
Vibration attenuation system for a cryogenic Nikhef **Coating Thermal Noise measurement**

A. Bertolini, H.J.M. ter Brake, E. Hennes, S. Hild, D.G. Kas, K.W. Lotze, <u>E. Porcelli</u>, L.A. Rouwenhorst, M. Tacca, E. Tapia, C.H. Vermeer

Motivation & goals

- Major improvements in GW instrumentation science are expected from the Thermal Noise (TN) reduction in the mid-frequency range of the detectors, achievable also by cooling down the mirrors to cryogenic temperature. In order to select the coating material that are intended to be used in the 3rd generation of detectors, the TN of new coatings should be directly measured using an interferometric method in a cryogenic environment.
- Reduction of local control noise in cryogenic 3rd gen. detectors requires new sensors and actuators compatible with low temperature environment. A low noise fast turn around cryogenic test bench would be essential.
- Liquid free low noise cryogenics is more and more required in many fields of fundamental physics. R&D on new low noise technology is of wide interest.

Cryogenics

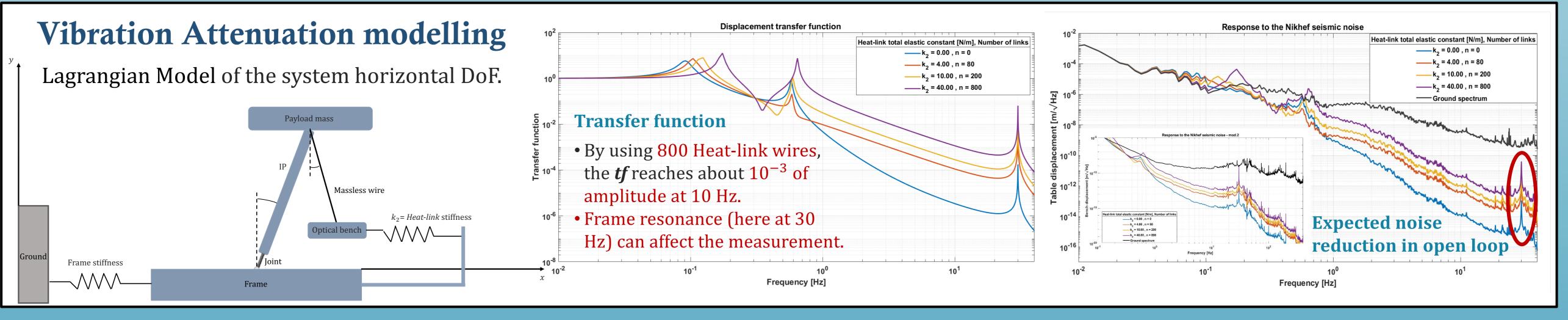
- Dual stage cryocooler (CC) to cool the heat-shields (80 K and 4 K) and to charge a **Thermal Storage Unit (TSU)**.
- Ultra-pure Aluminum low stiffness wires heat links.
- CC off during the measurement to avoid vibrations, **TSU used as a heat** sink.

-IFM TSU optics TSU $[\mathbf{K}]$ $1.5 \leftarrow M_2 \rightarrow 2$ \leftarrow CD₁ \rightarrow $\leftarrow M_1 \rightarrow 0.5$ Example simulation results 0.5 hour quiet condition to make measurement.

