

Squeezing in the post-O5 era and synergies with third generation detectors

Eleonora Capocasa on behalf of Virgo Collaboration with contributions from LIGO and KAGRA colleagues

RG.

Ground based GW detectors: a (possible) roadmap

- Reduce the "dark ages" between 2G and 3G
- Pave the way to the 3rd generation (test technologies and risk reduction)
- Maintain a community of high-level experimentalists to run 3G detectors
- Concept study submitted to funding agencies (non yet a baseline design)

Virgo_nEXT sensitivity

Official sensitivity and baseline under discussion

Virgo_nEXT parameters

Daramatar	O4 high	O4 low	OF high	OF low	VnEVT low
Parameter	04 nign	04 IOW	OS nign	US IOW	VNEXT_IOW
Power injected	25 W	40 W	60 W	80 W	277 W
Arm power	120 kW	190 kW	290 kW	390 kW	1.5 MW
PR gain	34	34	35	35	39
Finesse	446	446	446	446	446
Signal recycling	Yes	Yes	Yes	Yes	Yes
Squeezing type	FIS	FDS	FDS	FDS	FDS
Squeezing detected level	3 dB	4.5 dB	4.5 dB	6 dB	10.5 dB
Payload type	AdV	AdV	AdV	AdV	Triple pendulum
ITM mass	42 kg	42kg	42 kg	42 kg	105 kg
ETM mass	42 kg	42kg	105 kg	105 kg	105 kg
ITM beam radius	49 mm	49 mm	49 mm	49 mm	49 mm
ETM beam radius	58 mm	58 mm	91 mm	91 mm	91 mm
Coating losses ETM	2.37e-4	2.37e-4	2.37e-4	0.79e-4	6.2e-6
Coating losses ITM	1.63e-4	1.63e-4	1.63e-4	0.54e-4	6.2e-6
Newtonian noise reduction	None	1/3	1/3	1/5	1/5
Technical noise	"Late high"	"Late low"	"Late low"	None	None
BNS range	90 Mpc	115 Mpc	145 Mpc	260 Mpc	500 Mpc

*Note that Virgo_nEXT will use stable cavities

4

Virgo_nEXT parameters

Parameter	O4 high	O4 low	O5 high	O5 low	VnEXT_low
Power injected	25 W	40 W	60 W	80 W	277 W
Arm power	120 kW	190 kW	290 kW	390 kW	1.5 MW
PR gain	34	34	35	35	39
Finesse	446	446	446	446	446
Signal recycling	Yes	Yes	Yes	Yes	Yes
Squeezing type	FIS	FDS	FDS	FDS	FDS
Squeezing detected level	3 dB	4.5 dB	4.5 dB	6 dB	10.5 dB

- Technology : frequency dependent squeezing with filter cavities for post O5 and 3G
 - Successfully demonstrated in A+
- Incremental approach to reduce optical losses and phase noise to target value

*Note that Virgo_nEXT will use stable cavities

• Same target as A#, Voyager, Einstein Telescope, Cosmic Explorer

- Phase noise ~ 10 mrad
- Total losses ~ 8%

• Current results LIGO: losses: 25% Phase noise: < 20 mrad Virgo (O3): losses: 32-41% Phase noise: 40 mrad

Virgo_nEXT squeezing degradation sources

*Note that Virgo_nEXT will use stable cavities

Virgo_nEXT goal quantum noise reduction

Parameter Injected squeezing injection losses FC losses Readout losses Arm-cavity roundtrip losses Signal extraction cavity (SEC) roundtrip Phase noise Mismatching squeezing - filter cavity Mismatching squeezing - interferometer Measured squeezing at high-frequency

