

LIGO-G2301091

Radiative modeling and cryogenic design for LIGO Voyager prototype

R. Adhikari^a, S. Appert^a, K. Arai^a, **R. Bhatt^a**, A. Brooks^a, B. Shapiro^b, C. Wipf^a

^aLIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

^bJohns Hopkins Applied Physics Laboratory, Laurel, MD 20723, USA

LIGO Voyager

LIGO Livingston Observatory

LIGO Hanford Observatory

LIGO Voyager

LIGO Livingston Observatory

Voyager Cryogenics

[•] Si mirrors

- 2 layers of radiative shielding
- Conductively cooled via heat extraction path
- Shields extend into beam tube
- Radiative cooling of test mass (TM) from inner shield (IS)
- Quasi-monolithic suspension: cold Si blade springs and Si ribbons

Voyager ETM chamber design, from <u>Voyager White Paper</u>

Mariner

- Voyager-like upgrade to Caltech 40m Lab
- Demonstration of 2-µm cryogenic silicon suspended mirror interferometry
 - ~6 kg Si optics
 - 123 K operation
 - 2050 nm pre-stabilized laser (PSL)

Mariner

- Voyager-like upgrade to Caltech 40m Lab
- Demonstration of 2-µm cryogenic silicon suspended mirror interferometry
 - ~6 kg Si optics
 - 123 K operation
 - 2050 nm pre-stabilized laser (PSL)

Phase I	Phase II
Warm PUM (SiO ₂)	Cold PUM (Si)
2-stage metal wire suspension	Si springs + ribbons (monolithic)
SiO_2/Ta_2O_3 coating	a-Si coating
FPMI configuration	DRFPMI configuration

Mariner

- Voyager-like upgrade to Caltech 40m Lab
- Demonstration of 2- μm cryogenic silicon suspended mirror interferometry
 - ~6 kg Si optics
 - 123 K operation
 - 2050 nm pre-stabilized laser (PSL)

Phase I	Phase II
Warm PUM (SiO ₂)	Cold PUM (Si)
2-stage metal wire suspension	Si springs + ribbons (monolithic)
SiO_2/Ta_2O_3 coating	a-Si coating
FPMI configuration	DRFPMI configuration

Why 2 phases?

- Despite best efforts, unexpected challenges can arise with new technologies
 - We don't need DRFPMI to learn things
 - Ex: phase noise in Si substrate
- Integrate Phase I lessons into Phase II → optimize for low noise

Phase I

K. Arai

Phase IWarm PUM (SiO2)2-stage metal wire suspensionSiO2/Ta2O3 coatingFPMI configuration

Suspension

• Heat flow along wires to PUM and TM

Suspension

• Heat flow along wires to PUM and TM

Cooling

- IS/OS cooled by separate coolers
- TM cooled radiatively by IS
- View factor from OS to TM via holes in IS

Suspension

• Heat flow along wires to PUM and TM

Cooling

- IS/OS cooled by separate coolers
- TM cooled radiatively by IS
- View factor from OS to TM via holes in IS

Heating

- Chamber and beam tube heat OS/IS
- View factor from beam tube to TM through IS snout

Suspension

• Heat flow along wires to PUM and TM

Cooling

- IS/OS cooled by separate coolers
- TM cooled radiatively by IS
- View factor from OS to TM via holes in IS

Heating

- Chamber and beam tube heat OS/IS
- View factor from beam tube to TM through IS snout

Laser heating

- 100 mW TM absorption
- 10 ppm scattering off of TM to IS

Cooler Cooler Snout Snou

Main heat loads on test mass: **beam tube**, **laser**

- Snout extensions of rad shields buffer RT radiation from beam tube
 - Tradeoff: longer = better RT shielding; shorter = less thermal mass to cool
 - Shield end-to-end length: 1 m
- Can cool with laser off

What cooler do we select?

→ Consider cooling and vibration requirements

What's the best we can do?

- Radiative cooling limit:
 - *ε*=1
 - O K environment fully enclosing sample

$$mC_p \, \frac{dT}{dt} = -\sigma A T^4$$

T = temperature (K) $A = \text{area } (m^2)$ m = mass (kg) $C_p = \text{heat capacity } (J/_{kg K})$ $\sigma = \text{Stefan-Boltzmann constant } (W/_{m^2 K})$

What's the best we can do?

- Radiative cooling limit:
 - *ε*=1
 - O K environment fully enclosing sample
- Mariner time to 123 K: ~20 h
- Voyager time to 123 K ~68 h (< 3 days)

$$mC_p \frac{dT}{dt} = -\sigma AT^4$$

T = temperature (K) $A = \text{area } (m^2)$ m = mass (kg) $C_p = \text{heat capacity } (J/_{kg K})$ $\sigma = \text{Stefan-Boltzmann constant } (W/_{m^2K})$

What's the best we can do?