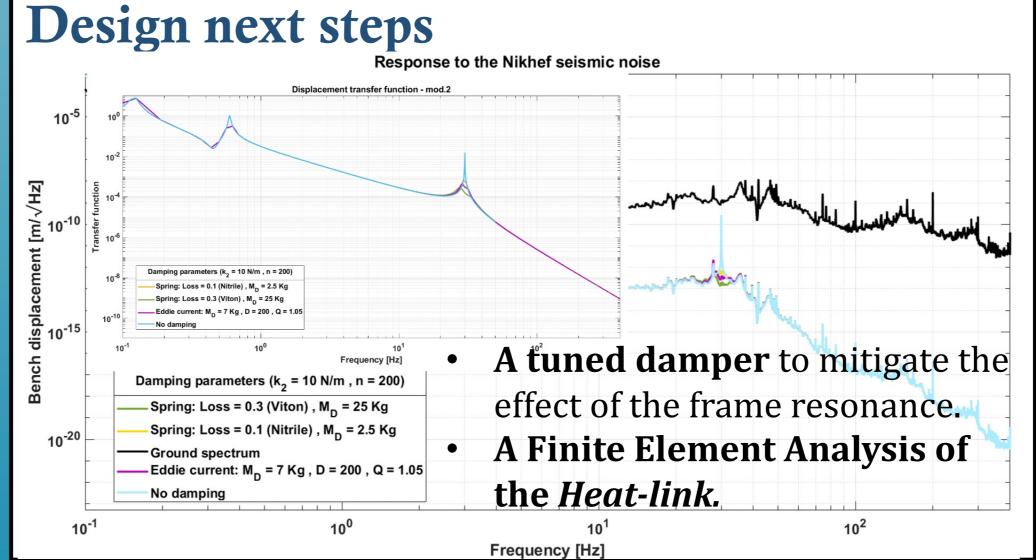
Mechanics

• Vibrations and thermal isolation: the optical bench is suspended by means of three titanium wires.

A cryogenic optical bench with $\sim 10^{-13} \text{ m}/\sqrt{\text{Hz}}$ residual motion above 30 Hz.

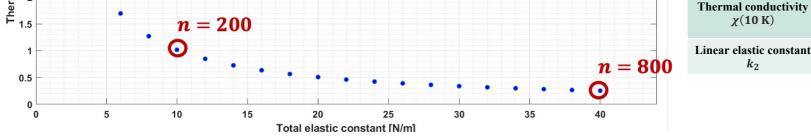

- Vertical & Tilt vibration isolation: each wire is connected to a pair of blade springs in Geometric Anti Spring (GAS) configuration located on the top platform. All three rigid body modes below **0.3 Hz**.
- Horizontal isolation: Three inverted pendulum (IP) legs support the top platform. Translational modes at ~0.1 Hz and the yaw mode at 0.5 Hz.

Sensors and Actuators


- Three horizontal and three vertical LVDT displacement sensors at the top platform level.
- Tri-axial seismometer "Trillium 120" at the center of the top platform inside a vacuum pod.
- Three Maxwell-pair actuators collocated to the horizontal LVDTs.
- Three voice-coil actuators collocated to the vertical LVDTs.

Control strategy

- NO sensors and actuators inside the cryostat.
- Horizontal DoFs controlled by a super-sensor LVDT+Seismometer.
- Yaw DoF controlled only by LVDTs.
- Vertical, Pitch and Roll controlled by sensor corrected LVDTs.


Heat-links Stiffness and Thermal Resistance ness and modal shapes (FEM Two competing requirements from modal FEM [ZH∕∕ш] • Thermal resistance should be minimized. Fin-plan • Stiff heat-links can spoil the measurement. n = 40 \odot Attenuation of $\sim 10^{-4}$ at 10 Hz by using ~ 200 *Heat-links* with the cryostat temperature n = 80 within 1 K even with 1 W heat load. $\frac{20000 \frac{W}{m * K}}{(KAGRA)}$

Conclusion

Using **200** *heat-links* seems the best compromise up to now:

•Vibration attenuation @ 10 Hz: ~3000 • $R_T = \frac{l}{\gamma sn} \approx 1 \frac{K}{W} @ 10 K$ • $\Delta T_{bench-battery} \sim 1$ K even by applying 1 W of power.

es 2.5

This publication is part of the Dutch Black Hole Consortium with project number NWA.1292.19.202 of the research program NWA

which is (partly) financed by the Dutch Research Council (NWO).