	O5	Initial post-O5	VnEXT
	12 dB	12 dB	$15 \mathrm{dB}$
	6.5%	5.5%	1.8%
	$30 \mathrm{ppm}$	$30 \mathrm{~ppm}$	$20 \mathrm{~ppm}$
	6%	4.5%	2.5~%
	$75 \mathrm{ppm}$	$75 \mathrm{~ppm}$	$75 \mathrm{\ ppm}$
o losses	$1000~\rm ppm$	$1000 \mathrm{\ ppm}$	$500 \mathrm{~ppm}$
	25 mrad	$15 \mathrm{\ mrad}$	$10 \mathrm{\ mrad}$
	0.5%	0.5%	0.25%
	2%	1%	0.5%
	5.5 dB	7.5 dB	10.5 dB

- Possible use of in-vacuum squeezing source (unlike LIGO, current one is in-air)
- Injection losses mainly due to several passes trough Faraday isolator (currently around 1% each pass)

R&D on-going						
 In-vacuum squeezer demonstration Faraday isolation loss reduction: goal 0.35% 						
Component	Loss (ppm)	best scenario (ppn				
Input polarizer (surface 1)	1700	1000				
Input polarizer (surface 2)	310	100				
TGG crystal surfaces reflectivity	500	200				
TGG crystal bulk absorption	3060	1500				
half waveplate surfaces reflectivity	400	100				
Output polarizer (surface 1)	1100	300				
Output polarizer (surface 2)	200	100				
Total Losses	7270	3300				

Filter cavity losses

- No plans to increase the current length (285 m): heavier test masses -> cavity finesse can be slightly reduced (now is 10.000)
- Currently 50-90 ppm of round trip losses -> target 20 ppm
- the interferometer

R&D on-going

- Reduce scattering from mirrors (20 ppm RTL target):
 - parameters (IBS source parameters, post-annealing)
 - Implement an in-situ monitoring system to study the contaminant in the Grand Coater machine.

• Other degradation mechanisms are less critical. Control strategy to be tested when FDS is injected into

• Optimisation of the coating process to reduce the point defect density: study impact of the process

- Arm cavity round trip losses (75 ppm) already compliant with requirement
- SEC losses are more critical
 - Current estimated budget 1000 ppm (not measured yet)

BS antireflective (round trip) - pick off for control Compensating plate antireflective (round trip) Optics scattering Total

• Target reduction of SEC losses by a factor 2

R&D on-going

• Reduction of Anti-reflecting coating to 50 ppm through a better control of the deposition system

Interferometer core optics losses

1000 ppm	
200 ppm	
200 ppm	
600 ppm	

11

- Photodiode efficiency (>99%) should be compliant with requirements
- Replace the current monolithic OMC cavity by an open cavity or a hollow cavity to remove absorption losses and Rayleigh scattering losses inside the cavity medium.
- Possible reduction of pick off control beam before OMC

R&D

• Design and test of a reduced loss output mode cleaner

Readout chain losses

Mode-mismatching

- Several cavities to be matched: important source of losses
- Frequency dependent degradation effect. Some uncertainties in the modelling.
- Virgo_nEXT goal: <1%
- Not only curvature mismatch correction, but also astigmatism and higher order aberrations.

R&D

- Upgrade of Mode converter telescope (MCT) and/or electro-optic lens (EOL) to sense astigmatism
- Implement of astigmatism actuator

 Higher order mismatches between the arms and the SEC due to optical path length distortions in the ITMs with high power: can TCS compensate ?

Scheme of possible mode matching sensors and actuators implementation for VnEXT. Adaptive optics are also planned for the OMC mode matching telescope which is not shown in this scheme.

Synergies with Einstein telescope

- Same technology (FDS) and same squeezing target: needed R&D are basically the same for ET-HF
- 10 dB target is more challenging for ET-LF:
 - Different wavelength
 - Detuned configuration requires 2 filter cavities with very low bandwidth

14

- Post-O5 virgo upgrade (Virgo_nEXT) is targeting 10 dB of quantum noise reduction
 - Well established technology: frequency dependent squeezing with filter cavities.
 - No change to current infrastructure
- Main challenge: total loss reduction below 8%
 - Loss sources mainly identified, mitigation strategy to be developed: some R&D required and some more

modelling to be done.

Strong synergy with ET, A#, CE (same 10dB target and same technologies)