- Radiative cooling limit:
 - *ε*=1
 - O K environment fully enclosing sample
- Mariner time to 123 K: ~20 h
- Voyager time to 123 K ~68 h (< 3 days)

LLO pumpdown: ~18 days

$$mC_p \frac{dT}{dt} = -\sigma A T^4$$

Typical LLO Pump down, from Voyager White Paper16

1. Time to cool Si optic to 123 K should be comparable to vacuum pump down time

Mariner Goals

Goal #1 $au_{123K} \sim 24 \text{ h}$

1. Time to cool Si optic to 123 K should be comparable to 40m vacuum pump down time

- ≻ Need excess cooling power at 123 K to offset TM heat loads
- 2. Cooling power delivered to TM should be \sim 2x the heating power at 123 K

Mariner Goals

Goal #1	τ_{123K} ~ 24 h
Goal #2	$P_{cool, 123K} \ge 0.7 \text{ W}$

1. Time to cool Si optic to 123 K should be comparable to 40m vacuum pump down time

- ≻ Need excess cooling power at 123 K to offset TM heat loads
- 2. Cooling power delivered to TM should be \sim 2x the heating power at 123 K

Mariner Goals

Goal #1	τ_{123K} ~ 24 h
Goal #2	$P_{cool, 123K} \ge 0.7 \mathrm{W}$

Voyager Goals

Goal #1	$\tau_{123K} \sim 18 \text{ d}$
Goal #2	$P_{cool, 123K} \ge 10 \text{ W}$

1. Time to cool Si optic to 123 K should be comparable to 40m vacuum pump down time

- ≻ Need excess cooling power at 123 K to offset TM heat loads
- 2. Cooling power delivered to TM should be ~2x the heating power at 123 K

Mariner Goals

Goal #1	$ au_{123\mathrm{K}}$ ~ 24 h	
Goal #2	$P_{cool, 123K} \ge 0.7 \text{ W}$	
Voyager Goals		Dependent on TM barrel emissivity
Goal #1	$\tau_{123K} \sim 18 \text{ d}$	
Goal #2	$P_{cool, 123K} \ge 10 \text{ W}$	

TM Barrel Emissivity

• Is bare Si enough?

• Voyager TM effective emissivity: $\varepsilon \approx 0.685$

TM Barrel Emissivity

- Is bare Si enough?
 - Voyager TM effective emissivity: $\varepsilon \approx 0.685$
 - Mariner TM effective emissivity: $\varepsilon \approx 0.685$

TM Barrel Emissivity

- Is bare Si enough?
 - Voyager TM effective emissivity: $\varepsilon \approx 0.685$
 - Mariner TM effective emissivity: $\varepsilon \approx 0.685$
- High emissivity barrel coating
- → maximizes radiative coupling between TM and cold shielding
- Black Si
 - Surface modification of Si creates needle-shaped structure
 - *ε*~0.8

Cooling Tests

- Cool Si samples in tabletop cryostat
 - Extract cooldown times to 123 K
- Estimate emissivities
- Test bonding methods

→ Cryostat upgrades in progress to simplify thermal modeling and increase cooling efficiency

Vibration Considerations

Vibration spectrum generated by a BAe 80K Oxford-style, linear-drive

compressor with a 40-Hz drive frequency.

R. Ross, <u>Vibration suppression</u> of advanced space cryocoolers

Vibration Considerations

Mariner Cooldown

Goal #1	$\tau_{_{123K}}$ <~ 24 h
Goal #2	$P_{cool, 123K} \ge 0.7 \mathrm{W}$

- Sunpower DS 30 (Stirling) cryocooler
- High emissivity (0.9) coating on Si barrel
- High emissivity (0.9) coating on inner shield (inner surface)
- Laser off during cooldown
- $\tau_{123K} \sim 30 \text{ h}$
- $P_{cool, 123K} = 1 \text{ W}$

Mariner Cooldown

Goal #1	$\tau_{_{123K}}$ <~ 24 h
Goal #2	$P_{cool, 123K} \ge 0.7 \mathrm{W}$

Mariner ITM: Radiative Cooldown 300 Cold head Inner shield Outer shield Test mass 200 --123K Temperature [K] Time to 123K: 30.1h Steady state T: 87.9K 10² 90 80 70 Radiative cooling limit 60 50 40 20 40 60 80 100 120 140 0 Time [h]

