

• Thermal modeling in COMSOL
• Testing of more high-emissivity coatings necessary for optimal 

cooldown of Mariner/Voyager TMs
• Mariner Phase I/II will inform Voyager cryogenic design
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Si Properties
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Voyager White Paper

https://arxiv.org/abs/2001.11173


Voyager SUS Parameters

34Voyager White Paper

https://arxiv.org/abs/2001.11173


Thermal Modeling

Conduction:
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P = power (W)
T = temperature (K)
, = emissivity
A = area (m2)
l   = length (m)
F = geometric view factor
% = thermal conductivity (W/mK)

Radiation:
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Current thermal model (python) integrates a system of ODEs to 
model temperature vs. time of major chamber components
• Estimates radiative view factors
• Temperature-dependent heat capacity, thermal conductivity