- Sunpower DS 30 (Stirling) cryocooler
- High emissivity (0.9) coating on Si barrel
- High emissivity (0.9) coating on inner shield (inner surface)
- Laser off during cooldown
- $\tau_{123K} \sim 30 \text{ h}$
- $P_{cool, 123K} = 1 \text{ W}$

Voyager Cooldown

Goal #1	τ_{123K} <~ 18 d
Goal #2	$P_{cool, 123K} \ge 10 \text{ W}$

Voyager ITM: Radiative Cooldown 300 -CH -IS **-**OS -TM 200 ----123K TM Temperature [K] Time to 123K: 91.6h 10² 90 80 70 60 50 40 100 200 300 400 500 0 Time [h]

- Need ~1 kW cooling power at 123 K
 - Multiple coolers?
 - LN2?
- High emissivity (0.9) coating on Si barrel
- High emissivity (0.9) coating on inner shield (inner surface)
- Laser off during cooldown
- $\tau_{123K} \sim 92 \text{ h}$
- $P_{cool, 123K} = 11 \text{ W}$

Voyager Cooldown

Goal #1	τ_{123K} <~ 18 d
Goal #2	$P_{cool, 123K} \ge 10 \text{ W}$

Voyager ITM: Radiative Cooldown 300 -CH -IS **-**05 -TM 200 ----123K TM Temperature [K] Time to 123K: 91.6h 10² 90 80 70 Radiative cooling limit 60 50 40 100 200 300 400 500 0 Time [h]

- Need ~1 kW cooling power at 123 K
 - Multiple coolers?
 - LN2?
- High emissivity (0.9) coating on Si barrel
- High emissivity (0.9) coating on inner shield (inner surface)
- Laser off during cooldown
- $\tau_{123K} \sim 92 \text{ h}$
- $P_{cool, 123K} = 11 \text{ W}$

Future Work

- Thermal modeling in COMSOL
- Testing of more high-emissivity coatings necessary for optimal cooldown of Mariner/Voyager TMs
- Mariner Phase I/II will inform Voyager cryogenic design

Backup Slides

Si Properties

Property	Silicon at 123 K	Silicon at 295 K	Fused silica at 295 K
Thermal expansion (1/K)	$1 imes 10^{-9}$	$2.6 imes10^{-6}$	$3.9 imes10^{-7}$
Specific heat (J/kg/K)	300	700	739
Thermal conductivity (W/m/K)	700	130	1.38
Refractive index	3.5	3.45	1.438
dn/dT	$1 imes 10^{-4}$	$1.78 imes10^{-4}$	$1.1 imes10^{-5}$

<u>Voyager White Paper</u>

Voyager SUS Parameters

Parameters	aLIGO	150 kg test mass	200 kg test mass
<i>P</i> , Main chain payload (kg)	124	470	470
m_1 (kg)	22	148.8	116.5
m_2 (kg)	22	101.7	87.6
<i>m</i> ₃ (kg)	40	69.5	65.9
m_4 (kg)	40	150	200
Total length to optic center (mm)	1642	1642	1642
$L_1 ({ m mm})$	422	410.5	410.5
$L_2 ({ m mm})$	277	410.5	410.5
$L_3 ({ m mm})$	341	410.5	410.5
$L_4 ({ m mm})$	602	410.5	410.5
fiber/ribbon material	silica fiber	silicon ribbon	silicon ribbon
σ_4 , fiber/ribbon stress (MPa)	774	150	150
PUM springs	no	yes	yes
10Hz seismic noise (m/ $\sqrt{\text{Hz}}$)	1.7e-19	8.8e-20	1.9e-19
10 Hz long. thermal noise (m/\sqrt{Hz})	6.5e-19	1.4e-19	1.6e-19
10 Hz damping noise est (m/ $\sqrt{\text{Hz}}$)	1.7e-20	5.1e-21	1.7e-20

<u>Voyager White Paper</u>

Radiation:

$$P_{ij} = \frac{\sigma(T_i^4 - T_j^4)}{\frac{1 - \varepsilon_i}{A_i \varepsilon_i} + \frac{1 - \varepsilon_j}{A_j \varepsilon_j} + \frac{1}{A_i F_{ij}}}$$

Conduction: $P_{ii} = \frac{\kappa A}{r} (T_i - T_j)$

model temperature vs. time of major chamber components

- Estimates radiative view factors
- Temperature-dependent heat capacity, thermal conductivity

P = power (W) T = temperature (K) $\varepsilon = \text{emissivity}$ A = area (m²) l = length (m) F = geometric view factor $\kappa = \text{thermal conductivity (W/mK)}$